tinyriscv/rtl/utils/async_fifo.sv

231 lines
7.8 KiB
Systemverilog

// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Generic asynchronous fifo for use in a variety of devices.
module async_fifo #(
parameter int unsigned Width = 16,
parameter int unsigned Depth = 3,
localparam int unsigned DepthW = $clog2(Depth+1) // derived parameter representing [0..Depth]
) (
// write port
input clk_wr_i,
input rst_wr_ni,
input wvalid_i,
output wready_o,
input [Width-1:0] wdata_i,
output [DepthW-1:0] wdepth_o,
// read port
input clk_rd_i,
input rst_rd_ni,
output rvalid_o,
input rready_i,
output [Width-1:0] rdata_o,
output [DepthW-1:0] rdepth_o
);
localparam int unsigned PTRV_W = $clog2(Depth);
localparam logic [PTRV_W-1:0] DepthMinus1 = PTRV_W'(Depth - 1);
localparam int unsigned PTR_WIDTH = PTRV_W+1;
logic [PTR_WIDTH-1:0] fifo_wptr, fifo_rptr;
logic [PTR_WIDTH-1:0] fifo_wptr_sync_combi, fifo_rptr_sync;
logic [PTR_WIDTH-1:0] fifo_wptr_gray_sync, fifo_rptr_gray_sync;
logic [PTR_WIDTH-1:0] fifo_wptr_gray, fifo_rptr_gray;
logic fifo_incr_wptr, fifo_incr_rptr, empty;
logic full_wclk, full_rclk;
assign wready_o = !full_wclk;
assign rvalid_o = !empty;
// create the write and read pointers
assign fifo_incr_wptr = wvalid_i & wready_o;
assign fifo_incr_rptr = rvalid_o & rready_i;
///////////////////
// write pointer //
///////////////////
always_ff @(posedge clk_wr_i or negedge rst_wr_ni)
if (!rst_wr_ni) begin
fifo_wptr <= {(PTR_WIDTH){1'b0}};
end else if (fifo_incr_wptr) begin
if (fifo_wptr[PTR_WIDTH-2:0] == DepthMinus1) begin
fifo_wptr <= {~fifo_wptr[PTR_WIDTH-1],{(PTR_WIDTH-1){1'b0}}};
end else begin
fifo_wptr <= fifo_wptr + {{(PTR_WIDTH-1){1'b0}},1'b1};
end
end
// gray-coded version
always_ff @(posedge clk_wr_i or negedge rst_wr_ni)
if (!rst_wr_ni) begin
fifo_wptr_gray <= {(PTR_WIDTH){1'b0}};
end else if (fifo_incr_wptr) begin
if (fifo_wptr[PTR_WIDTH-2:0] == DepthMinus1) begin
fifo_wptr_gray <= dec2gray({~fifo_wptr[PTR_WIDTH-1],{(PTR_WIDTH-1){1'b0}}});
end else begin
fifo_wptr_gray <= dec2gray(fifo_wptr + {{(PTR_WIDTH-1){1'b0}},1'b1});
end
end
/*
prim_flop_2sync #(.Width(PTR_WIDTH)) sync_wptr (
.clk_i (clk_rd_i),
.rst_ni (rst_rd_ni),
.d_i (fifo_wptr_gray),
.q_o (fifo_wptr_gray_sync));
*/
logic [PTR_WIDTH-1:0] fifo_wptr_gray_q1, fifo_wptr_gray_q2;
always_ff @(posedge clk_rd_i or negedge rst_rd_ni) begin
if (!rst_rd_ni) begin
fifo_wptr_gray_q1 <= {(PTR_WIDTH){1'b0}};
fifo_wptr_gray_q2 <= {(PTR_WIDTH){1'b0}};
end else begin
fifo_wptr_gray_q1 <= fifo_wptr_gray;
fifo_wptr_gray_q2 <= fifo_wptr_gray_q1;
end
end
assign fifo_wptr_gray_sync = fifo_wptr_gray_q2;
assign fifo_wptr_sync_combi = gray2dec(fifo_wptr_gray_sync);
//////////////////
// read pointer //
//////////////////
always_ff @(posedge clk_rd_i or negedge rst_rd_ni)
if (!rst_rd_ni) begin
fifo_rptr <= {(PTR_WIDTH){1'b0}};
end else if (fifo_incr_rptr) begin
if (fifo_rptr[PTR_WIDTH-2:0] == DepthMinus1) begin
fifo_rptr <= {~fifo_rptr[PTR_WIDTH-1],{(PTR_WIDTH-1){1'b0}}};
end else begin
fifo_rptr <= fifo_rptr + {{(PTR_WIDTH-1){1'b0}},1'b1};
end
end
// gray-coded version
always_ff @(posedge clk_rd_i or negedge rst_rd_ni)
if (!rst_rd_ni) begin
fifo_rptr_gray <= {(PTR_WIDTH){1'b0}};
end else if (fifo_incr_rptr) begin
if (fifo_rptr[PTR_WIDTH-2:0] == DepthMinus1) begin
fifo_rptr_gray <= dec2gray({~fifo_rptr[PTR_WIDTH-1],{(PTR_WIDTH-1){1'b0}}});
end else begin
fifo_rptr_gray <= dec2gray(fifo_rptr + {{(PTR_WIDTH-1){1'b0}},1'b1});
end
end
/*
prim_flop_2sync #(.Width(PTR_WIDTH)) sync_rptr (
.clk_i (clk_wr_i),
.rst_ni (rst_wr_ni),
.d_i (fifo_rptr_gray),
.q_o (fifo_rptr_gray_sync));
*/
logic [PTR_WIDTH-1:0] fifo_rptr_gray_q1, fifo_rptr_gray_q2;
always_ff @(posedge clk_wr_i or negedge rst_wr_ni) begin
if (!rst_wr_ni) begin
fifo_rptr_gray_q1 <= {(PTR_WIDTH){1'b0}};
fifo_rptr_gray_q2 <= {(PTR_WIDTH){1'b0}};
end else begin
fifo_rptr_gray_q1 <= fifo_rptr_gray;
fifo_rptr_gray_q2 <= fifo_rptr_gray_q1;
end
end
assign fifo_rptr_gray_sync = fifo_rptr_gray_q2;
always_ff @(posedge clk_wr_i or negedge rst_wr_ni)
if (!rst_wr_ni) begin
fifo_rptr_sync <= {PTR_WIDTH{1'b0}};
end else begin
fifo_rptr_sync <= gray2dec(fifo_rptr_gray_sync);
end
//////////////////
// empty / full //
//////////////////
assign full_wclk = (fifo_wptr == (fifo_rptr_sync ^ {1'b1,{(PTR_WIDTH-1){1'b0}}}));
assign full_rclk = (fifo_wptr_sync_combi == (fifo_rptr ^ {1'b1,{(PTR_WIDTH-1){1'b0}}}));
// Current depth in the write clock side
logic wptr_msb;
logic rptr_sync_msb;
logic [PTRV_W-1:0] wptr_value;
logic [PTRV_W-1:0] rptr_sync_value;
assign wptr_msb = fifo_wptr[PTR_WIDTH-1];
assign rptr_sync_msb = fifo_rptr_sync[PTR_WIDTH-1];
assign wptr_value = fifo_wptr[0+:PTRV_W];
assign rptr_sync_value = fifo_rptr_sync[0+:PTRV_W];
assign wdepth_o = (full_wclk) ? DepthW'(Depth) :
(wptr_msb == rptr_sync_msb) ? DepthW'(wptr_value) - DepthW'(rptr_sync_value) :
(DepthW'(Depth) - DepthW'(rptr_sync_value) + DepthW'(wptr_value)) ;
// Same again in the read clock side
assign empty = (fifo_wptr_sync_combi == fifo_rptr);
logic rptr_msb;
logic wptr_sync_msb;
logic [PTRV_W-1:0] rptr_value;
logic [PTRV_W-1:0] wptr_sync_value;
assign wptr_sync_msb = fifo_wptr_sync_combi[PTR_WIDTH-1];
assign rptr_msb = fifo_rptr[PTR_WIDTH-1];
assign wptr_sync_value = fifo_wptr_sync_combi[0+:PTRV_W];
assign rptr_value = fifo_rptr[0+:PTRV_W];
assign rdepth_o = (full_rclk) ? DepthW'(Depth) :
(wptr_sync_msb == rptr_msb) ? DepthW'(wptr_sync_value) - DepthW'(rptr_value) :
(DepthW'(Depth) - DepthW'(rptr_value) + DepthW'(wptr_sync_value)) ;
/////////////
// storage //
/////////////
logic [Width-1:0] storage [Depth];
always_ff @(posedge clk_wr_i)
if (fifo_incr_wptr) begin
storage[fifo_wptr[PTR_WIDTH-2:0]] <= wdata_i;
end
assign rdata_o = storage[fifo_rptr[PTR_WIDTH-2:0]];
// gray code conversion functions. algorithm walks up from 0..N-1
// then flips the upper bit and walks down from N-1 to 0.
function automatic [PTR_WIDTH-1:0] dec2gray(input logic [PTR_WIDTH-1:0] decval);
logic [PTR_WIDTH-1:0] decval_sub;
logic [PTR_WIDTH-2:0] decval_in;
logic unused_decval_msb;
decval_sub = (PTR_WIDTH)'(Depth) - {1'b0, decval[PTR_WIDTH-2:0]} - 1'b1;
{unused_decval_msb, decval_in} = decval[PTR_WIDTH-1] ? decval_sub : decval;
// Was done in two assigns for low bits and top bit
// but that generates a (bogus) verilator warning, so do in one assign
dec2gray = {decval[PTR_WIDTH-1],
{1'b0,decval_in[PTR_WIDTH-2:1]} ^ decval_in[PTR_WIDTH-2:0]};
endfunction
function automatic [PTR_WIDTH-1:0] gray2dec(input logic [PTR_WIDTH-1:0] grayval);
logic [PTR_WIDTH-2:0] dec_tmp, dec_tmp_sub;
logic unused_decsub_msb;
dec_tmp[PTR_WIDTH-2] = grayval[PTR_WIDTH-2];
for (int i = PTR_WIDTH-3; i >= 0; i--)
dec_tmp[i] = dec_tmp[i+1]^grayval[i];
{unused_decsub_msb, dec_tmp_sub} = (PTR_WIDTH-1)'(Depth) - {1'b0, dec_tmp} - 1'b1;
if (grayval[PTR_WIDTH-1])
gray2dec = {1'b1,dec_tmp_sub};
else
gray2dec = {1'b0,dec_tmp};
endfunction
// TODO: assertions on full, empty, gray transitions
endmodule