cortex-a8: more MMU support

+ virt2phys() can now convert virtual address to real
+ read_memory() and write_memory() are renamed to read_phys_memory()
and write_phys_memory()
+ new read_memory() and write_memory() try to resolve real address if
mmu is enambled than perform real address reading/writing
   + if address is bellow 0xc000000 than TTB0 is used for page table
dereference, if above - than TTB1. Linux style of user/kernel address
separation
   + if above fails (i.e address is unspecified) than mode is checked
whether it is Supervisor (than TTB1) or User (than TTB0)
- Software breakpoints doesn't work. You should invoke
"gdb_breakpoint_override hard" before you start debugging
+ cortex_a8_mmu(), cortex_a8_enable_mmu_caches(),
cortex_a8_disable_mmu_caches() are implemented

Signed-off-by: Øyvind Harboe <oyvind.harboe@zylin.com>
__archive__
Anton Fedotov 2010-04-14 07:36:08 +02:00 committed by Øyvind Harboe
parent a8a9eddca0
commit decad30865
2 changed files with 317 additions and 94 deletions

View File

@ -51,6 +51,16 @@ static int cortex_a8_dap_read_coreregister_u32(struct target *target,
uint32_t *value, int regnum); uint32_t *value, int regnum);
static int cortex_a8_dap_write_coreregister_u32(struct target *target, static int cortex_a8_dap_write_coreregister_u32(struct target *target,
uint32_t value, int regnum); uint32_t value, int regnum);
static int cortex_a8_mmu(struct target *target, int *enabled);
static int cortex_a8_virt2phys(struct target *target,
uint32_t virt, uint32_t *phys);
static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache);
static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache);
static uint32_t cortex_a8_get_ttb(struct target *target);
/* /*
* FIXME do topology discovery using the ROM; don't * FIXME do topology discovery using the ROM; don't
* assume this is an OMAP3. Also, allow for multiple ARMv7-A * assume this is an OMAP3. Also, allow for multiple ARMv7-A
@ -1269,8 +1279,9 @@ static int cortex_a8_deassert_reset(struct target *target)
* ap number for every access. * ap number for every access.
*/ */
static int cortex_a8_read_memory(struct target *target, uint32_t address, static int cortex_a8_read_phys_memory(struct target *target,
uint32_t size, uint32_t count, uint8_t *buffer) uint32_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{ {
struct armv7a_common *armv7a = target_to_armv7a(target); struct armv7a_common *armv7a = target_to_armv7a(target);
struct adiv5_dap *swjdp = &armv7a->dap; struct adiv5_dap *swjdp = &armv7a->dap;
@ -1279,7 +1290,7 @@ static int cortex_a8_read_memory(struct target *target, uint32_t address,
/* cortex_a8 handles unaligned memory access */ /* cortex_a8 handles unaligned memory access */
// ??? dap_ap_select(swjdp, swjdp_memoryap); // ??? dap_ap_select(swjdp, swjdp_memoryap);
LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
if (count && buffer) { if (count && buffer) {
switch (size) { switch (size) {
case 4: case 4:
@ -1297,8 +1308,31 @@ static int cortex_a8_read_memory(struct target *target, uint32_t address,
return retval; return retval;
} }
static int cortex_a8_write_memory(struct target *target, uint32_t address, static int cortex_a8_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer) uint32_t size, uint32_t count, uint8_t *buffer)
{
int enabled = 0;
uint32_t virt, phys;
/* cortex_a8 handles unaligned memory access */
// ??? dap_ap_select(swjdp, swjdp_memoryap);
LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
cortex_a8_mmu(target, &enabled);
if(enabled)
{
virt = address;
cortex_a8_virt2phys(target, virt, &phys);
LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
address = phys;
}
return cortex_a8_read_phys_memory(target, address, size, count, buffer);
}
static int cortex_a8_write_phys_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{ {
struct armv7a_common *armv7a = target_to_armv7a(target); struct armv7a_common *armv7a = target_to_armv7a(target);
struct adiv5_dap *swjdp = &armv7a->dap; struct adiv5_dap *swjdp = &armv7a->dap;
@ -1306,6 +1340,7 @@ static int cortex_a8_write_memory(struct target *target, uint32_t address,
// ??? dap_ap_select(swjdp, swjdp_memoryap); // ??? dap_ap_select(swjdp, swjdp_memoryap);
LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
if (count && buffer) { if (count && buffer) {
switch (size) { switch (size) {
case 4: case 4:
@ -1376,6 +1411,28 @@ static int cortex_a8_write_memory(struct target *target, uint32_t address,
return retval; return retval;
} }
static int cortex_a8_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int enabled = 0;
uint32_t virt, phys;
// ??? dap_ap_select(swjdp, swjdp_memoryap);
LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
cortex_a8_mmu(target, &enabled);
if(enabled)
{
virt = address;
cortex_a8_virt2phys(target, virt, &phys);
LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
address = phys;
}
return cortex_a8_write_phys_memory(target, address, size,
count, buffer);
}
static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address, static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
uint32_t count, uint8_t *buffer) uint32_t count, uint8_t *buffer)
{ {
@ -1580,6 +1637,9 @@ static int cortex_a8_init_arch_info(struct target *target,
cortex_a8->fast_reg_read = 0; cortex_a8->fast_reg_read = 0;
/* Set default value */
cortex_a8->current_address_mode = ARM_MODE_ANY;
/* register arch-specific functions */ /* register arch-specific functions */
armv7a->examine_debug_reason = NULL; armv7a->examine_debug_reason = NULL;
@ -1587,11 +1647,11 @@ static int cortex_a8_init_arch_info(struct target *target,
armv7a->pre_restore_context = NULL; armv7a->pre_restore_context = NULL;
armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1; armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
// armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb; armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory; armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory; armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
// armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches; armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
// armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches; armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
armv7a->armv4_5_mmu.has_tiny_pages = 1; armv7a->armv4_5_mmu.has_tiny_pages = 1;
armv7a->armv4_5_mmu.mmu_enabled = 0; armv7a->armv4_5_mmu.mmu_enabled = 0;
@ -1616,6 +1676,160 @@ static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
return ERROR_OK; return ERROR_OK;
} }
static uint32_t cortex_a8_get_ttb(struct target *target)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
uint32_t ttb = 0, retval = ERROR_OK;
/* current_address_mode is set inside cortex_a8_virt2phys()
where we can determine if address belongs to user or kernel */
if(cortex_a8->current_address_mode == ARM_MODE_SVC)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 1, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
}
else if(cortex_a8->current_address_mode == ARM_MODE_USR)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
}
/* we don't know whose address is: user or kernel
we assume that if we are in kernel mode then
address belongs to kernel else if in user mode
- to user */
else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 1, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
}
else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
}
/* finaly we don't know whose ttb to use: user or kernel */
else
LOG_ERROR("Don't know how to get ttb for current mode!!!");
ttb &= 0xffffc000;
return ttb;
}
static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
uint32_t cp15_control;
/* read cp15 control register */
armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&cp15_control);
if (mmu)
cp15_control &= ~0x1U;
if (d_u_cache)
cp15_control &= ~0x4U;
if (i_cache)
cp15_control &= ~0x1000U;
armv7a->armv4_5_common.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cp15_control);
}
static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
uint32_t cp15_control;
/* read cp15 control register */
armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&cp15_control);
if (mmu)
cp15_control |= 0x1U;
if (d_u_cache)
cp15_control |= 0x4U;
if (i_cache)
cp15_control |= 0x1000U;
armv7a->armv4_5_common.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cp15_control);
}
static int cortex_a8_mmu(struct target *target, int *enabled)
{
if (target->state != TARGET_HALTED) {
LOG_ERROR("%s: target not halted", __func__);
return ERROR_TARGET_INVALID;
}
*enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
return ERROR_OK;
}
static int cortex_a8_virt2phys(struct target *target,
uint32_t virt, uint32_t *phys)
{
int type;
uint32_t cb;
int domain;
uint32_t ap;
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
// struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
struct armv7a_common *armv7a = target_to_armv7a(target);
/* We assume that virtual address is separated
between user and kernel in Linux style:
0x00000000-0xbfffffff - User space
0xc0000000-0xffffffff - Kernel space */
if( virt < 0xc0000000 ) /* Linux user space */
cortex_a8->current_address_mode = ARM_MODE_USR;
else /* Linux kernel */
cortex_a8->current_address_mode = ARM_MODE_SVC;
uint32_t ret = armv4_5_mmu_translate_va(target,
&armv7a->armv4_5_mmu, virt, &type, &cb, &domain, &ap);
/* Reset the flag. We don't want someone else to use it by error */
cortex_a8->current_address_mode = ARM_MODE_ANY;
if (type == -1)
{
return ret;
}
*phys = ret;
return ERROR_OK;
}
COMMAND_HANDLER(cortex_a8_handle_cache_info_command) COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
{ {
struct target *target = get_current_target(CMD_CTX); struct target *target = get_current_target(CMD_CTX);
@ -1703,4 +1917,10 @@ struct target_type cortexa8_target = {
.target_create = cortex_a8_target_create, .target_create = cortex_a8_target_create,
.init_target = cortex_a8_init_target, .init_target = cortex_a8_init_target,
.examine = cortex_a8_examine, .examine = cortex_a8_examine,
.read_phys_memory = cortex_a8_read_phys_memory,
.write_phys_memory = cortex_a8_write_phys_memory,
.mmu = cortex_a8_mmu,
.virt2phys = cortex_a8_virt2phys,
}; };

View File

@ -72,6 +72,9 @@ struct cortex_a8_common
/* Use cortex_a8_read_regs_through_mem for fast register reads */ /* Use cortex_a8_read_regs_through_mem for fast register reads */
int fast_reg_read; int fast_reg_read;
/* Flag that helps to resolve what ttb to use: user or kernel */
int current_address_mode;
struct armv7a_common armv7a_common; struct armv7a_common armv7a_common;
}; };