tinyriscv/tools/regtool/topgen/templates/chiplevel.sv.tpl

1216 lines
43 KiB
Smarty

// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
${gencmd}
<%
import re
import topgen.lib as lib
from copy import deepcopy
# Provide shortcuts for some commonly used variables
pinmux = top['pinmux']
pinout = top['pinout']
num_mio_inputs = pinmux['io_counts']['muxed']['inouts'] + \
pinmux['io_counts']['muxed']['inputs']
num_mio_outputs = pinmux['io_counts']['muxed']['inouts'] + \
pinmux['io_counts']['muxed']['outputs']
num_mio_pads = pinmux['io_counts']['muxed']['pads']
num_dio_inputs = pinmux['io_counts']['dedicated']['inouts'] + \
pinmux['io_counts']['dedicated']['inputs']
num_dio_outputs = pinmux['io_counts']['dedicated']['inouts'] + \
pinmux['io_counts']['dedicated']['outputs']
num_dio_total = pinmux['io_counts']['dedicated']['inouts'] + \
pinmux['io_counts']['dedicated']['inputs'] + \
pinmux['io_counts']['dedicated']['outputs']
def get_dio_sig(pinmux: {}, pad: {}):
'''Get DIO signal associated with this pad or return None'''
for sig in pinmux["ios"]:
if sig["connection"] == "direct" and pad["name"] == sig["pad"]:
return sig
else:
return None
# Modify the pad lists on the fly, based on target config
maxwidth = 0
muxed_pads = []
dedicated_pads = []
k = 0
for pad in pinout["pads"]:
if pad["connection"] == "muxed":
if pad["name"] not in target["pinout"]["remove_pads"]:
maxwidth = max(maxwidth, len(pad["name"]))
muxed_pads.append(pad)
else:
k = pad["idx"]
if pad["name"] not in target["pinout"]["remove_pads"]:
maxwidth = max(maxwidth, len(pad["name"]))
dedicated_pads.append(pad)
for pad in target["pinout"]["add_pads"]:
# Since these additional pads have not been elaborated in the merge phase,
# we need to add their global index here.
amended_pad = deepcopy(pad)
amended_pad.update({"idx" : k})
dedicated_pads.append(pad)
k += 1
num_im = sum([x["width"] if "width" in x else 1 for x in top["inter_signal"]["external"]])
max_sigwidth = max([x["width"] if "width" in x else 1 for x in top["pinmux"]["ios"]])
max_sigwidth = len("{}".format(max_sigwidth))
cpu_clk = top['clocks'].hier_paths['top'] + "clk_proc_main"
unused_im_defs, undriven_im_defs = lib.get_dangling_im_def(top["inter_signal"]["definitions"])
%>\
% if target["name"] != "asic":
module chip_${top["name"]}_${target["name"]} #(
// Path to a VMEM file containing the contents of the boot ROM, which will be
// baked into the FPGA bitstream.
parameter BootRomInitFile = "boot_rom_fpga_${target["name"]}.32.vmem",
// Path to a VMEM file containing the contents of the emulated OTP, which will be
// baked into the FPGA bitstream.
parameter OtpCtrlMemInitFile = "otp_img_fpga_${target["name"]}.vmem"
) (
% else:
module chip_${top["name"]}_${target["name"]} (
% endif
<%
%>\
// Dedicated Pads
% for pad in dedicated_pads:
<%
sig = get_dio_sig(pinmux, pad)
if sig is not None:
comment = "// Dedicated Pad for {}".format(sig["name"])
else:
comment = "// Manual Pad"
%>\
inout ${pad["name"]}, ${comment}
% endfor
// Muxed Pads
% for pad in muxed_pads:
inout ${pad["name"]}${" " if loop.last else ","} // MIO Pad ${pad["idx"]}
% endfor
);
import top_${top["name"]}_pkg::*;
import prim_pad_wrapper_pkg::*;
% if target["pinmux"]["special_signals"]:
////////////////////////////
// Special Signal Indices //
////////////////////////////
% for entry in target["pinmux"]["special_signals"]:
<% param_name = (lib.Name.from_snake_case(entry["name"]) +
lib.Name(["pad", "idx"])).as_camel_case()
%>\
parameter int ${param_name} = ${entry["idx"]};
% endfor
% endif
// DFT and Debug signal positions in the pinout.
localparam pinmux_pkg::target_cfg_t PinmuxTargetCfg = '{
tck_idx: TckPadIdx,
tms_idx: TmsPadIdx,
trst_idx: TrstNPadIdx,
tdi_idx: TdiPadIdx,
tdo_idx: TdoPadIdx,
tap_strap0_idx: Tap0PadIdx,
tap_strap1_idx: Tap1PadIdx,
dft_strap0_idx: Dft0PadIdx,
dft_strap1_idx: Dft1PadIdx,
// TODO: check whether there is a better way to pass these USB-specific params
usb_dp_idx: DioUsbdevDp,
usb_dn_idx: DioUsbdevDn,
usb_dp_pullup_idx: DioUsbdevDpPullup,
usb_dn_pullup_idx: DioUsbdevDnPullup,
// Pad types for attribute WARL behavior
dio_pad_type: {
<%
pad_attr = []
for sig in list(reversed(top["pinmux"]["ios"])):
if sig["connection"] != "muxed":
pad_attr.append((sig['name'], sig["attr"]))
%>\
% for name, attr in pad_attr:
${attr}${" " if loop.last else ","} // DIO ${name}
% endfor
},
mio_pad_type: {
<%
pad_attr = []
for pad in list(reversed(pinout["pads"])):
if pad["connection"] == "muxed":
pad_attr.append(pad["type"])
%>\
% for attr in pad_attr:
${attr}${" " if loop.last else ","} // MIO Pad ${len(pad_attr) - loop.index - 1}
% endfor
}
};
////////////////////////
// Signal definitions //
////////////////////////
pad_attr_t [pinmux_reg_pkg::NMioPads-1:0] mio_attr;
pad_attr_t [pinmux_reg_pkg::NDioPads-1:0] dio_attr;
logic [pinmux_reg_pkg::NMioPads-1:0] mio_out;
logic [pinmux_reg_pkg::NMioPads-1:0] mio_oe;
logic [pinmux_reg_pkg::NMioPads-1:0] mio_in;
logic [pinmux_reg_pkg::NMioPads-1:0] mio_in_raw;
logic [pinmux_reg_pkg::NDioPads-1:0] dio_out;
logic [pinmux_reg_pkg::NDioPads-1:0] dio_oe;
logic [pinmux_reg_pkg::NDioPads-1:0] dio_in;
logic unused_mio_in_raw;
assign unused_mio_in_raw = ^mio_in_raw;
// Manual pads
% for pad in dedicated_pads:
<%
pad_prefix = pad["name"].lower()
%>\
% if not get_dio_sig(pinmux, pad):
logic manual_in_${pad_prefix}, manual_out_${pad_prefix}, manual_oe_${pad_prefix};
% endif
% endfor
% for pad in dedicated_pads:
<%
pad_prefix = pad["name"].lower()
%>\
% if not get_dio_sig(pinmux, pad):
pad_attr_t manual_attr_${pad_prefix};
% endif
% endfor
% if target["pinout"]["remove_pads"]:
/////////////////////////
// Stubbed pad tie-off //
/////////////////////////
// Only signals going to non-custom pads need to be tied off.
logic [${len(pinout["pads"])-1}:0] unused_sig;
% for pad in pinout["pads"]:
% if pad["connection"] == 'muxed':
% if pad["name"] in target["pinout"]["remove_pads"]:
assign mio_in[${pad["idx"]}] = 1'b0;
assign mio_in_raw[${pad["idx"]}] = 1'b0;
assign unused_sig[${loop.index}] = mio_out[${pad["idx"]}] ^ mio_oe[${pad["idx"]}];
% endif
% else:
% if pad["name"] in target["pinout"]["remove_pads"]:
<%
## Only need to tie off if this is not a custom pad.
sig = get_dio_sig(pinmux, pad)
if sig is not None:
sig_index = lib.get_io_enum_literal(sig, 'dio')
%>\
% if sig is not None:
assign dio_in[${lib.get_io_enum_literal(sig, 'dio')}] = 1'b0;
assign unused_sig[${loop.index}] = dio_out[${sig_index}] ^ dio_oe[${sig_index}];
% endif
% endif
% endif
% endfor
%endif
//////////////////////
// Padring Instance //
//////////////////////
% if target["name"] == "asic":
// AST signals needed in padring
ast_pkg::ast_clks_t ast_base_clks;
logic scan_rst_n;
lc_ctrl_pkg::lc_tx_t scanmode;
% endif
padring #(
// Padring specific counts may differ from pinmux config due
// to custom, stubbed or added pads.
.NDioPads(${len(dedicated_pads)}),
.NMioPads(${len(muxed_pads)}),
% if target["name"] == "asic":
.PhysicalPads(1),
.NIoBanks(int'(IoBankCount)),
.DioScanRole ({
% for pad in list(reversed(dedicated_pads)):
scan_role_pkg::${lib.Name.from_snake_case('dio_pad_' + pad["name"] + '_scan_role').as_camel_case()}${"" if loop.last else ","}
% endfor
}),
.MioScanRole ({
% for pad in list(reversed(muxed_pads)):
scan_role_pkg::${lib.Name.from_snake_case('mio_pad_' + pad["name"] + '_scan_role').as_camel_case()}${"" if loop.last else ","}
% endfor
}),
.DioPadBank ({
% for pad in list(reversed(dedicated_pads)):
${lib.Name.from_snake_case('io_bank_' + pad["bank"]).as_camel_case()}${" " if loop.last else ","} // ${pad['name']}
% endfor
}),
.MioPadBank ({
% for pad in list(reversed(muxed_pads)):
${lib.Name.from_snake_case('io_bank_' + pad["bank"]).as_camel_case()}${" " if loop.last else ","} // ${pad['name']}
% endfor
}),
% endif
\
\
.DioPadType ({
% for pad in list(reversed(dedicated_pads)):
${pad["type"]}${" " if loop.last else ","} // ${pad['name']}
% endfor
}),
.MioPadType ({
% for pad in list(reversed(muxed_pads)):
${pad["type"]}${" " if loop.last else ","} // ${pad['name']}
% endfor
})
) u_padring (
// This is only used for scan and DFT purposes
% if target["name"] == "asic":
.clk_scan_i ( ast_base_clks.clk_sys ),
.scanmode_i ( scanmode ),
% else:
.clk_scan_i ( 1'b0 ),
.scanmode_i ( lc_ctrl_pkg::Off ),
% endif
.dio_in_raw_o ( ),
// Chip IOs
.dio_pad_io ({
% for pad in list(reversed(dedicated_pads)):
${pad["name"]}${"" if loop.last else ","}
% endfor
}),
.mio_pad_io ({
% for pad in list(reversed(muxed_pads)):
${pad["name"]}${"" if loop.last else ","}
% endfor
}),
// Core-facing
% for port in ["in_o", "out_i", "oe_i", "attr_i"]:
.dio_${port} ({
% for pad in list(reversed(dedicated_pads)):
<%
sig = get_dio_sig(pinmux, pad)
%>\
% if sig is None:
manual_${port[:-2]}_${pad["name"].lower()}${"" if loop.last else ","}
% else:
dio_${port[:-2]}[${lib.get_io_enum_literal(sig, 'dio')}]${"" if loop.last else ","}
% endif
% endfor
}),
% endfor
% for port in ["in_o", "out_i", "oe_i", "attr_i", "in_raw_o"]:
<%
sig_name = 'mio_' + port[:-2]
indices = list(reversed(list(pad['idx'] for pad in muxed_pads)))
%>\
.mio_${port} (${lib.make_bit_concatenation(sig_name, indices, 6)})${"" if loop.last else ","}
% endfor
);
###################################################################
## USB for CW305 ##
###################################################################
% if target["name"] == "cw305":
// Connect the DP pad
assign dio_in[DioUsbdevDp] = manual_in_usb_p;
assign manual_out_usb_p = dio_out[DioUsbdevDp];
assign manual_oe_usb_p = dio_oe[DioUsbdevDp];
assign manual_attr_usb_p = dio_attr[DioUsbdevDp];
// Connect the DN pad
assign dio_in[DioUsbdevDn] = manual_in_usb_n;
assign manual_out_usb_n = dio_out[DioUsbdevDn];
assign manual_oe_usb_n = dio_oe[DioUsbdevDn];
assign manual_attr_usb_n = dio_attr[DioUsbdevDn];
// Connect sense pad
assign dio_in[DioUsbdevSense] = manual_in_io_usb_sense0;
assign manual_out_io_usb_sense0 = dio_out[DioUsbdevSense];
assign manual_oe_io_usb_sense0 = dio_oe[DioUsbdevSense];
assign manual_attr_io_sense0 = dio_attr[DioUsbdevSense];
// Connect DN pullup
assign dio_in[DioUsbdevDnPullup] = manual_in_io_usb_dnpullup0;
assign manual_out_io_usb_dnpullup0 = dio_out[DioUsbdevDnPullup];
assign manual_oe_io_usb_dnpullup0 = dio_oe[DioUsbdevDnPullup];
assign manual_attr_io_dnpullup0 = dio_attr[DioUsbdevDnPullup];
// Connect DP pullup
assign dio_in[DioUsbdevDpPullup] = manual_in_io_usb_dppullup0;
assign manual_out_io_usb_dppullup0 = dio_out[DioUsbdevDpPullup];
assign manual_oe_io_usb_dppullup0 = dio_oe[DioUsbdevDpPullup];
assign manual_attr_io_dppullup0 = dio_attr[DioUsbdevDpPullup];
// Tie-off unused signals
assign dio_in[DioUsbdevSe0] = 1'b0;
assign dio_in[DioUsbdevTxModeSe] = 1'b0;
assign dio_in[DioUsbdevSuspend] = 1'b0;
logic unused_usb_sigs;
assign unused_usb_sigs = ^{
// SE0
dio_out[DioUsbdevSe0],
dio_oe[DioUsbdevSe0],
dio_attr[DioUsbdevSe0],
// TX Mode
dio_out[DioUsbdevTxModeSe],
dio_oe[DioUsbdevTxModeSe],
dio_attr[DioUsbdevTxModeSe],
// Suspend
dio_out[DioUsbdevSuspend],
dio_oe[DioUsbdevSuspend],
dio_attr[DioUsbdevSuspend],
// D is used as an input only
dio_out[DioUsbdevD],
dio_oe[DioUsbdevD],
dio_attr[DioUsbdevD]
};
% endif
###################################################################
## USB for CW310 and Nexysvideo ##
###################################################################
% if target["name"] in ["cw310", "nexysvideo"]:
/////////////////////
// USB Overlay Mux //
/////////////////////
// TODO: generalize this USB mux code and align with other tops.
// Software can enable the pinflip feature inside usbdev.
// The example hello_usbdev does this based on GPIO0 (a switch on the board)
//
// Here, we use the state of the DN pullup to effectively undo the
// swapping such that the PCB always sees the unflipped D+/D-. We
// could do the same inside the .xdc file but then two FPGA
// bitstreams would be needed for testing.
//
// dio_in/out/oe map is: PADS <- _padring <- JTAG mux -> _umux -> USB mux -> _core
// Split out for differential PHY testing
// Outputs always drive and just copy the value
// Let them go to the normal place too because it won't do any harm
// and it simplifies the changes needed
// The output enable for IO_USB_DNPULLUP0 is used to decide whether we need to undo the swapping.
logic undo_swap;
assign undo_swap = dio_oe[DioUsbdevDnPullup];
// GPIO[2] = Switch 2 on board is used to select using the UPHY
// Keep GPIO[1] for selecting differential in sw
logic use_uphy;
assign use_uphy = mio_in[MioPadIoa2];
// DioUsbdevDn
assign manual_attr_usb_n = '0;
assign manual_attr_io_uphy_dn_tx = '0;
assign manual_out_io_uphy_dn_tx = manual_out_usb_n;
assign manual_out_usb_n = undo_swap ? dio_out[DioUsbdevDp] :
dio_out[DioUsbdevDn];
assign manual_oe_io_uphy_dn_tx = manual_oe_usb_n;
assign manual_oe_usb_n = undo_swap ? dio_oe[DioUsbdevDp] :
dio_oe[DioUsbdevDn];
assign dio_in[DioUsbdevDn] = use_uphy ?
(undo_swap ? manual_in_io_uphy_dp_rx :
manual_in_io_uphy_dn_rx) :
(undo_swap ? manual_in_usb_p :
manual_in_usb_n);
// DioUsbdevDp
assign manual_attr_usb_p = '0;
assign manual_attr_io_uphy_dp_tx = '0;
assign manual_out_io_uphy_dp_tx = manual_out_usb_p;
assign manual_out_usb_p = undo_swap ? dio_out[DioUsbdevDn] :
dio_out[DioUsbdevDp];
assign manual_oe_io_uphy_dp_tx = manual_oe_usb_p;
assign manual_oe_usb_p = undo_swap ? dio_oe[DioUsbdevDn] :
dio_oe[DioUsbdevDp];
assign dio_in[DioUsbdevDp] = use_uphy ?
(undo_swap ? manual_in_io_uphy_dn_rx :
manual_in_io_uphy_dp_rx) :
(undo_swap ? manual_in_usb_n :
manual_in_usb_p);
// DioUsbdevD
// This is not connected at the moment
logic unused_out_usb_d;
assign unused_out_usb_d = dio_out[DioUsbdevD] ^
dio_oe[DioUsbdevD];
assign dio_in[DioUsbdevD] = use_uphy ?
(undo_swap ? ~manual_in_io_uphy_d_rx :
manual_in_io_uphy_d_rx) :
// This is not connected at the moment
(undo_swap ? 1'b1 : 1'b0);
assign manual_out_io_uphy_d_rx = 1'b0;
assign manual_oe_io_uphy_d_rx = 1'b0;
// DioUsbdevDnPullup
assign manual_attr_io_usb_dnpullup0 = '0;
assign manual_out_io_usb_dnpullup0 = undo_swap ? dio_out[DioUsbdevDpPullup] :
dio_out[DioUsbdevDnPullup];
assign manual_oe_io_usb_dnpullup0 = undo_swap ? dio_oe[DioUsbdevDpPullup] :
dio_oe[DioUsbdevDnPullup];
assign dio_in[DioUsbdevDnPullup] = manual_in_io_usb_dnpullup0;
// DioUsbdevDpPullup
assign manual_attr_io_usb_dppullup0 = '0;
assign manual_out_io_usb_dppullup0 = undo_swap ? dio_out[DioUsbdevDnPullup] :
dio_out[DioUsbdevDpPullup];
assign manual_oe_io_usb_dppullup0 = undo_swap ? dio_oe[DioUsbdevDnPullup] :
dio_oe[DioUsbdevDpPullup];
assign dio_in[DioUsbdevDpPullup] = manual_in_io_usb_dppullup0;
// DioUsbdevSense
assign manual_out_io_usb_sense0 = dio_out[DioUsbdevSense];
assign manual_oe_io_usb_sense0 = dio_oe[DioUsbdevSense];
assign dio_in[DioUsbdevSense] = use_uphy ? manual_in_io_uphy_sense :
manual_in_io_usb_sense0;
assign manual_out_io_uphy_sense = 1'b0;
assign manual_oe_io_uphy_sense = 1'b0;
// DioUsbdevRxEnable
assign dio_in[DioUsbdevRxEnable] = 1'b0;
// Additional outputs for uphy
assign manual_oe_io_uphy_dppullup = 1'b1;
assign manual_out_io_uphy_dppullup = manual_out_io_usb_dppullup0 &
manual_oe_io_usb_dppullup0;
logic unused_in_io_uphy_dppullup;
assign unused_in_io_uphy_dppullup = manual_in_io_uphy_dppullup;
assign manual_oe_io_uphy_oe_n = 1'b1;
assign manual_out_io_uphy_oe_n = ~manual_oe_usb_p;
logic unused_in_io_uphy_oe_n;
assign unused_in_io_uphy_oe_n = manual_in_io_uphy_oe_n;
% endif
###################################################################
## ASIC ##
###################################################################
% if target["name"] == "asic":
//////////////////////////////////
// Manual Pad / Signal Tie-offs //
//////////////////////////////////
assign manual_out_por_n = 1'b0;
assign manual_oe_por_n = 1'b0;
assign manual_out_cc1 = 1'b0;
assign manual_oe_cc1 = 1'b0;
assign manual_out_cc2 = 1'b0;
assign manual_oe_cc2 = 1'b0;
assign manual_out_flash_test_mode0 = 1'b0;
assign manual_oe_flash_test_mode0 = 1'b0;
assign manual_out_flash_test_mode1 = 1'b0;
assign manual_oe_flash_test_mode1 = 1'b0;
assign manual_out_flash_test_volt = 1'b0;
assign manual_oe_flash_test_volt = 1'b0;
assign manual_out_otp_ext_volt = 1'b0;
assign manual_oe_otp_ext_volt = 1'b0;
// These pad attributes currently tied off permanently (these are all input-only pads).
assign manual_attr_por_n = '0;
assign manual_attr_cc1 = '0;
assign manual_attr_cc2 = '0;
assign manual_attr_flash_test_mode0 = '0;
assign manual_attr_flash_test_mode1 = '0;
assign manual_attr_flash_test_volt = '0;
assign manual_attr_otp_ext_volt = '0;
logic unused_manual_sigs;
assign unused_manual_sigs = ^{
manual_in_cc2,
manual_in_cc1,
manual_in_flash_test_volt,
manual_in_flash_test_mode0,
manual_in_flash_test_mode1,
manual_in_otp_ext_volt
};
///////////////////////////////
// Differential USB Receiver //
///////////////////////////////
// TODO: generalize this USB mux code and align with other tops.
// Connect the DP pad
assign dio_in[DioUsbdevDp] = manual_in_usb_p;
assign manual_out_usb_p = dio_out[DioUsbdevDp];
assign manual_oe_usb_p = dio_oe[DioUsbdevDp];
assign manual_attr_usb_p = dio_attr[DioUsbdevDp];
// Connect the DN pad
assign dio_in[DioUsbdevDn] = manual_in_usb_n;
assign manual_out_usb_n = dio_out[DioUsbdevDn];
assign manual_oe_usb_n = dio_oe[DioUsbdevDn];
assign manual_attr_usb_n = dio_attr[DioUsbdevDn];
// Pullups
logic usb_pullup_p_en, usb_pullup_n_en;
assign usb_pullup_p_en = dio_out[DioUsbdevDpPullup] & dio_oe[DioUsbdevDpPullup];
assign usb_pullup_n_en = dio_out[DioUsbdevDnPullup] & dio_oe[DioUsbdevDnPullup];
logic usb_rx_enable;
assign usb_rx_enable = dio_out[DioUsbdevRxEnable] & dio_oe[DioUsbdevRxEnable];
logic [ast_pkg::UsbCalibWidth-1:0] usb_io_pu_cal;
// pwrmgr interface
pwrmgr_pkg::pwr_ast_req_t base_ast_pwr;
pwrmgr_pkg::pwr_ast_rsp_t ast_base_pwr;
prim_usb_diff_rx #(
.CalibW(ast_pkg::UsbCalibWidth)
) u_prim_usb_diff_rx (
.input_pi ( USB_P ),
.input_ni ( USB_N ),
.input_en_i ( usb_rx_enable ),
.core_pok_i ( ast_base_pwr.main_pok ),
.pullup_p_en_i ( usb_pullup_p_en ),
.pullup_n_en_i ( usb_pullup_n_en ),
.calibration_i ( usb_io_pu_cal ),
.input_o ( dio_in[DioUsbdevD] )
);
// Tie-off unused signals
assign dio_in[DioUsbdevSense] = 1'b0;
assign dio_in[DioUsbdevSe0] = 1'b0;
assign dio_in[DioUsbdevDpPullup] = 1'b0;
assign dio_in[DioUsbdevDnPullup] = 1'b0;
assign dio_in[DioUsbdevTxModeSe] = 1'b0;
assign dio_in[DioUsbdevSuspend] = 1'b0;
assign dio_in[DioUsbdevRxEnable] = 1'b0;
logic unused_usb_sigs;
assign unused_usb_sigs = ^{
// Sense
dio_out[DioUsbdevSense],
dio_oe[DioUsbdevSense],
dio_attr[DioUsbdevSense],
// SE0
dio_out[DioUsbdevSe0],
dio_oe[DioUsbdevSe0],
dio_attr[DioUsbdevSe0],
// TX Mode
dio_out[DioUsbdevTxModeSe],
dio_oe[DioUsbdevTxModeSe],
dio_attr[DioUsbdevTxModeSe],
// Suspend
dio_out[DioUsbdevSuspend],
dio_oe[DioUsbdevSuspend],
dio_attr[DioUsbdevSuspend],
// Rx enable
dio_attr[DioUsbdevRxEnable],
// D is used as an input only
dio_out[DioUsbdevD],
dio_oe[DioUsbdevD],
dio_attr[DioUsbdevD],
// Pullup/down
dio_attr[DioUsbdevDpPullup],
dio_attr[DioUsbdevDnPullup]
};
//////////////////////
// AST //
//////////////////////
// TLUL interface
tlul_pkg::tl_h2d_t base_ast_bus;
tlul_pkg::tl_d2h_t ast_base_bus;
// assorted ast status
ast_pkg::ast_status_t ast_status;
// ast clocks and resets
logic aon_pok;
// synchronization clocks / rests
clkmgr_pkg::clkmgr_ast_out_t clks_ast;
rstmgr_pkg::rstmgr_ast_out_t rsts_ast;
// otp power sequence
otp_ctrl_pkg::otp_ast_req_t otp_ctrl_otp_ast_pwr_seq;
otp_ctrl_pkg::otp_ast_rsp_t otp_ctrl_otp_ast_pwr_seq_h;
logic usb_ref_pulse;
logic usb_ref_val;
// adc
ast_pkg::adc_ast_req_t adc_req;
ast_pkg::adc_ast_rsp_t adc_rsp;
// entropy source interface
// The entropy source pacakge definition should eventually be moved to es
entropy_src_pkg::entropy_src_rng_req_t es_rng_req;
entropy_src_pkg::entropy_src_rng_rsp_t es_rng_rsp;
logic es_rng_fips;
// entropy distribution network
edn_pkg::edn_req_t ast_edn_edn_req;
edn_pkg::edn_rsp_t ast_edn_edn_rsp;
// alerts interface
ast_pkg::ast_alert_rsp_t ast_alert_rsp;
ast_pkg::ast_alert_req_t ast_alert_req;
// Flash connections
lc_ctrl_pkg::lc_tx_t flash_bist_enable;
logic flash_power_down_h;
logic flash_power_ready_h;
// Life cycle clock bypass req/ack
lc_ctrl_pkg::lc_tx_t ast_clk_byp_req;
lc_ctrl_pkg::lc_tx_t ast_clk_byp_ack;
// DFT connections
logic scan_en;
lc_ctrl_pkg::lc_tx_t dft_en;
pinmux_pkg::dft_strap_test_req_t dft_strap_test;
// Debug connections
logic [ast_pkg::Ast2PadOutWidth-1:0] ast2pinmux;
logic [ast_pkg::Pad2AstInWidth-1:0] pad2ast;
assign pad2ast = {
mio_in_raw[MioPadIoc3],
mio_in_raw[MioPadIob8],
mio_in_raw[MioPadIob7],
mio_in_raw[MioPadIob2],
mio_in_raw[MioPadIob1],
mio_in_raw[MioPadIob0]
};
// Jitter enable
logic jen;
// reset domain connections
import rstmgr_pkg::PowerDomains;
import rstmgr_pkg::DomainAonSel;
import rstmgr_pkg::Domain0Sel;
// external clock comes in at a fixed position
logic ext_clk;
assign ext_clk = mio_in_raw[MioPadIoc6];
// Memory configuration connections
ast_pkg::spm_rm_t ast_ram_1p_cfg;
ast_pkg::spm_rm_t ast_rf_cfg;
ast_pkg::spm_rm_t ast_rom_cfg;
ast_pkg::dpm_rm_t ast_ram_2p_fcfg;
ast_pkg::dpm_rm_t ast_ram_2p_lcfg;
prim_ram_1p_pkg::ram_1p_cfg_t ram_1p_cfg;
prim_ram_2p_pkg::ram_2p_cfg_t ram_2p_cfg;
prim_rom_pkg::rom_cfg_t rom_cfg;
// conversion from ast structure to memory centric structures
assign ram_1p_cfg = '{
ram_cfg: '{
cfg_en: ast_ram_1p_cfg.marg_en,
cfg: ast_ram_1p_cfg.marg
},
rf_cfg: '{
cfg_en: ast_rf_cfg.marg_en,
cfg: ast_rf_cfg.marg
}
};
assign ram_2p_cfg = '{
a_ram_fcfg: '{
cfg_en: ast_ram_2p_fcfg.marg_en_a,
cfg: ast_ram_2p_fcfg.marg_a
},
a_ram_lcfg: '{
cfg_en: ast_ram_2p_lcfg.marg_en_a,
cfg: ast_ram_2p_lcfg.marg_a
},
b_ram_fcfg: '{
cfg_en: ast_ram_2p_fcfg.marg_en_b,
cfg: ast_ram_2p_fcfg.marg_b
},
b_ram_lcfg: '{
cfg_en: ast_ram_2p_lcfg.marg_en_b,
cfg: ast_ram_2p_lcfg.marg_b
}
};
assign rom_cfg = '{
cfg_en: ast_rom_cfg.marg_en,
cfg: ast_rom_cfg.marg
};
// AST does not use all clocks / resets forwarded to it
logic unused_slow_clk_en;
logic unused_usb_clk_aon;
logic unused_usb_clk_io_div4;
assign unused_slow_clk_en = base_ast_pwr.slow_clk_en;
assign unused_usb_clk_aon = clks_ast.clk_ast_usbdev_aon_peri;
assign unused_usb_clk_io_div4 = clks_ast.clk_ast_usbdev_io_div4_peri;
logic unused_usb_usb_rst;
logic [PowerDomains-1:0] unused_usb_sys_io_div4_rst;
logic [PowerDomains-1:0] unused_usb_sys_aon_rst;
logic unused_ast_sys_io_div4_rst;
logic unused_sensor_ctrl_sys_io_div4_rst;
logic unused_adc_ctrl_sys_io_div4_rst;
logic unused_entropy_sys_rst;
logic unused_edn_sys_rst;
assign unused_usb_usb_rst = rsts_ast.rst_ast_usbdev_usb_n[DomainAonSel];
assign unused_usb_sys_io_div4_rst = rsts_ast.rst_ast_usbdev_sys_io_div4_n;
assign unused_usb_sys_aon_rst = rsts_ast.rst_ast_usbdev_sys_aon_n;
assign unused_ast_sys_io_div4_rst =
rsts_ast.rst_ast_ast_sys_io_div4_n[Domain0Sel];
assign unused_sensor_ctrl_sys_io_div4_rst =
rsts_ast.rst_ast_sensor_ctrl_aon_sys_io_div4_n[Domain0Sel];
assign unused_adc_ctrl_sys_io_div4_rst =
rsts_ast.rst_ast_adc_ctrl_aon_sys_io_div4_n[Domain0Sel];
assign unused_entropy_sys_rst = rsts_ast.rst_ast_entropy_src_sys_n[DomainAonSel];
assign unused_edn_sys_rst = rsts_ast.rst_ast_edn0_sys_n[DomainAonSel];
ast_pkg::ast_dif_t flash_alert;
ast_pkg::ast_dif_t otp_alert;
logic ast_init_done;
ast #(
.EntropyStreams(ast_pkg::EntropyStreams),
.AdcChannels(ast_pkg::AdcChannels),
.AdcDataWidth(ast_pkg::AdcDataWidth),
.UsbCalibWidth(ast_pkg::UsbCalibWidth),
.Ast2PadOutWidth(ast_pkg::Ast2PadOutWidth),
.Pad2AstInWidth(ast_pkg::Pad2AstInWidth)
) u_ast (
// tlul
.tl_i ( base_ast_bus ),
.tl_o ( ast_base_bus ),
// init done indication
.ast_init_done_o ( ast_init_done ),
// buffered clocks & resets
// Reset domain connection is manual at the moment
.clk_ast_adc_i ( clks_ast.clk_ast_adc_ctrl_aon_io_div4_peri ),
.rst_ast_adc_ni ( rsts_ast.rst_ast_adc_ctrl_aon_sys_io_div4_n[DomainAonSel] ),
.clk_ast_alert_i ( clks_ast.clk_ast_sensor_ctrl_aon_io_div4_secure ),
.rst_ast_alert_ni ( rsts_ast.rst_ast_sensor_ctrl_aon_sys_io_div4_n[DomainAonSel] ),
.clk_ast_es_i ( clks_ast.clk_ast_edn0_main_secure ),
.rst_ast_es_ni ( rsts_ast.rst_ast_edn0_sys_n[Domain0Sel] ),
.clk_ast_rng_i ( clks_ast.clk_ast_entropy_src_main_secure ),
.rst_ast_rng_ni ( rsts_ast.rst_ast_entropy_src_sys_n[Domain0Sel] ),
.clk_ast_tlul_i ( clks_ast.clk_ast_ast_io_div4_secure ),
.rst_ast_tlul_ni ( rsts_ast.rst_ast_ast_sys_io_div4_n[DomainAonSel] ),
.clk_ast_usb_i ( clks_ast.clk_ast_usbdev_usb_peri ),
.rst_ast_usb_ni ( rsts_ast.rst_ast_usbdev_usb_n[Domain0Sel] ),
.clk_ast_ext_i ( ext_clk ),
.por_ni ( manual_in_por_n ),
// clocks' oschillator bypass for FPGA
.clk_osc_byp_i ( '0 ),
// pok test for FPGA
.vcc_supp_i ( 1'b1 ),
.vcaon_supp_i ( 1'b1 ),
.vcmain_supp_i ( 1'b1 ),
.vioa_supp_i ( 1'b1 ),
.viob_supp_i ( 1'b1 ),
// pok
.vcaon_pok_o ( aon_pok ),
.vcmain_pok_o ( ast_base_pwr.main_pok ),
.vioa_pok_o ( ast_status.io_pok[0] ),
.viob_pok_o ( ast_status.io_pok[1] ),
// main regulator
.main_env_iso_en_i ( base_ast_pwr.pwr_clamp_env ),
.main_pd_ni ( base_ast_pwr.main_pd_n ),
// pdm control (flash)/otp
.flash_power_down_h_o ( flash_power_down_h ),
.flash_power_ready_h_o ( flash_power_ready_h ),
.otp_power_seq_i ( otp_ctrl_otp_ast_pwr_seq ),
.otp_power_seq_h_o ( otp_ctrl_otp_ast_pwr_seq_h ),
// system source clock
.clk_src_sys_en_i ( base_ast_pwr.core_clk_en ),
// need to add function in clkmgr
.clk_src_sys_jen_i ( jen ),
.clk_src_sys_o ( ast_base_clks.clk_sys ),
.clk_src_sys_val_o ( ast_base_pwr.core_clk_val ),
// aon source clock
.clk_src_aon_o ( ast_base_clks.clk_aon ),
.clk_src_aon_val_o ( ast_base_pwr.slow_clk_val ),
// io source clock
.clk_src_io_en_i ( base_ast_pwr.io_clk_en ),
.clk_src_io_o ( ast_base_clks.clk_io ),
.clk_src_io_val_o ( ast_base_pwr.io_clk_val ),
// usb source clock
.usb_ref_pulse_i ( usb_ref_pulse ),
.usb_ref_val_i ( usb_ref_val ),
.clk_src_usb_en_i ( base_ast_pwr.usb_clk_en ),
.clk_src_usb_o ( ast_base_clks.clk_usb ),
.clk_src_usb_val_o ( ast_base_pwr.usb_clk_val ),
// USB IO Pull-up Calibration Setting
.usb_io_pu_cal_o ( usb_io_pu_cal ),
// adc
.adc_a0_ai ( CC1 ),
.adc_a1_ai ( CC2 ),
.adc_pd_i ( adc_req.pd ),
.adc_chnsel_i ( adc_req.channel_sel ),
.adc_d_o ( adc_rsp.data ),
.adc_d_val_o ( adc_rsp.data_valid ),
// rng
.rng_en_i ( es_rng_req.rng_enable ),
.rng_fips_i ( es_rng_fips ),
.rng_val_o ( es_rng_rsp.rng_valid ),
.rng_b_o ( es_rng_rsp.rng_b ),
// entropy
.entropy_rsp_i ( ast_edn_edn_rsp ),
.entropy_req_o ( ast_edn_edn_req ),
// alerts
.fla_alert_src_i ( flash_alert ),
.otp_alert_src_i ( otp_alert ),
.alert_rsp_i ( ast_alert_rsp ),
.alert_req_o ( ast_alert_req ),
// dft
.dft_strap_test_i ( dft_strap_test ),
.lc_dft_en_i ( dft_en ),
// pinmux related
.padmux2ast_i ( pad2ast ),
.ast2padmux_o ( ast2pinmux ),
// Direct short to PAD
.pad2ast_t0_ai ( IOA4 ),
.pad2ast_t1_ai ( IOA5 ),
.ast2pad_t0_ao ( IOA2 ),
.ast2pad_t1_ao ( IOA3 ),
.lc_clk_byp_req_i ( ast_clk_byp_req ),
.lc_clk_byp_ack_o ( ast_clk_byp_ack ),
.flash_bist_en_o ( flash_bist_enable ),
// Memory configuration connections
.dpram_rmf_o ( ast_ram_2p_fcfg ),
.dpram_rml_o ( ast_ram_2p_lcfg ),
.spram_rm_o ( ast_ram_1p_cfg ),
.sprgf_rm_o ( ast_rf_cfg ),
.sprom_rm_o ( ast_rom_cfg ),
// scan
.dft_scan_md_o ( scanmode ),
.scan_shift_en_o ( scan_en ),
.scan_reset_no ( scan_rst_n )
);
//////////////////////
// Top-level design //
//////////////////////
top_${top["name"]} #(
.PinmuxAonTargetCfg(PinmuxTargetCfg)
) top_${top["name"]} (
.rst_ni ( aon_pok ),
// ast connections
.clk_main_i ( ast_base_clks.clk_sys ),
.clk_io_i ( ast_base_clks.clk_io ),
.clk_usb_i ( ast_base_clks.clk_usb ),
.clk_aon_i ( ast_base_clks.clk_aon ),
.clks_ast_o ( clks_ast ),
.clk_main_jitter_en_o ( jen ),
.rsts_ast_o ( rsts_ast ),
.pwrmgr_ast_req_o ( base_ast_pwr ),
.pwrmgr_ast_rsp_i ( ast_base_pwr ),
.sensor_ctrl_ast_alert_req_i ( ast_alert_req ),
.sensor_ctrl_ast_alert_rsp_o ( ast_alert_rsp ),
.sensor_ctrl_ast_status_i ( ast_status ),
.usbdev_usb_ref_val_o ( usb_ref_pulse ),
.usbdev_usb_ref_pulse_o ( usb_ref_val ),
.ast_tl_req_o ( base_ast_bus ),
.ast_tl_rsp_i ( ast_base_bus ),
.adc_req_o ( adc_req ),
.adc_rsp_i ( adc_rsp ),
.ast_edn_req_i ( ast_edn_edn_req ),
.ast_edn_rsp_o ( ast_edn_edn_rsp ),
.otp_ctrl_otp_ast_pwr_seq_o ( otp_ctrl_otp_ast_pwr_seq ),
.otp_ctrl_otp_ast_pwr_seq_h_i ( otp_ctrl_otp_ast_pwr_seq_h ),
.otp_alert_o ( otp_alert ),
.flash_bist_enable_i ( flash_bist_enable ),
.flash_power_down_h_i ( flash_power_down_h ),
.flash_power_ready_h_i ( flash_power_ready_h ),
.flash_alert_o ( flash_alert ),
.es_rng_req_o ( es_rng_req ),
.es_rng_rsp_i ( es_rng_rsp ),
.es_rng_fips_o ( es_rng_fips ),
.ast_clk_byp_req_o ( ast_clk_byp_req ),
.ast_clk_byp_ack_i ( ast_clk_byp_ack ),
.ast2pinmux_i ( ast2pinmux ),
.ast_init_done_i ( ast_init_done ),
// Flash test mode voltages
.flash_test_mode_a_io ( {FLASH_TEST_MODE1,
FLASH_TEST_MODE0} ),
.flash_test_voltage_h_io ( FLASH_TEST_VOLT ),
// OTP external voltage
.otp_ext_voltage_h_io ( OTP_EXT_VOLT ),
// Multiplexed I/O
.mio_in_i ( mio_in ),
.mio_out_o ( mio_out ),
.mio_oe_o ( mio_oe ),
// Dedicated I/O
.dio_in_i ( dio_in ),
.dio_out_o ( dio_out ),
.dio_oe_o ( dio_oe ),
// Pad attributes
.mio_attr_o ( mio_attr ),
.dio_attr_o ( dio_attr ),
// Memory attributes
.ram_1p_cfg_i ( ram_1p_cfg ),
.ram_2p_cfg_i ( ram_2p_cfg ),
.rom_cfg_i ( rom_cfg ),
// DFT signals
.ast_lc_dft_en_o ( dft_en ),
.dft_strap_test_o ( dft_strap_test ),
.dft_hold_tap_sel_i ( '0 ),
.scan_rst_ni ( scan_rst_n ),
.scan_en_i ( scan_en ),
.scanmode_i ( scanmode )
);
% endif
###################################################################
## FPGA shared ##
###################################################################
% if target["name"] in ["cw310", "cw305", "nexysvideo"]:
//////////////////
// PLL for FPGA //
//////////////////
assign manual_out_io_clk = 1'b0;
assign manual_oe_io_clk = 1'b0;
assign manual_out_por_n = 1'b0;
assign manual_oe_por_n = 1'b0;
assign manual_out_io_jsrst_n = 1'b0;
assign manual_oe_io_jsrst_n = 1'b0;
logic clk_main, clk_usb_48mhz, clk_aon, rst_n;
clkgen_xil7series # (
.AddClkBuf(0)
) clkgen (
.clk_i(manual_in_io_clk),
.rst_ni(manual_in_por_n),
.jtag_srst_ni(manual_in_io_jsrst_n),
.clk_main_o(clk_main),
.clk_48MHz_o(clk_usb_48mhz),
.clk_aon_o(clk_aon),
.rst_no(rst_n)
);
//////////////////////
// Top-level design //
//////////////////////
pwrmgr_pkg::pwr_ast_rsp_t ast_base_pwr;
ast_pkg::ast_alert_req_t ast_base_alerts;
ast_pkg::ast_status_t ast_base_status;
assign ast_base_pwr.slow_clk_val = 1'b1;
assign ast_base_pwr.core_clk_val = 1'b1;
assign ast_base_pwr.io_clk_val = 1'b1;
assign ast_base_pwr.usb_clk_val = 1'b1;
assign ast_base_pwr.main_pok = 1'b1;
ast_pkg::ast_dif_t silent_alert = '{
p: 1'b0,
n: 1'b1
};
assign ast_base_alerts.alerts = {ast_pkg::NumAlerts{silent_alert}};
assign ast_base_status.io_pok = {ast_pkg::NumIoRails{1'b1}};
// the rst_ni pin only goes to AST
// the rest of the logic generates reset based on the 'pok' signal.
// for verilator purposes, make these two the same.
lc_ctrl_pkg::lc_tx_t lc_clk_bypass;
% if target["name"] == "cw305":
// This is used for outputting the capture trigger
logic [pinmux_reg_pkg::NMioPads-1:0] mio_out_pre;
% endif
// TODO: align this with ASIC version to minimize the duplication.
// Also need to add AST simulation and FPGA emulation models for things like entropy source -
// otherwise Verilator / FPGA will hang.
top_${top["name"]} #(
% if target["name"] == "cw310":
.AesMasking(1'b1),
.AesSBoxImpl(aes_pkg::SBoxImplDom),
.KmacEnMasking(0),
.CsrngSBoxImpl(aes_pkg::SBoxImplLut),
.OtbnRegFile(otbn_pkg::RegFileFPGA),
.OtpCtrlMemInitFile(OtpCtrlMemInitFile),
% elif target["name"] == "cw305":
.AesMasking(1'b1),
.AesSBoxImpl(aes_pkg::SBoxImplDom),
.SecAesStartTriggerDelay(40),
.SecAesAllowForcingMasks(1'b1),
.SecAesSkipPRNGReseeding(1'b1),
.RvCoreIbexICache(0),
% else:
.AesMasking(1'b0),
.AesSBoxImpl(aes_pkg::SBoxImplLut),
.KmacEnMasking(1'b0),
.SecAesStartTriggerDelay(0),
.SecAesAllowForcingMasks(1'b0),
.SecAesSkipPRNGReseeding(1'b0),
.EntropySrcStub(1'b1),
.CsrngSBoxImpl(aes_pkg::SBoxImplLut),
.OtbnRegFile(otbn_pkg::RegFileFPGA),
.OtbnStub(1'b1),
.OtpCtrlMemInitFile(OtpCtrlMemInitFile),
% endif
.RomCtrlBootRomInitFile(BootRomInitFile),
.RvCoreIbexRegFile(ibex_pkg::RegFileFPGA),
.RvCoreIbexPipeLine(1),
.SecRvCoreIbexureIbex(0),
.SramCtrlRetAonInstrExec(0),
.SramCtrlMainInstrExec(1),
.PinmuxAonTargetCfg(PinmuxTargetCfg)
) top_${top["name"]} (
.rst_ni ( rst_n ),
.clk_main_i ( clk_main ),
.clk_io_i ( clk_main ),
.clk_usb_i ( clk_usb_48mhz ),
.clk_aon_i ( clk_aon ),
.clks_ast_o ( ),
.clk_main_jitter_en_o ( ),
.rsts_ast_o ( ),
.pwrmgr_ast_req_o ( ),
.pwrmgr_ast_rsp_i ( ast_base_pwr ),
.sensor_ctrl_ast_alert_req_i ( ast_base_alerts ),
.sensor_ctrl_ast_alert_rsp_o ( ),
.sensor_ctrl_ast_status_i ( ast_base_status ),
.usbdev_usb_ref_val_o ( ),
.usbdev_usb_ref_pulse_o ( ),
.ast_edn_req_i ( '0 ),
.ast_edn_rsp_o ( ),
.flash_bist_enable_i ( lc_ctrl_pkg::Off ),
.flash_power_down_h_i ( 1'b0 ),
.flash_power_ready_h_i ( 1'b1 ),
.ast_clk_byp_req_o ( lc_clk_bypass ),
.ast_clk_byp_ack_i ( lc_clk_bypass ),
% if target["name"] != "cw305":
.ast_tl_req_o ( ),
.ast_tl_rsp_i ( '0 ),
.otp_ctrl_otp_ast_pwr_seq_o ( ),
.otp_ctrl_otp_ast_pwr_seq_h_i ( '0 ),
.otp_alert_o ( ),
.es_rng_req_o ( ),
.es_rng_rsp_i ( '0 ),
.es_rng_fips_o ( ),
.ast2pinmux_i ( '0 ),
% endif
// Multiplexed I/O
.mio_in_i ( mio_in ),
% if target["name"] == "cw305":
.mio_out_o ( mio_out_pre ),
% else:
.mio_out_o ( mio_out ),
% endif
.mio_oe_o ( mio_oe ),
// Dedicated I/O
.dio_in_i ( dio_in ),
.dio_out_o ( dio_out ),
.dio_oe_o ( dio_oe ),
// Pad attributes
.mio_attr_o ( mio_attr ),
.dio_attr_o ( dio_attr ),
// Memory attributes
.ram_1p_cfg_i ( '0 ),
.ram_2p_cfg_i ( '0 ),
.rom_cfg_i ( '0 ),
// DFT signals
.dft_hold_tap_sel_i ( '0 ),
.scan_rst_ni ( 1'b1 ),
.scan_en_i ( 1'b0 ),
.scanmode_i ( lc_ctrl_pkg::Off )
);
% endif
###################################################################
## CW305 capture board interface ##
###################################################################
## TODO: This needs to be adapted to enable captures on the CW310. In particular,
## - a precise capture trigger and the target clock need to be output, and
## - a separate UART should be used for the simpleserial communication with the capture board.
## See also pins_cw310.xdc
% if target["name"] in ["cw305"]:
//////////////////////////////////////
// Generate precise capture trigger //
//////////////////////////////////////
// TODO: make this a "manual" IO specific to the CW305 target
// such that we can decouple this from the MIO signals.
localparam int MioIdxTrigger = 15;
// To obtain a more precise capture trigger for side-channel analysis, we only forward the
// software-controlled capture trigger when the AES module is actually busy (performing
// either encryption/decryption or clearing internal registers).
// GPIO15 is used as capture trigger (mapped to IOB6 at the moment in pinmux.c).
always_comb begin : p_trigger
mio_out = mio_out_pre;
mio_out[MioIdxTrigger] = mio_out_pre[MioIdxTrigger] &
~top_${top["name"]}.clkmgr_aon_idle[clkmgr_pkg::Aes];
end
//////////////////////
// ChipWhisperer IO //
//////////////////////
logic unused_inputs;
assign unused_inputs = manual_in_tio_clkout ^ manual_in_io_utx_debug;
// Clock output to capture board.
assign manual_out_tio_clkout = manual_in_io_clk;
assign manual_oe_tio_clkout = 1'b1;
% endif
## This separate UART debugging output is needed for the CW305 only.
% if target["name"] == "cw305":
// UART Tx for debugging. The UART itself is connected to the capture board.
assign manual_out_io_utx_debug = top_${top["name"]}.cio_uart0_tx_d2p;
assign manual_oe_io_utx_debug = 1'b1;
% endif
endmodule : chip_${top["name"]}_${target["name"]}