diff --git a/arduino/Betas/RGB_V1.1.1/main/Command.cpp b/arduino/Betas/RGB_V1.1.1/main/Command.cpp new file mode 100644 index 0000000..323d99a --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/Command.cpp @@ -0,0 +1,28 @@ +#include "Command.h" + +void Command::run(char* str){ + for(int i=0; i < call_count; i++){ + if(isSentinel(call_ids[i],str)){ // case : call_ids = "T2" str = "T215.15" + call_list[i](str+strlen(call_ids[i])); // get 15.15 input function + break; + } + } +} +void Command::add(char* id, CommandCallback onCommand){ + call_list[call_count] = onCommand; + call_ids[call_count] = id; + call_count++; +} +void Command::scalar(float* value, char* user_cmd){ + *value = atof(user_cmd); +} +bool Command::isSentinel(char* ch,char* str) +{ + char s[strlen(ch)+1]; + strncpy(s,str,strlen(ch)); + s[strlen(ch)] = '\0'; //strncpy need add end '\0' + if(strcmp(ch, s) == 0) + return true; + else + return false; +} diff --git a/arduino/Betas/RGB_V1.1.1/main/Command.h b/arduino/Betas/RGB_V1.1.1/main/Command.h new file mode 100644 index 0000000..04c8397 --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/Command.h @@ -0,0 +1,17 @@ +#include +// callback function pointer definiton +typedef void (* CommandCallback)(char*); //!< command callback function pointer +class Command +{ + public: + void add(char* id , CommandCallback onCommand); + void run(char* str); + void scalar(float* value, char* user_cmd); + bool isSentinel(char* ch,char* str); + private: + // Subscribed command callback variables + CommandCallback call_list[20];//!< array of command callback pointers - 20 is an arbitrary number + char* call_ids[20]; //!< added callback commands + int call_count;//!< number callbacks that are subscribed + +}; diff --git a/arduino/Betas/RGB_V1.1.1/main/Kalman.cpp b/arduino/Betas/RGB_V1.1.1/main/Kalman.cpp new file mode 100644 index 0000000..a7c70c1 --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/Kalman.cpp @@ -0,0 +1,93 @@ +/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved. + + This software may be distributed and modified under the terms of the GNU + General Public License version 2 (GPL2) as published by the Free Software + Foundation and appearing in the file GPL2.TXT included in the packaging of + this file. Please note that GPL2 Section 2[b] requires that all works based + on this software must also be made publicly available under the terms of + the GPL2 ("Copyleft"). + + Contact information + ------------------- + + Kristian Lauszus, TKJ Electronics + Web : http://www.tkjelectronics.com + e-mail : kristianl@tkjelectronics.com + */ + +#include "Kalman.h" + +Kalman::Kalman() { + /* We will set the variables like so, these can also be tuned by the user */ + Q_angle = 0.001f; + Q_bias = 0.003f; + R_measure = 0.03f; + + angle = 0.0f; // Reset the angle + bias = 0.0f; // Reset bias + + P[0][0] = 0.0f; // Since we assume that the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical + P[0][1] = 0.0f; + P[1][0] = 0.0f; + P[1][1] = 0.0f; +}; + +// The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds +float Kalman::getAngle(float newAngle, float newRate, float dt) { + // KasBot V2 - Kalman filter module - http://www.x-firm.com/?page_id=145 + // Modified by Kristian Lauszus + // See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it + + // Discrete Kalman filter time update equations - Time Update ("Predict") + // Update xhat - Project the state ahead + /* Step 1 */ + rate = newRate - bias; + angle += dt * rate; + + // Update estimation error covariance - Project the error covariance ahead + /* Step 2 */ + P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle); + P[0][1] -= dt * P[1][1]; + P[1][0] -= dt * P[1][1]; + P[1][1] += Q_bias * dt; + + // Discrete Kalman filter measurement update equations - Measurement Update ("Correct") + // Calculate Kalman gain - Compute the Kalman gain + /* Step 4 */ + float S = P[0][0] + R_measure; // Estimate error + /* Step 5 */ + float K[2]; // Kalman gain - This is a 2x1 vector + K[0] = P[0][0] / S; + K[1] = P[1][0] / S; + + // Calculate angle and bias - Update estimate with measurement zk (newAngle) + /* Step 3 */ + float y = newAngle - angle; // Angle difference + /* Step 6 */ + angle += K[0] * y; + bias += K[1] * y; + + // Calculate estimation error covariance - Update the error covariance + /* Step 7 */ + float P00_temp = P[0][0]; + float P01_temp = P[0][1]; + + P[0][0] -= K[0] * P00_temp; + P[0][1] -= K[0] * P01_temp; + P[1][0] -= K[1] * P00_temp; + P[1][1] -= K[1] * P01_temp; + + return angle; +}; + +void Kalman::setAngle(float angle) { this->angle = angle; }; // Used to set angle, this should be set as the starting angle +float Kalman::getRate() { return this->rate; }; // Return the unbiased rate + +/* These are used to tune the Kalman filter */ +void Kalman::setQangle(float Q_angle) { this->Q_angle = Q_angle; }; +void Kalman::setQbias(float Q_bias) { this->Q_bias = Q_bias; }; +void Kalman::setRmeasure(float R_measure) { this->R_measure = R_measure; }; + +float Kalman::getQangle() { return this->Q_angle; }; +float Kalman::getQbias() { return this->Q_bias; }; +float Kalman::getRmeasure() { return this->R_measure; }; diff --git a/arduino/Betas/RGB_V1.1.1/main/Kalman.h b/arduino/Betas/RGB_V1.1.1/main/Kalman.h new file mode 100644 index 0000000..eef6cdb --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/Kalman.h @@ -0,0 +1,59 @@ +/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved. + + This software may be distributed and modified under the terms of the GNU + General Public License version 2 (GPL2) as published by the Free Software + Foundation and appearing in the file GPL2.TXT included in the packaging of + this file. Please note that GPL2 Section 2[b] requires that all works based + on this software must also be made publicly available under the terms of + the GPL2 ("Copyleft"). + + Contact information + ------------------- + + Kristian Lauszus, TKJ Electronics + Web : http://www.tkjelectronics.com + e-mail : kristianl@tkjelectronics.com + */ + +#ifndef _Kalman_h_ +#define _Kalman_h_ + +class Kalman { +public: + Kalman(); + + // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds + float getAngle(float newAngle, float newRate, float dt); + + void setAngle(float angle); // Used to set angle, this should be set as the starting angle + float getRate(); // Return the unbiased rate + + /* These are used to tune the Kalman filter */ + void setQangle(float Q_angle); + /** + * setQbias(float Q_bias) + * Default value (0.003f) is in Kalman.cpp. + * Raise this to follow input more closely, + * lower this to smooth result of kalman filter. + */ + void setQbias(float Q_bias); + void setRmeasure(float R_measure); + + float getQangle(); + float getQbias(); + float getRmeasure(); + +private: + /* Kalman filter variables */ + float Q_angle; // Process noise variance for the accelerometer + float Q_bias; // Process noise variance for the gyro bias + float R_measure; // Measurement noise variance - this is actually the variance of the measurement noise + + float angle; // The angle calculated by the Kalman filter - part of the 2x1 state vector + float bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state vector + float rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate + + float P[2][2]; // Error covariance matrix - This is a 2x2 matrix +}; + +#endif diff --git a/arduino/Betas/RGB_V1.1.1/main/data/index.html b/arduino/Betas/RGB_V1.1.1/main/data/index.html new file mode 100644 index 0000000..090309b --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/data/index.html @@ -0,0 +1,314 @@ + + + +自平衡莱洛三角形 + + + + + + + + + 自平衡莱洛三角形 + + + +

+ + + + + + + + + + + + + + + + +
已启动:     电池电压: V +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
期望角度TA摇摆电压SV摇摆角度SA速度环P1速度环I1速度环P2速度环I2
+
+
+
+
+
+ +
+
+
+ +
+
+
+ +
+
+
+ +
+
+
+ +
+
+
+ +
+
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + +
Shaft Velocitymotor voltage qtarget_velocitypendulum_angletarget_anglekalAngleZgyroZrate
+
+ + \ No newline at end of file diff --git a/arduino/Betas/RGB_V1.1.1/main/data/teset.html b/arduino/Betas/RGB_V1.1.1/main/data/teset.html new file mode 100644 index 0000000..8f8bf05 --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/data/teset.html @@ -0,0 +1,199 @@ + + +JAVASCRIPTinnerHTML + + + + +
+
+ + + + + + + +
+
  • ø
    + + + + +
  • +
    + ѡ +
    +
    +
    +
    +
    -
    +
    +
    +
    + + + + + + + + + + + + + + + +
        صѹ V +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ǶTAҡڵѹSVҡڽǶSAٶȻP1ٶȻI1ٶȻP2ٶȻI2
    +
    +
    +
    +

    + +
    +

    + +
    +

    + +
    +

    + +
    +

    + +
    +

    + +
    + + + \ No newline at end of file diff --git a/arduino/Betas/RGB_V1.1.1/main/i2c.ino b/arduino/Betas/RGB_V1.1.1/main/i2c.ino new file mode 100644 index 0000000..dacc412 --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/i2c.ino @@ -0,0 +1,63 @@ +/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved. + + This software may be distributed and modified under the terms of the GNU + General Public License version 2 (GPL2) as published by the Free Software + Foundation and appearing in the file GPL2.TXT included in the packaging of + this file. Please note that GPL2 Section 2[b] requires that all works based + on this software must also be made publicly available under the terms of + the GPL2 ("Copyleft"). + + Contact information + ------------------- + + Kristian Lauszus, TKJ Electronics + Web : http://www.tkjelectronics.com + e-mail : kristianl@tkjelectronics.com + */ + +const uint8_t IMUAddress = 0x68; // AD0 is logic low on the PCB +const uint16_t I2C_TIMEOUT = 1000; // Used to check for errors in I2C communication + +uint8_t i2cWrite(uint8_t registerAddress, uint8_t data, bool sendStop) { + return i2cWrite(registerAddress, &data, 1, sendStop); // Returns 0 on success +} + +uint8_t i2cWrite(uint8_t registerAddress, uint8_t *data, uint8_t length, bool sendStop) { + Wire.beginTransmission(IMUAddress); + Wire.write(registerAddress); + Wire.write(data, length); + uint8_t rcode = Wire.endTransmission(sendStop); // Returns 0 on success + if (rcode) { + Serial.print(F("i2cWrite failed: ")); + Serial.println(rcode); + } + return rcode; // See: http://arduino.cc/en/Reference/WireEndTransmission +} + +uint8_t i2cRead(uint8_t registerAddress, uint8_t *data, uint8_t nbytes) { + uint32_t timeOutTimer; + Wire.beginTransmission(IMUAddress); + Wire.write(registerAddress); + uint8_t rcode = Wire.endTransmission(false); // Don't release the bus + if (rcode) { + Serial.print(F("i2cRead failed: ")); + Serial.println(rcode); + return rcode; // See: http://arduino.cc/en/Reference/WireEndTransmission + } + Wire.requestFrom(IMUAddress, nbytes, (uint8_t)true); // Send a repeated start and then release the bus after reading + for (uint8_t i = 0; i < nbytes; i++) { + if (Wire.available()) + data[i] = Wire.read(); + else { + timeOutTimer = micros(); + while (((micros() - timeOutTimer) < I2C_TIMEOUT) && !Wire.available()); + if (Wire.available()) + data[i] = Wire.read(); + else { + Serial.println(F("i2cRead timeout")); + return 5; // This error value is not already taken by endTransmission + } + } + } + return 0; // Success +} diff --git a/arduino/Betas/RGB_V1.1.1/main/main.ino b/arduino/Betas/RGB_V1.1.1/main/main.ino new file mode 100644 index 0000000..83a277f --- /dev/null +++ b/arduino/Betas/RGB_V1.1.1/main/main.ino @@ -0,0 +1,1175 @@ +/** + * 自平衡莱洛三角形 RGB版 HW:Ver 1.5 FW:Ver 1.1.1 + RGB版本程序 https://gitee.com/muyan3000/RGBFOC 基于45°(https://gitee.com/coll45/foc/)程序修改 + arduino开发环境-灯哥开源FOChttps://gitee.com/ream_d/Deng-s-foc-controller,并安装Kalman。 + FOC引脚32, 33, 25, 22 22为enable + AS5600霍尔传感器 SDA-23 SCL-5 MPU6050六轴传感器 SDA-19 SCL-18 + 本程序有两种平衡方式, FLAG_V为1时使用电压控制,为0时候速度控制。电压控制时LQR参数使用K1和K2,速度控制时LQR参数使用K3和K4 + 在wifi上位机窗口中输入:TA+角度,就可以修改平衡角度 + 比如让平衡角度为90度,则输入:TA90,并且会存入eeprom的位置0中 注:wifi发送命令不能过快,因为每次都会保存进eeprom + 在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(5) 中的值,设置为自己的极对数数字,磁铁数量/2 + 程序默认设置的供电电压为 12V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值 + 默认PID针对的电机是 GB2204 ,使用自己的电机需要修改PID参数,才能实现更好效果 +*/ +#include +#include "Command.h" +#include +#include //引用以使用异步UDP +#include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter +#include "EEPROM.h" + +#include +#include +#include +#include +#include "SPIFFS.h" +#include +#define timezone 8 + +#include +#define DATA_PIN 16 //RGB pin +#define LED_TYPE WS2812B +#define COLOR_ORDER GRB +#define NUM_LEDS 21 //LED数量 +int rgb_brightness = 25; //初始化亮度 +CRGB leds[NUM_LEDS]; + +unsigned long TenthSecondsSinceStart = 0; +void TenthSecondsSinceStartTask(); +void OnTenthSecond(); +void OnSecond(); +void StartWebServer(); + +#define ACTIVE_PIN 4 //状态灯 +#define BAT_VOLTAGE_SENSE_PIN 34 //电池电压检测ADC,如果旧版PCB无电压检测电路,则注释掉此行 +const double R1_VOLTAGE = 68000; //68K +const double R2_VOLTAGE = 10000; //10K +const double min_voltage = 9.5; //电池检测最低电压 +double bat_voltage; + +const int threshold_top = 20; //触摸顶部阈值 +const int threshold_bottom = 1; //触摸底部阈值,越接近数值越小 +const int threshold_count = 4; //触摸计数器有效值,通常会有意外的自动触发 + +int touchread[4] = {100,100,100,100}; //初始化触摸读取值为100,无触摸 +int touchDetected[4] = {}; //通过touchdetected持续计数判断是否按键,防止无触碰触发 + +bool touch_touched[4] = {}; //单击判断 +int touch_touched_times[4] = {}; //单击次数,单击切换模式,双击 +int touch_touching_time[4] = {}; //持续触摸秒数,用于判断长按事件,长按关闭,长按开启,开启状态长按调光, +bool touch_STATE[4] = {1,1,1,1}; // 定义按键触发对象状态变量初始值为true默认开启 + +const char* username = "admin"; //web用户名 +const char* userpassword = "12345678"; //web用户密码 +const char* ServerName = "ESP32-LELO-RGB"; +char DateTimeStr[20] = "1970-01-01 00:00:00"; +char Debug_Log[8192] = ""; +bool log_control = 1; + +WebServer ESP32Server(80); + +Kalman kalmanZ; +#define gyroZ_OFF -0.19 +/* ----IMU Data---- */ + +double accX, accY, accZ; +double gyroX, gyroY, gyroZ; +int16_t tempRaw; +bool stable = 0 , battery_low = 0; +uint32_t last_unstable_time; +uint32_t last_stable_time; + +double gyroZangle; // Angle calculate using the gyro only +double compAngleZ; // Calculated angle using a complementary filter +double kalAngleZ; // Calculated angle using a Kalman filter +float pendulum_angle; + +uint32_t timer; +uint8_t i2cData[14]; // Buffer for I2C data +/* ----FOC Data---- */ + +// driver instance +double acc2rotation(double x, double y); +float constrainAngle(float x); +const char *ssid = "esp32"; +const char *password = "12345678"; + +bool wifi_flag = 0; +AsyncUDP udp; //创建UDP对象 +unsigned int localUdpPort = 2333; //本地端口号 +void wifi_print(char * s, double num); + +MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C); +TwoWire I2Ctwo = TwoWire(1); +LowPassFilter lpf_throttle{0.00}; + +//倒立摇摆参数 +//3和4是速度控制稳定前和后 +float LQR_K3_1 = 10; //速度控制摇摆到平衡 +float LQR_K3_2 = 1.7; // +float LQR_K3_3 = 1.75; // + +float LQR_K4_1 = 2.4; //速度控制平衡态 +float LQR_K4_2 = 1.5; // +float LQR_K4_3 = 1.42; // + +//电机参数 +BLDCMotor motor = BLDCMotor(5); +BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22); +float target_velocity = 0; //目标速度 +float target_angle = 90; //平衡角度 例如TA89.3 设置平衡角度89.3 +float target_voltage = 0; //目标电压 +float swing_up_voltage = 1.8; //摇摆电压 左右摇摆的电压,越大越快到平衡态,但是过大会翻过头 +float swing_up_angle = 20; //摇摆角度 离平衡角度还有几度时候,切换到自平衡控制 +float v_i_1 = 20; //非稳态速度环I +float v_p_1 = 0.7; //非稳态速度环P +float v_i_2 = 10; //稳态速度环I +float v_p_2 = 0.3; //稳态速度环P +//命令设置 +Command comm; +bool Motor_enable_flag = 0; +int test_flag = 0; +void do_TA(char* cmd) { + comm.scalar(&target_angle, cmd); + EEPROM.writeFloat(0, target_angle); +} +void do_SV(char* cmd) { + comm.scalar(&swing_up_voltage, cmd); + EEPROM.writeFloat(4, swing_up_voltage); +} +void do_SA(char* cmd) { + comm.scalar(&swing_up_angle, cmd); + EEPROM.writeFloat(8, swing_up_angle); +} + +void do_START(char* cmd) { + wifi_flag = !wifi_flag; +} +void do_MOTOR(char* cmd) +{ + if (Motor_enable_flag) + motor.enable(); + else + motor.disable(); + Motor_enable_flag = !Motor_enable_flag; +} + +void do_TVQ(char* cmd) +{ + if (test_flag == 1) + test_flag = 0; + else + test_flag = 1; +} +void do_TVV(char* cmd) +{ + if (test_flag == 2) + test_flag = 0; + else + test_flag = 2; +} +void do_VV(char* cmd) { + comm.scalar(&target_velocity, cmd); +} +void do_VQ(char* cmd) { + comm.scalar(&target_voltage, cmd); +} + +void do_vp1(char* cmd) { + comm.scalar(&v_p_1, cmd); + EEPROM.writeFloat(12, v_p_1); +} +void do_vi1(char* cmd) { + comm.scalar(&v_i_1, cmd); + EEPROM.writeFloat(16, v_i_1); +} +void do_vp2(char* cmd) { + comm.scalar(&v_p_2, cmd); + EEPROM.writeFloat(20, v_p_2); +} +void do_vi2(char* cmd) { + comm.scalar(&v_i_2, cmd); + EEPROM.writeFloat(24, v_i_2); +} +void do_tv(char* cmd) { + comm.scalar(&target_velocity, cmd); +} +void do_K31(char* cmd) { + comm.scalar(&LQR_K3_1, cmd); +} +void do_K32(char* cmd) { + comm.scalar(&LQR_K3_2, cmd); +} +void do_K33(char* cmd) { + comm.scalar(&LQR_K3_3, cmd); +} +void do_K41(char* cmd) { + comm.scalar(&LQR_K4_1, cmd); +} +void do_K42(char* cmd) { + comm.scalar(&LQR_K4_2, cmd); +} +void do_K43(char* cmd) { + comm.scalar(&LQR_K4_3, cmd); +} + +void onPacketCallBack(AsyncUDPPacket packet) +{ + char* da; + da = (char*)(packet.data()); + Serial.println(da); + comm.run(da); + EEPROM.commit(); + // packet.print("reply data"); +} +// instantiate the commander +void setup() { + Serial.begin(115200); + + pinMode(ACTIVE_PIN, OUTPUT); + digitalWrite(ACTIVE_PIN, HIGH); + uint32_t chipId = 0; + for (int i = 0; i < 17; i = i + 8) { + chipId |= ((ESP.getEfuseMac() >> (40 - i)) & 0xff) << i; + } + + Serial.printf("ESP32 Chip model = %s Rev %d\n", ESP.getChipModel(), ESP.getChipRevision()); + Serial.printf("This chip has %d cores\n", ESP.getChipCores()); + Serial.print("Chip ID: "); Serial.println(chipId); + + //获取IDF版本 + printf("SDK version:%s\n", esp_get_idf_version()); + //获取芯片内存 + Serial.print("Max Free Heap: "); + Serial.println(ESP.getMaxAllocHeap()); + //获取芯片可用内存 + printf("esp_get_free_heap_size : %d \n", esp_get_free_heap_size()); + //获取从未使用过的最小内存 + printf("esp_get_minimum_free_heap_size : %d \n", esp_get_minimum_free_heap_size()); + + if (!EEPROM.begin(1000)) { + Serial.println("Failed to initialise EEPROM"); + Serial.println("Restarting..."); + delay(1000); + ESP.restart(); + } + // eeprom 读取 + int k, j; + j = 0; + for (k = 0; k <= 24; k = k + 4) + { + float nan = EEPROM.readFloat(k); + if (isnan(nan)) + { + j = 1; + Serial.println("frist write"); + EEPROM.writeFloat(0, target_angle); delay(10); EEPROM.commit(); + EEPROM.writeFloat(4, swing_up_voltage); delay(10); EEPROM.commit(); + EEPROM.writeFloat(8, swing_up_angle); delay(10); EEPROM.commit(); + EEPROM.writeFloat(12, v_p_1); delay(10); EEPROM.commit(); + EEPROM.writeFloat(16, v_i_1); delay(10); EEPROM.commit(); + EEPROM.writeFloat(20, v_p_2); delay(10); EEPROM.commit(); + EEPROM.writeFloat(24, v_i_2); delay(10); EEPROM.commit(); + } + } + if (j == 0) + { + target_angle = EEPROM.readFloat(0); + swing_up_voltage = EEPROM.readFloat(4); + swing_up_angle = EEPROM.readFloat(8); + v_p_1 = EEPROM.readFloat(12); + v_i_1 = EEPROM.readFloat(16); + v_p_2 = EEPROM.readFloat(20); + v_i_2 = EEPROM.readFloat(24); + motor.PID_velocity.P = v_p_1; + motor.PID_velocity.I = v_i_1; + } + + //命令设置 + comm.add("TA", do_TA); + comm.add("START", do_START); + comm.add("MOTOR", do_MOTOR); + comm.add("SV", do_SV); + comm.add("SA", do_SA); + comm.add("TVQ", do_TVQ); + comm.add("TVV", do_TVV); + comm.add("VV", do_VV); + comm.add("VQ", do_VQ); + //速度环参数 + comm.add("VP1", do_vp1); + comm.add("VI1", do_vi1); + comm.add("VP2", do_vp2); + comm.add("VI2", do_vi2); + comm.add("TV", do_tv); + comm.add("K31", do_K31); + comm.add("K32", do_K32); + comm.add("K33", do_K33); + comm.add("K41", do_K41); + comm.add("K42", do_K42); + comm.add("K43", do_K43); + + // tell FastLED about the LED strip configuration + FastLED.addLeds(leds, NUM_LEDS) + .setCorrection(TypicalLEDStrip) + .setDither(rgb_brightness < 255); + // set master brightness control + FastLED.setBrightness(rgb_brightness); + + CRGB c_rgb[5]; + c_rgb[0] = CRGB::White; + c_rgb[2] = CRGB::Red; + c_rgb[1] = CRGB::Green; + c_rgb[3] = CRGB::Blue; + c_rgb[4] = CRGB::Purple; + + for ( int j = 0; j < 5; j++) { + for ( int i = 0; i < NUM_LEDS; i++) { + leds[i] = c_rgb[j]; + FastLED.show(); + delay(15); + } + delay(500); + } + + //wifi初始化 + WiFi.mode(WIFI_AP); + while (!WiFi.softAP(ssid, password)) {}; //启动AP + Serial.println("AP启动成功"); + Serial.println("Ready"); + Serial.print("IP address: "); + Serial.println(WiFi.softAPIP()); + + while (!udp.listen(localUdpPort)) //等待udp监听设置成功 + { + } + udp.onPacket(onPacketCallBack); //注册收到数据包事件 + + Serial.print("\nMax Free Heap: "); + Serial.println(ESP.getMaxAllocHeap()); + Serial.println(""); + + ArduinoOTA.setHostname("ESP32-Reuleaux"); + //以下是启动OTA,可以通过WiFi刷新固件 + ArduinoOTA.onStart([]() { + String type; + if (ArduinoOTA.getCommand() == U_FLASH) { + type = "sketch"; + } else { // U_SPIFFS + type = "filesystem"; + } + + // NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end() + Serial.println("Start updating " + type); + }); + ArduinoOTA.onEnd([]() { + Serial.println("\nEnd"); + }); + ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { + Serial.printf("Progress: %u%%\r", (progress / (total / 100))); + }); + ArduinoOTA.onError([](ota_error_t error) { + Serial.printf("Error[%u]: ", error); + if (error == OTA_AUTH_ERROR) { + Serial.println("Auth Failed"); + } else if (error == OTA_BEGIN_ERROR) { + Serial.println("Begin Failed"); + } else if (error == OTA_CONNECT_ERROR) { + Serial.println("Connect Failed"); + } else if (error == OTA_RECEIVE_ERROR) { + Serial.println("Receive Failed"); + } else if (error == OTA_END_ERROR) { + Serial.println("End Failed"); + } + }); + ArduinoOTA.begin(); + + // kalman mpu6050 init + Wire.begin(19, 18, 400000); // Set I2C frequency to 400kHz + i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz + i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling + i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s + i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g + while (i2cWrite(0x19, i2cData, 4, false)); // Write to all four registers at once + while (i2cWrite(0x6B, 0x01, true)); // PLL with X axis gyroscope reference and disable sleep mode + while (i2cRead(0x75, i2cData, 1)); + if (i2cData[0] != 0x68) + { // Read "WHO_AM_I" register + Serial.print(F("Error reading sensor")); + while (1); + } + + delay(100); // Wait for sensor to stabilize + + /* Set kalman and gyro starting angle */ + while (i2cRead(0x3B, i2cData, 6)); + accX = (int16_t)((i2cData[0] << 8) | i2cData[1]); + accY = (int16_t)((i2cData[2] << 8) | i2cData[3]); + accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]); + double pitch = acc2rotation(accX, accY); + kalmanZ.setAngle(pitch); // Set starting angle + gyroZangle = pitch; + timer = micros(); + Serial.println("kalman mpu6050 init"); + + I2Ctwo.begin(23, 5, 400000); //SDA,SCL + sensor.init(&I2Ctwo); + + //连接motor对象与传感器对象 + motor.linkSensor(&sensor); + + //供电电压设置 [V] + driver.voltage_power_supply = 12; + driver.init(); + + //连接电机和driver对象 + motor.linkDriver(&driver); + + //FOC模型选择 + motor.foc_modulation = FOCModulationType::SpaceVectorPWM; + + //运动控制模式设置 + motor.controller = MotionControlType::velocity; + + //速度PI环设置 + motor.PID_velocity.P = v_p_1; + motor.PID_velocity.I = v_i_1; + + //最大电机限制电压 + motor.voltage_limit = 12; + + //速度低通滤波时间常数 + motor.LPF_velocity.Tf = 0.02; + + //设置最大速度限制 + motor.velocity_limit = 40; + + motor.useMonitoring(Serial); + + //初始化电机 + motor.init(); + + //初始化 FOC + motor.initFOC(); + + Serial.println(F("Motor ready.")); + Serial.println(F("Set the target velocity using serial terminal:")); + + + // 启动闪存文件系统 + if (SPIFFS.begin()) + { + Serial.println("SPIFFS Started."); + } + else + { + Serial.println("SPIFFS Failed to Start."); + } + + StartWebServer(); + + Serial.println("System is ready"); + Serial.println("-----------------------------------------------"); +} + +char buf[255]; +long loop_count = 0; +double last_pitch; +void loop() { + ArduinoOTA.handle(); + motor.loopFOC(); + TenthSecondsSinceStartTask(); + ESP32Server.handleClient(); + delay(2);//allow the cpu to switch to other tasks + + while (i2cRead(0x3B, i2cData, 14)); + accX = (int16_t)((i2cData[0] << 8) | i2cData[1]); + accY = (int16_t)((i2cData[2] << 8) | i2cData[3]); + accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]); + tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]); + gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]); + gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]); + gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]); + + double dt = (double)(micros() - timer) / 1000000; // Calculate delta time + timer = micros(); + + double pitch = acc2rotation(accX, accY); + //double pitch2 = atan(-accX / sqrt(accY * accY + accZ * accZ)) * RAD_TO_DEG; + double gyroZrate = gyroZ / 131.0; // Convert to deg/s + if (abs(pitch - last_pitch) > 100) + kalmanZ.setAngle(pitch); + + kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt); + last_pitch = pitch; + gyroZangle += (gyroZrate + gyroZ_OFF) * dt; // Calculate gyro angle without any filter + compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch; // Calculate the angle using a Complimentary filter + + // Reset the gyro angle when it has drifted too much + if (gyroZangle < -180 || gyroZangle > 180) + gyroZangle = kalAngleZ; + + pendulum_angle = constrainAngle(fmod(kalAngleZ, 120) - target_angle); //摆角计算 + + // pendulum_angle当前角度与期望角度差值,在差值大的时候进行摇摆,差值小的时候LQR控制电机保持平衡 + if (test_flag == 0) //正常控制 + { + if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90° + { + target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity()); + if (abs(target_velocity) > 140) + //target_velocity = _sign(target_velocity) * 140; + + motor.controller = MotionControlType::velocity; + motor.move(target_velocity); + } + else // else do swing-up + { // sets swing_up_voltage to the motor in order to swing up + motor.controller = MotionControlType::torque; + target_voltage = -_sign(gyroZrate) * swing_up_voltage; + motor.move(target_voltage); + } + } + else if (test_flag == 1) + { + motor.controller = MotionControlType::torque; + motor.move(target_voltage); + } + else + { + motor.controller = MotionControlType::velocity; + motor.move(target_velocity); + } + + //串口输出数据部分,不需要的情况可以改为0 +#if 0 + + Serial.print(accX); Serial.print("\t"); + Serial.print(accY); Serial.print("\t"); + Serial.print(atan(accX / accY) / 1.570796 * 90); Serial.print("\t"); + Serial.print(pitch); Serial.print("\t"); + Serial.print(gyroZangle); Serial.print("\t"); + Serial.print(compAngleZ); Serial.print("\t"); + Serial.print(kalAngleZ); Serial.print("\t"); + + Serial.print(target_voltage); Serial.print("\t"); + // Serial.print(target_velocity);Serial.print("\t"); + Serial.print(motor.shaft_velocity); Serial.print("\t"); + Serial.print(target_angle); Serial.print("\t"); + Serial.print(pendulum_angle); Serial.print("\t"); + Serial.print(gyroZrate); Serial.print("\t"); + Serial.print("\r\n"); +#endif + // motor.move(target_velocity); + //可以使用该方法wifi发送udp信息 + if (wifi_flag) + { + digitalWrite(ACTIVE_PIN, LOW); + memset(buf, 0, strlen(buf)); + + wifi_print("v", motor.shaftVelocity()); + wifi_print("vq", motor.voltage.q); + wifi_print("p", pendulum_angle); + wifi_print("t", target_angle); + wifi_print("k", kalAngleZ); + wifi_print("g", gyroZrate); + wifi_print("BAT", driver.voltage_power_supply); + + udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192, 168, 4, 2), localUdpPort); //广播数据 + digitalWrite(ACTIVE_PIN, HIGH); + } + + //触摸感应处理 + touchAttach(1, T2); + touchAttach(2, T3); + touchAttach(3, T4); + + + //单击事件处理 + if (touch_touched[1]) { + //Serial.print("\nLight1 touched "); + //Serial.println(touch_touched_times[1]); + touch_touched[1] = false; + } + + if (touch_touched[2]) { + //Serial.print("\nLight2 touched "); + //Serial.println(touch_touched_times[2]); + + touch_touched[2] = false; + } + + //灯光及按键处理 + if ( touch_STATE[1] ) { + pride(); + addGlitter(15); + FastLED.show(); + } else { + FastLED.clearData(); + FastLED.show(); + } + +} +/* mpu6050加速度转换为角度 + acc2rotation(ax, ay) + acc2rotation(az, ay) */ +double acc2rotation(double x, double y) +{ + if (y < 0) + { + return atan(x / y) / 1.570796 * 90 + 180; + } + else if (x < 0) + { + return (atan(x / y) / 1.570796 * 90 + 360); + } + else + { + return (atan(x / y) / 1.570796 * 90); + } +} + +// function constraining the angle in between -60~60 +float constrainAngle(float x) +{ + float a = 0; + if (x < 0) + { + a = 120 + x; + if (a < abs(x)) + return a; + } + return x; +} +// LQR stabilization controller functions +// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum +float controllerLQR(float p_angle, float p_vel, float m_vel) +{ + // if angle controllable + // calculate the control law + // LQR controller u = k*x + // - k = [40, 7, 0.3] + // - k = [13.3, 21, 0.3] + // - x = [pendulum angle, pendulum velocity, motor velocity]' + + if (abs(p_angle) > 3) //摆角大于2.5则进入非稳态,记录非稳态时间 + { + last_unstable_time = millis(); + if (stable) //如果是稳态进入非稳态则调整为目标角度 + { + target_angle = EEPROM.readFloat(0); + stable = 0; + } + } + if ((millis() - last_unstable_time) > 500 && !stable) //非稳态进入稳态超过500ms检测,更新目标角为目标角+摆角,假设进入稳态 + { + target_angle -= _sign(target_velocity) * 0.2; + stable = 1; + } + + if ((millis() - last_stable_time) > 2500 && stable) { //稳态超过2000ms检测,更新目标角 + if (abs(target_velocity) > 2.5 && abs(target_velocity) < 15) { //稳态速度偏大校正 + last_stable_time = millis(); + target_angle -= _sign(target_velocity) * 0.2; + } + } + + //Serial.println(stable); + float u; + + if (!stable) //非稳态计算 + { + motor.PID_velocity.P = v_p_1; + motor.PID_velocity.I = v_i_1; + u = LQR_K3_1 * p_angle + LQR_K3_2 * p_vel + LQR_K3_3 * m_vel; + } + else + { + motor.PID_velocity.P = v_p_2; + motor.PID_velocity.I = v_i_2; + u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel; + } + + return u; +} +void wifi_print(char * s, double num) +{ + char str[255]; + char n[255]; + sprintf(n, "%.2f", num); + strcpy(str, s); + strcat(str, n); + strcat(buf + strlen(buf), str); + strcat(buf, ",\0"); +} + + +unsigned long LastMillis = 0; +void TenthSecondsSinceStartTask() //100ms +{ + unsigned long CurrentMillis = millis(); + if (abs(int(CurrentMillis - LastMillis)) > 100) + { + LastMillis = CurrentMillis; + TenthSecondsSinceStart++; + OnTenthSecond(); + } +} + +void OnSecond() +{ + time_t now = time(nullptr); //获取当前时间 + + //转换成年月日的数字,可以更加自由的显示。 + struct tm* timenow; + timenow = localtime(&now); + unsigned char tempHour = timenow->tm_hour; + unsigned char tempMinute = timenow->tm_min; + unsigned char tempSecond = timenow->tm_sec; + unsigned char tempDay = timenow->tm_mday; + unsigned char tempMonth = timenow->tm_mon + 1; + unsigned int tempYear = timenow->tm_year + 1900; + unsigned char tempWeek = timenow->tm_wday; + + + //生成 年月日时分秒 字符串。 + sprintf(DateTimeStr, "%d-%02d-%02d %02d:%02d:%02d" + , tempYear + , tempMonth + , tempDay + , tempHour + , tempMinute + , tempSecond + ); + + //Serial.println(DateTimeStr); + +#if defined(BAT_VOLTAGE_SENSE_PIN) //电池电压检测 + //driver.voltage_power_supply = return_voltage_value(BAT_VOLTAGE_SENSE_PIN); + bat_voltage = return_voltage_value(BAT_VOLTAGE_SENSE_PIN); + //Serial.println(driver.voltage_power_supply); + if (bat_voltage < min_voltage && !battery_low) + { + battery_low = 1; + Serial.print(driver.voltage_power_supply); + Serial.println("V "); + Serial.print(bat_voltage); + Serial.println("V battery_low!!"); + while (battery_low) + { + FastLED.clearData(); + FastLED.show(); + //motor.loopFOC(); + //motor.move(0); + motor.disable(); + + bat_voltage = return_voltage_value(BAT_VOLTAGE_SENSE_PIN); + if (bat_voltage >= (min_voltage + 0.5)) { + Serial.print(driver.voltage_power_supply); + Serial.println("V"); + Serial.print(bat_voltage); + Serial.println("V battery ok"); + digitalWrite(ACTIVE_PIN, 0); //电池电压恢复则常亮,需reset重启 + //battery_low = 0; + } else { //电池电压低闪灯 + if (millis() % 500 < 250) + digitalWrite(ACTIVE_PIN, 1); + else + digitalWrite(ACTIVE_PIN, 0); + } + } + } +#endif + + if (touchDetected[1] > 0) { //检测到触摸中,一秒计数一次,未触摸则清零 + touch_touching_time[1]++; + + //Serial.print("\nLight1 touching "); + //Serial.println(touch_touching_time[1]); + //长按事件处理 + if (touch_touching_time[1] % 2 == 0) { //按住大于2秒关灯或者开灯 + touch_STATE[1] = !touch_STATE[1]; //灯光状态反处理 + } + + } + if (touchDetected[2] > 0) { //检测到触摸中,一秒计数一次,未触摸则清零 + touch_touching_time[2]++; + //Serial.print("\nLight2 touching "); + //Serial.println(touch_touching_time[2]); + + if (touch_touching_time[2] % 2 == 0) { //按住大于2秒事件处理 + + } + } + if (touchDetected[3] > 0) { //检测到触摸中,一秒计数一次,未触摸则清零 + touch_touching_time[3]++; + //Serial.print("\nLight2 touching "); + //Serial.println(touch_touching_time[2]); + + if (touch_touching_time[3] % 2 == 0) { //按住大于2秒事件处理 + + } + } +} + +void OnTenthSecond() // 100ms 十分之一秒 +{ + + if (TenthSecondsSinceStart % 3 == 0) //0.3S刷新 + { + if ( touch_touching_time[2] > 1) { //按键2长按大于1秒处理调光 + if ( touch_touched_times[2] == 0 || touch_touched_times[2] % 2 == 0 ) { //第0,2,4,6..次按加亮度,1,3,5...则减 + rgb_brightness = rgb_brightness + 5; + } else { + rgb_brightness = rgb_brightness - 5; + } + //Serial.println(rgb_brightness); + FastLED.setBrightness(rgb_brightness); + } + } + + if (TenthSecondsSinceStart % 10 == 0) //10次为1秒 + { + OnSecond(); + } +} + +String TimeString(int TimeMillis) { + char stringTime[10]; + int sec = TimeMillis; + int min = sec / 60; + int hr = min / 60; + + sprintf(stringTime, "%02d:%02d:%02d", + hr, min % 60, sec % 60 + ); + return stringTime; +} + +String ProcessUpdate() //页面更新 +{ + //自动生成一串用“,”隔开的字符串。 + //HTML脚本会按照“, ”分割,形成一个字符串数组。 + //并把这个数组填个表格的相应部分。 + String ReturnString; + ReturnString = DateTimeStr; + + ReturnString += ","; + ReturnString += TimeString(millis() / 1000); + + ReturnString += ","; + ReturnString += bat_voltage; + if (log_control) { + ReturnString += ","; + ReturnString += motor.shaftVelocity(); + ReturnString += ","; + ReturnString += motor.voltage.q; + ReturnString += ","; + ReturnString += target_velocity; + ReturnString += ","; + ReturnString += pendulum_angle; + ReturnString += ","; + ReturnString += target_angle; + ReturnString += ","; + ReturnString += kalAngleZ; + ReturnString += ","; + ReturnString += gyroZangle; + } else { + ReturnString += ",,,,,,,"; + } + + ReturnString += ","; + ReturnString += EEPROM.readFloat(0); + ReturnString += ","; + ReturnString += swing_up_voltage; + ReturnString += ","; + ReturnString += swing_up_angle; + ReturnString += ","; + ReturnString += v_i_1; + ReturnString += ","; + ReturnString += v_p_1; + ReturnString += ","; + ReturnString += v_i_2; + ReturnString += ","; + ReturnString += v_p_2; + //Serial.println(ReturnString); + return ReturnString; +} + +/* + DeviceType =0 + DeviceType =1 + + OPERATION_ON 0,3,6,9 + OPERATION_OFF 1,4,7,10 + OPERATION_ON_OFF 2,5,8,11 +*/ +void PocessControl(int DeviceType, int DeviceIndex, int Operation, float Operation2) +{ + String ReturnString; + char do_commd[20]; + int SysIndex = 6; + + if (DeviceType == 0) //系统操作:开关灯,调节亮度,重启 + { + if (DeviceIndex == 0) + { + + if (Operation % SysIndex == 0) + { + touch_STATE[1] = true; + ReturnString += "开灯 亮度 "; + ReturnString += String(rgb_brightness); + } + else if (Operation % SysIndex == 3) //操作off + { + touch_STATE[1] = false; + ReturnString += "关灯"; + } + else if (Operation % SysIndex == 1) //操作+ + { + rgb_brightness = (rgb_brightness + 5) % 260; + FastLED.setBrightness(rgb_brightness); + ReturnString += "亮度增加至 "; + ReturnString += String(rgb_brightness); + if (!touch_STATE[1]) + ReturnString += " 【灯光已关闭】"; + } + else if (Operation % SysIndex == 2) //操作- + { + if (rgb_brightness == 0) + rgb_brightness = 255; + else + rgb_brightness = rgb_brightness - 5; + FastLED.setBrightness(rgb_brightness); + ReturnString += "亮度降低至 "; + ReturnString += String(rgb_brightness); + if (!touch_STATE[1]) + ReturnString += " 【灯光已关闭】"; + } + else if (Operation % SysIndex == 4) + { + ReturnString += "系统重启,请等待重新连接"; + ESP32Server.send(200, "text/plain", ReturnString); + printf("Reboot..."); + esp_restart(); + } + } else if (DeviceIndex == 5) { + if (Operation % SysIndex == 0) + log_control = 0; + else if (Operation % SysIndex == 1) + log_control = 1; + } + } + + if (DeviceType == 1) //调参 + { + if (Operation == 0) + { + sprintf(do_commd, "%.2f", Operation2); + Serial.println(do_commd); + if (DeviceIndex == 0) //期望角度TA + { + do_TA(do_commd); + } else if (DeviceIndex == 1) //摇摆电压SV + { + do_SV(do_commd); + } else if (DeviceIndex == 2) //摇摆角度SA + { + do_SA(do_commd); + } else if (DeviceIndex == 3) //速度环P1 + { + do_vp1(do_commd); + } else if (DeviceIndex == 4) //速度环I1 + { + do_vi1(do_commd); + } else if (DeviceIndex == 5) //速度环P2 + { + do_vp2(do_commd); + } else if (DeviceIndex == 6) //速度环I2 + { + do_vi2(do_commd); + } else if (DeviceIndex == 99) //电机启停 + { + do_MOTOR(do_commd); + if (!Motor_enable_flag) + ReturnString += "电机启动..."; + else + ReturnString += "电机停机..."; + } + EEPROM.commit(); + + } + } + ESP32Server.send(200, "text/plain", ReturnString); +} + + +bool handleFileRead(String path) { //处理主页访问 + String contentType = "text/html"; + + if (SPIFFS.exists(path)) { // 如果访问的文件可以在SPIFFS中找到 + File file = SPIFFS.open(path, "r"); // 则尝试打开该文件 + ESP32Server.streamFile(file, contentType); // 并且将该文件返回给浏览器 + file.close(); // 并且关闭文件 + return true; // 返回true + } + return false; // 如果文件未找到,则返回false +} + +void handleNotFound() +{ + // 获取用户请求网址信息 + String webAddress = ESP32Server.uri(); + int AutheTimes = 0; + + if (!ESP32Server.authenticate(username, userpassword)) //校验用户是否登录 + { + if (AutheTimes == 3) { + ESP32Server.send(404, "text/plain", "Bye"); + } else { + AutheTimes++; + return ESP32Server.requestAuthentication(); //请求进行用户登录认证 + } + } + + //打印出请求 + if (webAddress != "/update") + { + printf("%s\n", webAddress.c_str()); + } + + //如果是主页请求,则发送FLASH中的index.html文件 + if (webAddress.endsWith("/")) { // 如果访问地址以"/"为结尾 + webAddress = "/index.html"; // 则将访问地址修改为/index.html便于SPIFFS访问 + + // 通过handleFileRead函数处处理用户访问 + handleFileRead(webAddress); + } + else if (webAddress.endsWith("update")) + { + ESP32Server.send(200, "text/plain", ProcessUpdate()); + } + else if (webAddress.startsWith("/Control")) + { + if (ESP32Server.args() == 3) + { + int DeviceType = ESP32Server.arg(0).toInt(); + int DeviceIndex = ESP32Server.arg(1).toInt(); + int Operation = ESP32Server.arg(2).toInt(); + float Operation2 = ESP32Server.arg(2).toFloat(); + if (DeviceType == 1) { + Operation = 0; + } + + printf("DeviceType:%d DeviceIndex:%d Operation:%d Operation2:%.2f\n", DeviceType, DeviceIndex, Operation, Operation2 ); + + PocessControl(DeviceType, DeviceIndex, Operation, Operation2); + } + else + { + ESP32Server.send(404, "text/plain", "404 Not Found"); + } + } + else + { + ESP32Server.send(404, "text/plain", "404 Not Found"); + } +} + +void StartWebServer() +{ + ESP32Server.begin(); + ESP32Server.onNotFound(handleNotFound);//将所有请求导向自己处理的代码 +} + + +// This function draws rainbows with an ever-changing, +// widely-varying set of parameters. +void pride() +{ + static uint16_t sPseudotime = 0; + static uint16_t sLastMillis = 0; + static uint16_t sHue16 = 0; + + uint8_t sat8 = beatsin88( 87, 220, 250); + uint8_t brightdepth = beatsin88( 341, 96, 224); + uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256)); + uint8_t msmultiplier = beatsin88(147, 23, 60); + + uint16_t hue16 = sHue16;//gHue * 256; + uint16_t hueinc16 = beatsin88(113, 1, 3000); + + uint16_t ms = millis(); + uint16_t deltams = ms - sLastMillis ; + sLastMillis = ms; + sPseudotime += deltams * msmultiplier; + sHue16 += deltams * beatsin88( 400, 5, 9); + uint16_t brightnesstheta16 = sPseudotime; + + for ( uint16_t i = 0 ; i < NUM_LEDS; i++) { + hue16 += hueinc16; + uint8_t hue8 = hue16 / 256; + + brightnesstheta16 += brightnessthetainc16; + uint16_t b16 = sin16( brightnesstheta16 ) + 32768; + + uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536; + uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536; + bri8 += (255 - brightdepth); + + CRGB newcolor = CHSV( hue8, sat8, bri8); + + uint16_t pixelnumber = i; + pixelnumber = (NUM_LEDS - 1) - pixelnumber; + + nblend( leds[pixelnumber], newcolor, 64); + } +} + +void addGlitter( fract8 chanceOfGlitter) +{ + if ( random8() < chanceOfGlitter) { + leds[ random16(NUM_LEDS) ] += CRGB::White; + } +} + +double return_voltage_value(int pin_no) +{ + double tmp = 0; + double ADCVoltage = 0; + double inputVoltage = 0; + double avg = 0; + + for (int i = 0; i < 150; i++) + { + tmp = tmp + analogRead(pin_no); + } + avg = tmp / 150; + + //avg = analogRead(pin_no); + ADCVoltage = ((avg * 3.3) / (4095)) + 0.101; + inputVoltage = ADCVoltage / (R2_VOLTAGE / (R1_VOLTAGE + R2_VOLTAGE)); // formula for calculating voltage in i.e. GND + return inputVoltage; +} + +//触摸感应处理 +void touchAttach(int touchID, uint8_t touchPin){ + touchread[touchID] = touchRead(touchPin); + if ( touchread[touchID] <= threshold_top && touchread[touchID] > threshold_bottom ) { //达到触发值的计数 + //delay(38); // 0.038秒 + touchDetected[touchID]++; //持续触摸计数 + if ( (touchDetected[touchID] >= threshold_count) && digitalRead(ACTIVE_PIN) == HIGH ) { //达到触发值的,灯不亮则亮灯 + digitalWrite(ACTIVE_PIN, LOW); + } + } else if (touchread[touchID] > threshold_top) { //无触摸处理 + if ( digitalRead(ACTIVE_PIN) == LOW ) { //灭触摸灯 + digitalWrite(ACTIVE_PIN, HIGH); + } + if ( touchDetected[touchID] >= threshold_count ) { //检测无触摸之前的有效计数,触摸过则标记 + touch_touched[touchID] = true; + touch_touched_times[touchID]++; //触摸计数+1 + } + touch_touching_time[touchID] = 0; //持续触摸时间清零 + touchDetected[touchID] = 0; //持续触摸计数清零 + } +}