834 lines
25 KiB
C++
834 lines
25 KiB
C++
/**
|
||
arduino开发环境-灯哥开源FOChttps://gitee.com/ream_d/Deng-s-foc-controller
|
||
FOC引脚32, 33, 25
|
||
AS5600霍尔传感器 SDA-23 SCL-5 MPU6050六轴传感器 SDA-19 SCL-18
|
||
本程序平衡控制为速度控制,LQR参数使用K3和K4
|
||
在wifi上位机窗口中输入:TA+角度,就可以修改平衡角度
|
||
比如让平衡角度为90度,则输入:TA90,并且会存入eeprom的位置0中 注:wifi发送命令不能过快,因为每次都会保存进eeprom
|
||
在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(7) 中的值,设置为自己的极对数数字,磁铁数量/2
|
||
程序默认设置的供电电压为 12V,用其
|
||
他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值
|
||
默认PID针对的电机是 2715 ,使用自己的电机需要修改PID参数,才能实现更好效果
|
||
*/
|
||
#include <SimpleFOC.h>
|
||
#include "Command.h"
|
||
#include <WiFi.h>
|
||
#include <AsyncUDP.h> //引用以使用异步UDP
|
||
#include <ArduinoOTA.h>
|
||
#include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter
|
||
#include "EEPROM.h"
|
||
#include "tourch.h"
|
||
#include <Preferences.h>
|
||
/* ----ESP32 IO SET---- */
|
||
#define ACTIVE_PIN 4 //状态灯
|
||
#define BAT_VOLTAGE_SENSE_PIN 34 //电池电压检测ADC,如果旧版PCB无电压检测电路,则注释掉此行
|
||
const double R1_VOLTAGE = 62000; //62K
|
||
const double R2_VOLTAGE = 10000; //10K
|
||
const double min_voltage = 9; //电池检测最低电压
|
||
double bat_voltage;
|
||
unsigned long voltage_last_time;
|
||
/* ----IMU Data---- */
|
||
Kalman kalmanZ;
|
||
#define gyroZ_OFF -0.19
|
||
double accX, accY, accZ;
|
||
double gyroX, gyroY, gyroZ;
|
||
int16_t tempRaw;
|
||
bool stable = 0 , battery_low = 0;
|
||
uint32_t last_unstable_time;
|
||
uint32_t last_stable_time;
|
||
|
||
double gyroZangle; // Angle calculate using the gyro only
|
||
double compAngleZ; // Calculated angle using a complementary filter
|
||
double kalAngleZ; // Calculated angle using a Kalman filter
|
||
|
||
uint32_t timer;
|
||
uint8_t i2cData[14]; // Buffer for I2C data
|
||
/* ----FOC Data---- */
|
||
|
||
// driver instance
|
||
const char *ServerName = "ESP32-Reuleaux-RGB";
|
||
char mac_tmp[6];
|
||
const char *ssid = mac_tmp;
|
||
const char *password = "";
|
||
bool wifi_on_off = 0;
|
||
bool wifi_flag = 0;
|
||
AsyncUDP udp; //创建UDP对象
|
||
unsigned int localUdpPort = 2333; //本地端口号
|
||
void wifi_print(char * s,double num);
|
||
|
||
/* ----FOC Data---- */
|
||
double acc2rotation(double x, double y);
|
||
float constrainAngle(float x);
|
||
LowPassFilter lpf_throttle{0.00};
|
||
|
||
//倒立摆参数
|
||
float LQR_K3_1 = 12; //摇摆到平衡
|
||
float LQR_K3_2 = 1.9; //
|
||
float LQR_K3_3 = 1.8; //
|
||
|
||
float LQR_K4_1 = 4.4; //平衡到稳定
|
||
float LQR_K4_2 = 1.5; //
|
||
float LQR_K4_3 = 1.42; //
|
||
|
||
float target_velocity = 0; //目标速度
|
||
float target_angle = 89.5; //平衡角度 例如TA89.3 设置平衡角度89.3
|
||
float target_voltage = 0; //目标电压
|
||
float swing_up_voltage = 1.5; //摇摆电压 左右摇摆的电压,越大越快到平衡态,但是过大会翻过头
|
||
float swing_up_angle = 18; //摇摆角度 离平衡角度还有几度时候,切换到自平衡控制
|
||
float v_i_1 = 15; //非稳态速度环I
|
||
float v_p_1 = 0.25; //非稳态速度环P
|
||
float v_i_2 = 10; //稳态速度环I
|
||
float v_p_2 = 0.1; //稳态速度环P
|
||
//电机参数
|
||
//目标变量
|
||
float readMySensorCallback() {
|
||
digitalWrite(22, 0); // STATE: HIGH/LOW
|
||
digitalWrite(5, 0); // STATE: HIGH/LOW
|
||
uint16_t ag = 0;
|
||
for(int i= 0;i<16;i++)
|
||
{
|
||
digitalWrite(5, 1); // STATE: HIGH/LOW
|
||
delayMicroseconds(1);
|
||
ag = ag <<1;
|
||
ag += digitalRead(23);
|
||
|
||
digitalWrite(5, 0); // STATE: HIGH/LOW
|
||
delayMicroseconds(1);
|
||
}
|
||
digitalWrite(22, 1); // STATE: HIGH/LOW
|
||
ag = ag>>2;
|
||
digitalWrite(5, 1);
|
||
// hspi->endTransaction();
|
||
float rad = (float)ag * 2 * PI / 16384;
|
||
// Serial.println(rad);
|
||
if (rad < 0) {
|
||
rad += 2 * PI;
|
||
}
|
||
return rad;
|
||
}
|
||
void initMySensorCallback() {
|
||
// do the init
|
||
pinMode(5, OUTPUT);
|
||
pinMode(22, OUTPUT);
|
||
pinMode(23, INPUT);
|
||
}
|
||
BLDCMotor motor = BLDCMotor(7);
|
||
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25);
|
||
GenericSensor sensor = GenericSensor(readMySensorCallback, initMySensorCallback);
|
||
|
||
|
||
|
||
//命令设置
|
||
Command comm;
|
||
bool Motor_enable_flag = 0;
|
||
int test_flag = 0;
|
||
void do_TA(char* cmd) { comm.scalar(&target_angle, cmd);EEPROM.writeFloat(0, target_angle); }
|
||
void do_SV(char* cmd) { comm.scalar(&swing_up_voltage, cmd); EEPROM.writeFloat(4, swing_up_voltage); }
|
||
void do_SA(char* cmd) { comm.scalar(&swing_up_angle, cmd);EEPROM.writeFloat(8, swing_up_angle); }
|
||
void do_START(char* cmd) { wifi_flag = !wifi_flag; }
|
||
void do_MOTOR(char* cmd)
|
||
{
|
||
if(Motor_enable_flag)
|
||
motor.enable();
|
||
else
|
||
motor.disable();
|
||
Motor_enable_flag = !Motor_enable_flag;
|
||
}
|
||
void do_TVQ(char* cmd)
|
||
{
|
||
if(test_flag == 1)
|
||
test_flag = 0;
|
||
else
|
||
{
|
||
motor.controller = MotionControlType::torque;
|
||
test_flag = 1;
|
||
}
|
||
}
|
||
void do_TVV(char* cmd)
|
||
{
|
||
if(test_flag == 2)
|
||
test_flag = 0;
|
||
else
|
||
{
|
||
motor.controller = MotionControlType::velocity;
|
||
test_flag = 2;
|
||
}
|
||
}
|
||
void do_VV(char* cmd) { comm.scalar(&target_velocity, cmd); }
|
||
void do_VQ(char* cmd) { comm.scalar(&target_voltage, cmd); }
|
||
void do_vp1(char* cmd) { comm.scalar(&v_p_1, cmd); EEPROM.writeFloat(12, v_p_1);}
|
||
void do_vi1(char* cmd) { comm.scalar(&v_i_1, cmd);EEPROM.writeFloat(16, v_i_1); }
|
||
void do_vp2(char* cmd) { comm.scalar(&v_p_2, cmd); EEPROM.writeFloat(20, v_p_2);}
|
||
void do_vi2(char* cmd) { comm.scalar(&v_i_2, cmd);EEPROM.writeFloat(24, v_i_2); }
|
||
void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); }
|
||
void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); }
|
||
void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); }
|
||
void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); }
|
||
void do_K41(char* cmd) { comm.scalar(&LQR_K4_1, cmd); }
|
||
void do_K42(char* cmd) { comm.scalar(&LQR_K4_2, cmd); }
|
||
void do_K43(char* cmd) { comm.scalar(&LQR_K4_3, cmd); }
|
||
|
||
void onPacketCallBack(AsyncUDPPacket packet)
|
||
{
|
||
char* da;
|
||
da= (char*)(packet.data());
|
||
Serial.println(da);
|
||
comm.run(da);
|
||
EEPROM.commit();
|
||
// packet.print("reply data");
|
||
}
|
||
// instantiate the commander
|
||
void setup() {
|
||
Serial.begin(115200);
|
||
|
||
//状态灯
|
||
pinMode(ACTIVE_PIN, OUTPUT);
|
||
digitalWrite(ACTIVE_PIN, LOW);
|
||
|
||
uint32_t chipId = 0;
|
||
for (int i = 0; i < 17; i = i + 8) {
|
||
chipId |= ((ESP.getEfuseMac() >> (40 - i)) & 0xff) << i;
|
||
}
|
||
Serial.printf("Chip ID: %d\r\n", chipId);
|
||
|
||
Serial.printf("ESP32 Chip ID = %04X",(uint16_t)(ESP.getEfuseMac()>>32));//print High 2 bytes
|
||
Serial.printf("%08X\r\n",(uint32_t)ESP.getEfuseMac());//print Low 4bytes.
|
||
|
||
Serial.printf("Chip model = %s Rev %d\r\n", ESP.getChipModel(), ESP.getChipRevision());
|
||
Serial.printf("This chip has %d cores CpuFreqMHz = %u\r\n", ESP.getChipCores(),ESP.getCpuFreqMHz());
|
||
Serial.printf("get Cycle Count = %u\r\n",ESP.getCycleCount());
|
||
Serial.printf("SDK version:%s\r\n", ESP.getSdkVersion()); //获取IDF版本
|
||
|
||
//获取片内内存 Internal RAM
|
||
Serial.printf("Total heap size = %u\t",ESP.getHeapSize());
|
||
Serial.printf("Available heap = %u\r\n",ESP.getFreeHeap());
|
||
Serial.printf("Lowest level of free heap since boot = %u\r\n",ESP.getMinFreeHeap());
|
||
Serial.printf("Largest block of heap that can be allocated at once = %u\r\n",ESP.getMaxAllocHeap());
|
||
|
||
//SPI RAM
|
||
Serial.printf("Total Psram size = %u\t",ESP.getPsramSize());
|
||
Serial.printf("Available Psram = %u\r\n",ESP.getFreePsram());
|
||
Serial.printf("Lowest level of free Psram since boot = %u\r\n",ESP.getMinFreePsram());
|
||
Serial.printf("Largest block of Psram that can be allocated at once = %u\r\n",ESP.getMinFreePsram());
|
||
sprintf(mac_tmp, "%02X\r\n", (uint32_t)(ESP.getEfuseMac() >> (24) ));
|
||
sprintf(mac_tmp, "ESP32-%c%c%c%c%c%c", mac_tmp[4], mac_tmp[5], mac_tmp[2], mac_tmp[3], mac_tmp[0], mac_tmp[1] );
|
||
|
||
if (!EEPROM.begin(1000)) {
|
||
Serial.println("Failed to initialise EEPROM");
|
||
Serial.println("Restarting...");
|
||
delay(1000);
|
||
ESP.restart();
|
||
}
|
||
// eeprom 读取
|
||
int k,j;
|
||
j = 0;
|
||
for(k=0;k<=24;k=k+4)
|
||
{
|
||
float nan = EEPROM.readFloat(k);
|
||
if(isnan(nan))
|
||
{
|
||
j = 1;
|
||
Serial.println("frist write");
|
||
EEPROM.writeFloat(0, target_angle); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(4, swing_up_voltage); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(8, swing_up_angle); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(12, v_p_1); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(16, v_i_1); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(20, v_p_2); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(24, v_i_2); delay(10);EEPROM.commit();
|
||
EEPROM.writeUChar(28,brightness); delay(10);EEPROM.commit();
|
||
EEPROM.writeUChar(32,rgb_flag); delay(10);EEPROM.commit();
|
||
}
|
||
}
|
||
if(j == 0)
|
||
{
|
||
target_angle = EEPROM.readFloat(0);
|
||
swing_up_voltage = EEPROM.readFloat(4);
|
||
swing_up_angle = EEPROM.readFloat(8);
|
||
v_p_1 = EEPROM.readFloat(12);
|
||
v_i_1 = EEPROM.readFloat(16);
|
||
v_p_2 = EEPROM.readFloat(20);
|
||
v_i_2 = EEPROM.readFloat(24);
|
||
brightness = EEPROM.readUChar(28);
|
||
rgb_flag = EEPROM.readUChar(32);
|
||
motor.PID_velocity.P = v_p_1;
|
||
motor.PID_velocity.I = v_i_1;
|
||
}
|
||
//命令设置
|
||
comm.add("TA",do_TA);
|
||
comm.add("START",do_START);
|
||
comm.add("MOTOR",do_MOTOR);
|
||
comm.add("SV",do_SV);
|
||
comm.add("SA",do_SA);
|
||
comm.add("TVQ",do_TVQ);
|
||
comm.add("TVV",do_TVV);
|
||
comm.add("VV",do_VV);
|
||
comm.add("VQ",do_VQ);
|
||
//速度环参数
|
||
comm.add("VP1",do_vp1);
|
||
comm.add("VI1",do_vi1);
|
||
comm.add("VP2",do_vp2);
|
||
comm.add("VI2",do_vi2);
|
||
comm.add("TV",do_tv);
|
||
comm.add("K31",do_K31);
|
||
comm.add("K32",do_K32);
|
||
comm.add("K33",do_K33);
|
||
comm.add("K41",do_K41);
|
||
comm.add("K42",do_K42);
|
||
comm.add("K43",do_K43);
|
||
|
||
//RGB
|
||
strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
|
||
strip.show(); // Turn OFF all pixels ASAP
|
||
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
|
||
colorWipe_delay(strip.Color(255, 106, 106),50);
|
||
colorWipe_delay(strip.Color(0, 255, 255),50);
|
||
colorWipe_delay(strip.Color(148, 0, 211),50);
|
||
|
||
// kalman mpu6050 init
|
||
Wire.begin(19, 18,uint32_t(4000000));// Set I2C frequency to 400kHz
|
||
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
|
||
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
|
||
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
|
||
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
|
||
while (i2cWrite(0x19, i2cData, 4, false))
|
||
; // Write to all four registers at once
|
||
while (i2cWrite(0x6B, 0x01, true))
|
||
; // PLL with X axis gyroscope reference and disable sleep mode
|
||
while (i2cRead(0x75, i2cData, 1))
|
||
;
|
||
if (i2cData[0] != 0x68)
|
||
{ // Read "WHO_AM_I" register
|
||
Serial.print(F("Error reading sensor"));
|
||
while (1)
|
||
;
|
||
}
|
||
delay(100); // Wait for sensor to stabilize
|
||
/* Set kalman and gyro starting angle */
|
||
while (i2cRead(0x3B, i2cData, 6))
|
||
;
|
||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||
double pitch = acc2rotation(accX, accY);
|
||
kalmanZ.setAngle(pitch);
|
||
gyroZangle = pitch;
|
||
timer = micros();
|
||
Serial.println("kalman mpu6050 init");
|
||
|
||
sensor.init();
|
||
//连接motor对象与传感器对象
|
||
motor.linkSensor(&sensor);
|
||
|
||
//供电电压设置 [V]
|
||
driver.voltage_power_supply = 12;
|
||
driver.init();
|
||
|
||
//连接电机和driver对象
|
||
motor.linkDriver(&driver);
|
||
|
||
//FOC模型选择
|
||
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
|
||
|
||
//运动控制模式设置
|
||
motor.controller = MotionControlType::torque;
|
||
//速度PI环设置
|
||
motor.PID_velocity.P = v_p_1;
|
||
motor.PID_velocity.I = v_i_1;
|
||
|
||
//最大电机限制电机
|
||
motor.voltage_limit = 12;
|
||
|
||
//速度低通滤波时间常数
|
||
motor.LPF_velocity.Tf = 0.01;
|
||
|
||
//设置最大速度限制
|
||
motor.velocity_limit = 40;
|
||
|
||
motor.useMonitoring(Serial);
|
||
|
||
//初始化电机
|
||
motor.init();
|
||
//初始化 FOC
|
||
// nvs
|
||
|
||
Preferences prefs; // 声明Preferences对象
|
||
prefs.begin("motor"); // 打开命名空间mynamespace
|
||
float offset = prefs.getFloat("offset", 0);
|
||
Serial.println(offset);
|
||
// 获取当前命名空间中的键名为"offset"的值 如果没有该元素则返回默认值0
|
||
if(offset > 0)
|
||
{
|
||
Serial.printf("初始化有值%.2f\n",offset);
|
||
Direction foc_direction = Direction::CW;
|
||
motor.initFOC(offset, foc_direction);
|
||
}
|
||
else
|
||
{
|
||
if(motor.initFOC()) //如果初始化成功,写入offset
|
||
{
|
||
Serial.println(motor.zero_electric_angle);
|
||
prefs.putFloat("offset", motor.zero_electric_angle);
|
||
}
|
||
}
|
||
prefs.end(); // 关闭当前命名空间
|
||
|
||
Serial.println(F("Motor ready."));
|
||
Serial.println(F("Set the target velocity using serial terminal:"));
|
||
|
||
digitalWrite(ACTIVE_PIN, HIGH);
|
||
}
|
||
char buf[255];
|
||
void loop() {
|
||
sensor.update();
|
||
motor.loopFOC(); //foc循环用来控制电机运动
|
||
if(wifi_on_off)
|
||
{
|
||
ArduinoOTA.handle();
|
||
}
|
||
// 触摸效果以及RGB灯效
|
||
unsigned long currentMillis = millis();
|
||
if(currentMillis - voltage_last_time >=1000)
|
||
{
|
||
voltage_last_time = currentMillis;
|
||
voltage_detection();
|
||
}
|
||
if(currentMillis - touch_last_time >= 10) { // Check for expired time
|
||
touch_last_time = currentMillis; // Run current frame
|
||
touchAttach(0,T2);
|
||
touchAttach(1,T3);
|
||
touchAttach(2,T4);
|
||
int i;
|
||
for(i = 0;i<3;i++)
|
||
{
|
||
if(touch_STATE[i]&&touch_touched[i])
|
||
if(touch_touched[i] == 1)
|
||
{
|
||
single_event(i);
|
||
}
|
||
else
|
||
long_event(i);
|
||
}
|
||
}
|
||
// Update current time 更新RGB效果
|
||
if(currentMillis - pixelPrevious >= pixelInterval) { // Check for expired time
|
||
pixelPrevious = currentMillis; // Run current frame
|
||
switch(rgb_flag){
|
||
case 0 :
|
||
rgb_off();
|
||
break;
|
||
case 1 :
|
||
if(motor.shaft_velocity>0)
|
||
{
|
||
pixelInterval = 150 - motor.shaft_velocity;
|
||
strip2();
|
||
}
|
||
else
|
||
{
|
||
pixelInterval = 150 + motor.shaft_velocity;
|
||
strip3();
|
||
}
|
||
break;
|
||
case 2 :
|
||
pixelInterval = 100;
|
||
strip2();
|
||
break;
|
||
case 3 :
|
||
pixelInterval = 100;
|
||
strip3();
|
||
break;
|
||
case 4 :
|
||
strip1();
|
||
break;
|
||
case 5 :
|
||
rainbow1();
|
||
break;
|
||
case 6 :
|
||
rainbow2();
|
||
break;
|
||
case 7 :
|
||
pulse_rainbow1();
|
||
break;
|
||
}
|
||
}
|
||
|
||
// 读取MPU6050数据
|
||
while (i2cRead(0x3B, i2cData, 14));
|
||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||
// tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
|
||
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
|
||
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
|
||
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
|
||
|
||
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
|
||
timer = micros();
|
||
|
||
double pitch = acc2rotation(accX, accY);
|
||
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
|
||
|
||
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
|
||
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
|
||
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
|
||
|
||
// Reset the gyro angle when it has drifted too much
|
||
if (gyroZangle < -180 || gyroZangle > 180)
|
||
gyroZangle = kalAngleZ;
|
||
|
||
float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle);
|
||
|
||
// pendulum_angle当前角度与期望角度差值,在差值大的时候进行摇摆,差值小的时候LQR控制电机保持平衡
|
||
if(test_flag == 0)//正常控制
|
||
{
|
||
if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||
{
|
||
target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaft_velocity);
|
||
if (abs(target_velocity) > 120)
|
||
target_velocity = _sign(target_velocity) * 120;
|
||
|
||
motor.controller = MotionControlType::velocity;
|
||
motor.move(target_velocity);
|
||
}
|
||
else // else do swing-up
|
||
{ // sets swing_up_voltage to the motor in order to swing up
|
||
motor.controller = MotionControlType::torque;
|
||
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
|
||
motor.move(target_voltage);
|
||
}
|
||
}
|
||
else if(test_flag == 1)
|
||
{
|
||
|
||
motor.move(target_voltage);
|
||
}
|
||
else
|
||
{
|
||
|
||
motor.move(target_velocity);
|
||
}
|
||
|
||
//串口输出数据部分,不需要的情况可以改为0
|
||
#if 0
|
||
|
||
Serial.print(pitch);Serial.print("\t");
|
||
Serial.print(kalAngleZ);Serial.print("\t");
|
||
Serial.print(target_voltage);Serial.print("\t");
|
||
Serial.print(motor.shaft_velocity);Serial.print("\t");
|
||
Serial.print(motor.voltage.q);Serial.print("\t");
|
||
Serial.print(target_angle);Serial.print("\t");
|
||
Serial.print(pendulum_angle);Serial.print("\t");
|
||
Serial.print(gyroZrate);Serial.print("\t");
|
||
Serial.print("\r\n");
|
||
#endif
|
||
//可以使用该方法wifi发送udp信息
|
||
if(wifi_flag)
|
||
{
|
||
memset(buf, 0, strlen(buf));
|
||
|
||
wifi_print("v", motor.shaft_velocity);
|
||
wifi_print("vq",motor.voltage.q);
|
||
wifi_print("p",pendulum_angle);
|
||
wifi_print("t",target_angle);
|
||
wifi_print("k",kalAngleZ);
|
||
wifi_print("g",gyroZrate);
|
||
wifi_print("VT",bat_voltage);
|
||
|
||
udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据
|
||
}
|
||
}
|
||
/* mpu6050加速度转换为角度
|
||
acc2rotation(ax, ay)
|
||
acc2rotation(az, ay) */
|
||
double acc2rotation(double x, double y)
|
||
{
|
||
double tmp_kalAngleZ = (atan(x / y) / 1.570796 * 90);
|
||
if (y < 0)
|
||
{
|
||
return (tmp_kalAngleZ + 180);
|
||
}
|
||
else if (x < 0)
|
||
{
|
||
//将当前值与前值比较,当前差值大于100则认为异常
|
||
if (!isnan(kalAngleZ) && (tmp_kalAngleZ + 360 - kalAngleZ) > 100) {
|
||
//Serial.print("X<0"); Serial.print("\t");
|
||
//Serial.print(tmp_kalAngleZ); Serial.print("\t");
|
||
//Serial.print(kalAngleZ); Serial.print("\t");
|
||
//Serial.print("\r\n");
|
||
if (tmp_kalAngleZ < 0 && kalAngleZ < 0) //按键右边角
|
||
return tmp_kalAngleZ;
|
||
else //按键边异常处理
|
||
return tmp_kalAngleZ;
|
||
} else
|
||
return (tmp_kalAngleZ + 360);
|
||
}
|
||
else
|
||
{
|
||
return tmp_kalAngleZ;
|
||
}
|
||
}
|
||
|
||
// function constraining the angle in between -60~60
|
||
float constrainAngle(float x)
|
||
{
|
||
float a = 0;
|
||
if(x < 0)
|
||
{
|
||
a = 120+x;
|
||
if(a<abs(x))
|
||
return a;
|
||
}
|
||
return x;
|
||
}
|
||
// LQR stabilization controller functions
|
||
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
|
||
float controllerLQR(float p_angle, float p_vel, float m_vel)
|
||
{
|
||
if (abs(p_angle) > 8) //摆角大于5则进入非稳态,记录非稳态时间
|
||
{
|
||
last_unstable_time = millis();
|
||
if (stable) //如果是稳态进入非稳态则调整为目标角度
|
||
{
|
||
//target_angle = EEPROM.readFloat(0) - p_angle;
|
||
target_angle = EEPROM.readFloat(0);
|
||
stable = 0;
|
||
}
|
||
}
|
||
if ((millis() - last_unstable_time) > 1000 && !stable) //非稳态进入稳态超过500ms检测,更新目标角为目标角+摆角,假设进入稳态
|
||
{
|
||
//target_angle -= _sign(target_velocity) * 0.4;
|
||
target_angle = target_angle+p_angle*0.5;
|
||
stable = 1;
|
||
}
|
||
|
||
if ((millis() - last_stable_time) > 2500 && stable) { //稳态超过2000ms检测,更新目标角
|
||
if (abs(target_velocity) > 5 ) { //稳态速度偏大校正
|
||
last_stable_time = millis();
|
||
target_angle -= _sign(target_velocity) * 0.2;
|
||
}
|
||
}
|
||
|
||
//Serial.println(stable);
|
||
float u;
|
||
|
||
if (!stable) //非稳态计算
|
||
{
|
||
motor.PID_velocity.P = v_p_1;
|
||
motor.PID_velocity.I = v_i_1;
|
||
u = LQR_K3_1 * p_angle + LQR_K3_2 * p_vel + LQR_K3_3 * m_vel;
|
||
}
|
||
else
|
||
{
|
||
motor.PID_velocity.P = v_p_2;
|
||
motor.PID_velocity.I = v_i_2;
|
||
u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel;
|
||
}
|
||
|
||
return u;
|
||
}
|
||
void wifi_print(char * s,double num)
|
||
{
|
||
char str[255];
|
||
char n[255];
|
||
sprintf(n, "%.2f",num);
|
||
strcpy(str,s);
|
||
strcat(str, n);
|
||
strcat(buf+strlen(buf), str);
|
||
strcat(buf, ",\0");
|
||
|
||
}
|
||
void voltage_detection()
|
||
{
|
||
#if defined(BAT_VOLTAGE_SENSE_PIN) //电池电压检测
|
||
bat_voltage = return_voltage_value(BAT_VOLTAGE_SENSE_PIN);
|
||
//driver.voltage_power_supply = bat_voltage;
|
||
//Serial.println(driver.voltage_power_supply);
|
||
if (bat_voltage < min_voltage && !battery_low)
|
||
{
|
||
battery_low = 1;
|
||
Serial.print(driver.voltage_power_supply);
|
||
Serial.println("V ");
|
||
Serial.print(bat_voltage);
|
||
Serial.println("V battery_low!!");
|
||
while (battery_low)
|
||
{
|
||
rgb_off();
|
||
motor.disable();
|
||
|
||
bat_voltage = return_voltage_value(BAT_VOLTAGE_SENSE_PIN);
|
||
if (bat_voltage >= (min_voltage + 0.5)) {
|
||
Serial.print(driver.voltage_power_supply);
|
||
Serial.print("V--");
|
||
Serial.print(bat_voltage);
|
||
Serial.println("V battery ok");
|
||
digitalWrite(ACTIVE_PIN, 0); //电池电压恢复则常亮,需reset重启
|
||
//battery_low = 0;
|
||
} else { //电池电压低闪灯
|
||
if (millis() % 500 < 250)
|
||
digitalWrite(ACTIVE_PIN, 0);
|
||
else
|
||
digitalWrite(ACTIVE_PIN, 1);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
double return_voltage_value(int pin_no)
|
||
{
|
||
double tmp;
|
||
double ADCVoltage;
|
||
double inputVoltage;
|
||
analogSetPinAttenuation(pin_no, ADC_6db);
|
||
|
||
for (int i = 0; i < 20; i++)
|
||
{
|
||
ADCVoltage = analogReadMilliVolts(pin_no) / 1000.0;
|
||
inputVoltage = (ADCVoltage * R1_VOLTAGE) / R2_VOLTAGE;
|
||
|
||
tmp = tmp + inputVoltage + ADCVoltage; // formula for calculating voltage in i.e. GND
|
||
}
|
||
inputVoltage = tmp / 20;
|
||
if(inputVoltage!=0)
|
||
inputVoltage = inputVoltage + 0.001;
|
||
/*
|
||
|
||
for (int i = 0; i < 20; i++)
|
||
{
|
||
tmp = tmp + analogRead(pin_no);
|
||
}
|
||
tmp = tmp / 20;
|
||
|
||
ADCVoltage = ((tmp * 3.3) / 4095.0) + 0.165;
|
||
inputVoltage = ADCVoltage / (R2_VOLTAGE / (R1_VOLTAGE + R2_VOLTAGE)); // formula for calculating voltage in i.e. GND
|
||
*/
|
||
|
||
return inputVoltage;
|
||
}
|
||
void AutoWifiConfig()
|
||
{
|
||
//wifi初始化
|
||
sprintf(mac_tmp, "%02X\r\n", (uint32_t)(ESP.getEfuseMac() >> (24) ));
|
||
sprintf(mac_tmp, "ESP32-%c%c%c%c%c%c", mac_tmp[4], mac_tmp[5], mac_tmp[2], mac_tmp[3], mac_tmp[0], mac_tmp[1] );
|
||
|
||
WiFi.mode(WIFI_AP);
|
||
while (!WiFi.softAP(ssid, password)) {}; //启动AP
|
||
Serial.println("AP启动成功");
|
||
Serial.println("Ready");
|
||
Serial.print("IP address: ");
|
||
Serial.println(WiFi.softAPIP());
|
||
byte mac[6];
|
||
WiFi.macAddress(mac);
|
||
WiFi.setHostname(ServerName);
|
||
Serial.printf("macAddress 0x%02X:0x%02X:0x%02X:0x%02X:0x%02X:0x%02X\r\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
|
||
|
||
while (!udp.listen(localUdpPort)) //等待udp监听设置成功
|
||
{
|
||
}
|
||
udp.onPacket(onPacketCallBack); //注册收到数据包事件
|
||
|
||
ArduinoOTA.setHostname(ServerName);
|
||
//以下是启动OTA,可以通过WiFi刷新固件
|
||
ArduinoOTA.onStart([]() {
|
||
String type;
|
||
if (ArduinoOTA.getCommand() == U_FLASH) {
|
||
type = "sketch";
|
||
} else { // U_SPIFFS
|
||
type = "filesystem";
|
||
}
|
||
|
||
// NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end()
|
||
Serial.println("Start updating " + type);
|
||
});
|
||
ArduinoOTA.onEnd([]() {
|
||
Serial.println("\nEnd");
|
||
});
|
||
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) {
|
||
Serial.printf("Progress: %u%%\r", (progress / (total / 100)));
|
||
});
|
||
ArduinoOTA.onError([](ota_error_t error) {
|
||
Serial.printf("Error[%u]: ", error);
|
||
if (error == OTA_AUTH_ERROR) {
|
||
Serial.println("Auth Failed");
|
||
} else if (error == OTA_BEGIN_ERROR) {
|
||
Serial.println("Begin Failed");
|
||
} else if (error == OTA_CONNECT_ERROR) {
|
||
Serial.println("Connect Failed");
|
||
} else if (error == OTA_RECEIVE_ERROR) {
|
||
Serial.println("Receive Failed");
|
||
} else if (error == OTA_END_ERROR) {
|
||
Serial.println("End Failed");
|
||
}
|
||
});
|
||
ArduinoOTA.begin();
|
||
}
|
||
//触摸单击函数处理
|
||
void single_event(int touchID)
|
||
{
|
||
switch(touchID){
|
||
case 0 :
|
||
if(brightness<=15)
|
||
brightness = 15;
|
||
else
|
||
brightness-=15;
|
||
EEPROM.writeUChar(28, brightness); EEPROM.commit();
|
||
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
|
||
break;
|
||
case 1 :
|
||
if(brightness>=240)
|
||
brightness = 240;
|
||
brightness+=15;
|
||
EEPROM.writeUChar(28, brightness); EEPROM.commit();
|
||
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
|
||
break;
|
||
case 2 :
|
||
if(rgb_flag)
|
||
rgb_flag = 0;
|
||
else
|
||
rgb_flag = EEPROM.readUChar(32);
|
||
break;
|
||
}
|
||
}
|
||
//触摸长按函数处理
|
||
void long_event(int touchID)
|
||
{
|
||
switch(touchID){
|
||
case 0 : //长按投币
|
||
if(rgb_flag <= 1)
|
||
rgb_flag = rgb_modle;
|
||
rgb_flag--;
|
||
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
|
||
EEPROM.writeUChar(32, rgb_flag); EEPROM.commit();
|
||
break;
|
||
case 1 : //长按收藏
|
||
rgb_flag++;
|
||
if(rgb_flag>=rgb_modle)
|
||
rgb_flag = 1;
|
||
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
|
||
EEPROM.writeUChar(32, rgb_flag); EEPROM.commit();
|
||
break;
|
||
case 2 : //长按点赞
|
||
if(wifi_on_off)
|
||
{
|
||
motor.enable();
|
||
WiFi.disconnect();
|
||
WiFi.mode(WIFI_OFF);
|
||
Serial.println("WIFI_OFF");
|
||
}
|
||
else
|
||
{
|
||
motor.disable();
|
||
AutoWifiConfig();//打开wifi
|
||
Serial.println("WIFI_ON");
|
||
|
||
Preferences prefs; // 声明Preferences对象
|
||
prefs.begin("motor"); // 打开命名空间mynamespace
|
||
prefs.putFloat("offset", 0);
|
||
prefs.end(); // 关闭当前命名空间
|
||
|
||
}
|
||
wifi_on_off = !wifi_on_off;
|
||
Motor_enable_flag = !Motor_enable_flag;
|
||
break;
|
||
}
|
||
}
|