STM32L: Added flash driver and target

Added the flash driver for the STM32L family, which highly differ from the STM32F family.
Added the TCL target file for JTAG access.
__archive__
Clément Burin des Roziers 2011-09-16 15:55:54 +02:00 committed by Øyvind Harboe
parent a17adf0601
commit da8ce5f2e1
5 changed files with 1117 additions and 0 deletions

View File

@ -0,0 +1,63 @@
/***************************************************************************
* Copyright (C) 2010 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2011 Clement Burin des Roziers *
* clement.burin-des-roziers@hikob.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
// Build : arm-eabi-gcc -c stm32lx.S
.text
.syntax unified
.cpu cortex-m3
.thumb
.thumb_func
.global write
/*
r0 - destination address
r1 - source address
r2 - count
*/
// Set 0 to r3
movs r3, #0
// Go to compare
b.n test_done
write_word:
// Load one word from address in r0, increment by 4
ldr.w ip, [r1], #4
// Store the word to address in r1, increment by 4
str.w ip, [r0], #4
// Increment r3
adds r3, #1
test_done:
// Compare r3 and r2
cmp r3, r2
// Loop if not zero
bcc.n write_word
// Set breakpoint to exit
bkpt #0x00

View File

@ -26,6 +26,7 @@ NOR_DRIVERS = \
stellaris.c \ stellaris.c \
stm32f1x.c \ stm32f1x.c \
stm32f2x.c \ stm32f2x.c \
stm32lx.c \
str7x.c \ str7x.c \
str9x.c \ str9x.c \
str9xpec.c \ str9xpec.c \

View File

@ -34,6 +34,7 @@ extern struct flash_driver stellaris_flash;
extern struct flash_driver str9xpec_flash; extern struct flash_driver str9xpec_flash;
extern struct flash_driver stm32f1x_flash; extern struct flash_driver stm32f1x_flash;
extern struct flash_driver stm32f2x_flash; extern struct flash_driver stm32f2x_flash;
extern struct flash_driver stm32lx_flash;
extern struct flash_driver tms470_flash; extern struct flash_driver tms470_flash;
extern struct flash_driver ecosflash_flash; extern struct flash_driver ecosflash_flash;
extern struct flash_driver ocl_flash; extern struct flash_driver ocl_flash;
@ -65,6 +66,7 @@ static struct flash_driver *flash_drivers[] = {
&str9xpec_flash, &str9xpec_flash,
&stm32f1x_flash, &stm32f1x_flash,
&stm32f2x_flash, &stm32f2x_flash,
&stm32lx_flash,
&tms470_flash, &tms470_flash,
&ecosflash_flash, &ecosflash_flash,
&ocl_flash, &ocl_flash,

970
src/flash/nor/stm32lx.c Normal file
View File

@ -0,0 +1,970 @@
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Clement Burin des Roziers *
* clement.burin-des-roziers@hikob.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* stm32lx flash register locations */
#define FLASH_BASE 0x40023C00
#define FLASH_ACR 0x40023C00
#define FLASH_PECR 0x40023C04
#define FLASH_PDKEYR 0x40023C08
#define FLASH_PEKEYR 0x40023C0C
#define FLASH_PRGKEYR 0x40023C10
#define FLASH_OPTKEYR 0x40023C14
#define FLASH_SR 0x40023C18
#define FLASH_OBR 0x40023C1C
#define FLASH_WRPR 0x40023C20
/* FLASH_ACR bites */
#define FLASH_ACR__LATENCY (1<<0)
#define FLASH_ACR__PRFTEN (1<<1)
#define FLASH_ACR__ACC64 (1<<2)
#define FLASH_ACR__SLEEP_PD (1<<3)
#define FLASH_ACR__RUN_PD (1<<4)
/* FLASH_PECR bits */
#define FLASH_PECR__PELOCK (1<<0)
#define FLASH_PECR__PRGLOCK (1<<1)
#define FLASH_PECR__OPTLOCK (1<<2)
#define FLASH_PECR__PROG (1<<3)
#define FLASH_PECR__DATA (1<<4)
#define FLASH_PECR__FTDW (1<<8)
#define FLASH_PECR__ERASE (1<<9)
#define FLASH_PECR__FPRG (1<<10)
#define FLASH_PECR__EOPIE (1<<16)
#define FLASH_PECR__ERRIE (1<<17)
#define FLASH_PECR__OBL_LAUNCH (1<<18)
/* FLASH_SR bits */
#define FLASH_SR__BSY (1<<0)
#define FLASH_SR__EOP (1<<1)
#define FLASH_SR__ENDHV (1<<2)
#define FLASH_SR__READY (1<<3)
#define FLASH_SR__WRPERR (1<<8)
#define FLASH_SR__PGAERR (1<<9)
#define FLASH_SR__SIZERR (1<<10)
#define FLASH_SR__OPTVERR (1<<11)
/* Unlock keys */
#define PEKEY1 0x89ABCDEF
#define PEKEY2 0x02030405
#define PRGKEY1 0x8C9DAEBF
#define PRGKEY2 0x13141516
#define OPTKEY1 0xFBEAD9C8
#define OPTKEY2 0x24252627
/* other registers */
#define DBGMCU_IDCODE 0xE0042000
#define F_SIZE 0x1FF8004C
/* Constants */
#define FLASH_PAGE_SIZE 256
#define FLASH_SECTOR_SIZE 4096
#define FLASH_PAGES_PER_SECTOR 16
#define FLASH_BANK0_ADDRESS 0x08000000
/* stm32lx option byte register location */
#define OB_RDP 0x1FF80000
#define OB_USER 0x1FF80004
#define OB_WRP0_1 0x1FF80008
#define OB_WRP2_3 0x1FF8000C
/* OB_RDP values */
#define OB_RDP__LEVEL0 0xFF5500AA
#define OB_RDP__LEVEL1 0xFFFF0000
/* stm32lx RCC register locations */
#define RCC_CR 0x40023800
#define RCC_ICSCR 0x40023804
#define RCC_CFGR 0x40023808
/* RCC_ICSCR bits */
#define RCC_ICSCR__MSIRANGE_MASK (7<<13)
static int stm32lx_unlock_program_memory(struct flash_bank *bank);
static int stm32lx_lock_program_memory(struct flash_bank *bank);
static int stm32lx_enable_write_half_page(struct flash_bank *bank);
static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
struct stm32lx_flash_bank
{
struct working_area *write_algorithm;
int probed;
};
/* flash bank stm32lx <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
{
struct stm32lx_flash_bank *stm32lx_info;
if (CMD_ARGC < 6)
{
LOG_ERROR("incomplete flash_bank stm32lx configuration");
return ERROR_FLASH_BANK_INVALID;
}
// Create the bank structure
stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
// Check allocation
if (stm32lx_info == NULL)
{
LOG_ERROR("failed to allocate bank structure");
return ERROR_FAIL;
}
bank->driver_priv = stm32lx_info;
stm32lx_info->write_algorithm = NULL;
stm32lx_info->probed = 0;
return ERROR_OK;
}
static int stm32lx_protect_check(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
uint32_t wrpr;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/*
* Read the WRPR word, and check each bit (corresponding to each
* flash sector
*/
retval = target_read_u32(target, FLASH_WRPR, &wrpr);
if (retval != ERROR_OK)
return retval;
for (int i = 0; i < 32; i++)
{
if (wrpr & (1 << i))
{
bank->sectors[i].is_protected = 1;
}
else
{
bank->sectors[i].is_protected = 0;
}
}
return ERROR_OK;
}
static int stm32lx_erase(struct flash_bank *bank, int first, int last)
{
int retval;
/*
* It could be possible to do a mass erase if all sectors must be
* erased, but it is not implemented yet.
*/
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/*
* Loop over the selected sectors and erase them
*/
for (int i = first; i <= last; i++)
{
retval = stm32lx_erase_sector(bank, i);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
return ERROR_OK;
}
static int stm32lx_protect(struct flash_bank *bank, int set, int first,
int last)
{
LOG_WARNING("protection of the STM32L flash is not implemented");
return ERROR_OK;
}
static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 4096 * 4;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
uint32_t reg32;
/* see contib/loaders/flash/stm32lx.s for src */
static const uint16_t stm32lx_flash_write_code_16[] =
{
// 00000000 <write_word-0x4>:
0x2300, // 0: 2300 movs r3, #0
0xe004, // 2: e004 b.n e <test_done>
// 00000004 <write_word>:
0xf851, 0xcb04, // 4: f851 cb04 ldr.w ip, [r1], #4
0xf840, 0xcb04, // 8: f840 cb04 str.w ip, [r0], #4
0x3301, // c: 3301 adds r3, #1
// 0000000e <test_done>:
0x4293, // e: 4293 cmp r3, r2
0xd3f8, // 10: d3f8 bcc.n 4 <write_word>
0xbe00, // 12: be00 bkpt 0x0000
};
// Flip endian
uint8_t stm32lx_flash_write_code[sizeof(stm32lx_flash_write_code_16)];
for (unsigned int i = 0; i < sizeof(stm32lx_flash_write_code_16) / 2; i++)
{
stm32lx_flash_write_code[i * 2 + 0] = stm32lx_flash_write_code_16[i]
& 0xff;
stm32lx_flash_write_code[i * 2 + 1] = (stm32lx_flash_write_code_16[i]
>> 8) & 0xff;
}
// Check if there is an even number of half pages (128bytes)
if (count % 128)
{
LOG_ERROR("there should be an even number "
"of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
return ERROR_FAIL;
}
// Allocate working area
reg32 = sizeof(stm32lx_flash_write_code);
// Add bytes to make 4byte aligned
reg32 += (4 - (reg32 % 4)) % 4;
retval = target_alloc_working_area(target, reg32,
&stm32lx_info->write_algorithm);
if (retval != ERROR_OK)
return retval;
// Write the flashing code
retval = target_write_buffer(target,
stm32lx_info->write_algorithm->address,
sizeof(stm32lx_flash_write_code),
(uint8_t*) stm32lx_flash_write_code);
if (retval != ERROR_OK)
{
target_free_working_area(target, stm32lx_info->write_algorithm);
return retval;
}
// Allocate half pages memory
while (target_alloc_working_area_try(target, buffer_size, &source)
!= ERROR_OK)
{
if (buffer_size > 1024)
buffer_size -= 1024;
else
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
if (stm32lx_info->write_algorithm)
target_free_working_area(target, stm32lx_info->write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
LOG_DEBUG("allocated working area for data (%" PRIx32 " bytes)", buffer_size);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
// Enable half-page write
retval = stm32lx_enable_write_half_page(bank);
if (retval != ERROR_OK)
{
target_free_working_area(target, source);
target_free_working_area(target, stm32lx_info->write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
return retval;
}
// Loop while there are bytes to write
while (count > 0)
{
uint32_t this_count;
this_count = (count > buffer_size) ? buffer_size : count;
// Write the next half pages
retval = target_write_buffer(target, source->address, this_count,
buffer);
if (retval != ERROR_OK)
break;
// 4: Store useful information in the registers
// the destination address of the copy (R0)
buf_set_u32(reg_params[0].value, 0, 32, address);
// The source address of the copy (R1)
buf_set_u32(reg_params[1].value, 0, 32, source->address);
// The length of the copy (R2)
buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
// 5: Execute the bunch of code
retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
/ sizeof(*reg_params), reg_params,
stm32lx_info->write_algorithm->address, 0, 20000, &armv7m_info);
if (retval != ERROR_OK)
break;
// 6: Wait while busy
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
break;
buffer += this_count;
address += this_count;
count -= this_count;
}
if (retval == ERROR_OK)
retval = stm32lx_lock_program_memory(bank);
target_free_working_area(target, source);
target_free_working_area(target, stm32lx_info->write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
return retval;
}
static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t halfpages_number;
uint32_t words_remaining;
uint32_t bytes_remaining;
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1)
{
LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
// Check if there are some full half pages
if (((offset % 128) == 0) && (count >= 128))
{
halfpages_number = count / 128;
words_remaining = (count - 128 * halfpages_number) / 4;
bytes_remaining = (count & 0x3);
}
else
{
halfpages_number = 0;
words_remaining = (count / 4);
bytes_remaining = (count & 0x3);
}
if (halfpages_number)
{
retval = stm32lx_write_half_pages(bank, buffer, offset, 128
* halfpages_number);
if (retval != ERROR_OK)
return ERROR_FAIL;
}
bytes_written = 128 * halfpages_number;
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
while (words_remaining > 0)
{
uint32_t value;
uint8_t* p = buffer + bytes_written;
// Prepare the word, Little endian conversion
value = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24);
retval = target_write_u32(target, address, value);
if (retval != ERROR_OK)
return retval;
bytes_written += 4;
words_remaining--;
address += 4;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
}
if (bytes_remaining)
{
uint32_t value = 0;
for (int i = 0; i < 4; i++)
{
if (bytes_remaining)
{
value += (buffer[i] << (8 * i));
bytes_remaining--;
}
}
retval = target_write_u32(target, address, value);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
}
retval = stm32lx_lock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int i;
uint16_t flash_size;
uint32_t device_id;
uint32_t reg32;
stm32lx_info->probed = 0;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
if ((device_id & 0x7ff) != 0x416)
{
LOG_WARNING("Cannot identify target as a STM32L family.");
return ERROR_FAIL;
}
// Read the RDP byte and check if it is 0xAA
uint8_t rdp;
retval = target_read_u32(target, FLASH_OBR, &reg32);
if (retval != ERROR_OK)
return retval;
rdp = reg32 & 0xFF;
if (rdp != 0xAA)
{
/*
* Unlocking the option byte is done by unlocking the PECR, then
* by writing the 2 option byte keys to OPTKEYR
*/
/* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PELOCK)
return ERROR_FLASH_OPERATION_FAILED;
retval = target_write_u32(target, FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__OPTLOCK)
{
LOG_ERROR("OPTLOCK is not cleared");
return ERROR_FLASH_OPERATION_FAILED;
}
// Then, write RDP to 0x00 to set level 1
reg32 = ((~0xAA) << 16) | (0xAA);
retval = target_write_u32(target, OB_RDP, reg32);
if (retval != ERROR_OK)
return retval;
// Set Automatic update of the option byte, by setting OBL_LAUNCH in FLASH_PECR
reg32 = FLASH_PECR__OBL_LAUNCH;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
}
/* get flash size from target. */
retval = target_read_u16(target, F_SIZE, &flash_size);
if (retval != ERROR_OK)
return retval;
/* check for valid flash size */
if (flash_size == 0xffff)
{
/* number of sectors incorrect on revA */
LOG_ERROR("STM32 flash size failed, probe inaccurate");
return ERROR_FAIL;
}
/* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
* 16 pages for a protection area */
/* calculate numbers of sectors (4kB per sector) */
int num_sectors = (flash_size * 1024) / FLASH_SECTOR_SIZE;
LOG_INFO("flash size = %dkbytes", flash_size);
if (bank->sectors)
{
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = FLASH_BANK0_ADDRESS;
bank->size = flash_size * 1024;
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
if (bank->sectors == NULL)
{
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
for (i = 0; i < num_sectors; i++)
{
bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
bank->sectors[i].size = FLASH_SECTOR_SIZE;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32lx_info->probed = 1;
return ERROR_OK;
}
static int stm32lx_auto_probe(struct flash_bank *bank)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
if (stm32lx_info->probed)
{
return ERROR_OK;
}
return stm32lx_probe(bank);
}
static int stm32lx_erase_check(struct flash_bank *bank)
{
struct target *target = bank->target;
const int buffer_size = 4096;
int i;
uint32_t nBytes;
int retval = ERROR_OK;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL)
{
LOG_ERROR("failed to allocate read buffer");
return ERROR_FAIL;
}
for (i = 0; i < bank->num_sectors; i++)
{
uint32_t j;
bank->sectors[i].is_erased = 1;
// Loop chunk by chunk over the sector
for (j = 0; j < bank->sectors[i].size; j += buffer_size)
{
uint32_t chunk;
chunk = buffer_size;
if (chunk > (j - bank->sectors[i].size))
{
chunk = (j - bank->sectors[i].size);
}
retval = target_read_memory(target, bank->base
+ bank->sectors[i].offset + j, 4, chunk / 4, buffer);
if (retval != ERROR_OK)
break;
for (nBytes = 0; nBytes < chunk; nBytes++)
{
if (buffer[nBytes] != 0x00)
{
bank->sectors[i].is_erased = 0;
break;
}
}
}
if (retval != ERROR_OK)
{
break;
}
}
free(buffer);
return retval;
}
static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
// This method must return a string displaying information about the bank
struct target *target = bank->target;
uint32_t device_id;
int printed;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
if (retval != ERROR_OK)
return retval;
if ((device_id & 0x7ff) == 0x416)
{
printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1008:
snprintf(buf, buf_size, "Y");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else
{
snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
return ERROR_FAIL;
}
return ERROR_OK;
}
static const struct command_registration stm32lx_exec_command_handlers[] =
{
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32lx_command_handlers[] =
{
{
.name = "stm32lx",
.mode = COMMAND_ANY,
.help = "stm32lx flash command group",
.chain = stm32lx_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32lx_flash =
{
.name = "stm32lx",
.commands = stm32lx_command_handlers,
.flash_bank_command = stm32lx_flash_bank_command,
.erase = stm32lx_erase,
.protect = stm32lx_protect,
.write = stm32lx_write,
.read = default_flash_read,
.probe = stm32lx_probe,
.auto_probe = stm32lx_auto_probe,
.erase_check = stm32lx_erase_check,
.protect_check = stm32lx_protect_check,
.info = stm32lx_get_info,
};
// Static methods implementation
static int stm32lx_unlock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/*
* Unlocking the program memory is done by unlocking the PECR,
* then by writing the 2 PRGKEY to the PRGKEYR register
*/
/* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PELOCK)
{
LOG_ERROR("PELOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PRGLOCK)
{
LOG_ERROR("PRGLOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32lx_enable_write_half_page(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/**
* Unlock the program memory, then set the FPRG bit in the PECR register.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__FPRG;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PROG;
retval = target_write_u32(target, FLASH_PECR, reg32);
return retval;
}
static int stm32lx_lock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/* To lock the program memory, simply set the lock bit and lock PECR */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PRGLOCK;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PELOCK;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/*
* To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
* first unlock the memory, loop over the pages of this sector
* and write 0x0 to its first word.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++)
{
reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
uint32_t addr = bank->base + bank->sectors[sector].offset + (page
* FLASH_PAGE_SIZE);
retval = target_write_u32(target, addr, 0x0);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
}
retval = stm32lx_lock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
int timeout = 100;
/* wait for busy to clear */
for (;;)
{
retval = target_read_u32(target, FLASH_SR, &status);
if (retval != ERROR_OK)
return retval;
if ((status & FLASH_SR__BSY) == 0)
{
break;
}
if (timeout-- <= 0)
{
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_SR__WRPERR)
{
LOG_ERROR("access denied / write protected");
retval = ERROR_FAIL;
}
if (status & FLASH_SR__PGAERR)
{
LOG_ERROR("invalid program address");
retval = ERROR_FAIL;
}
return retval;
}

81
tcl/target/stm32l.cfg Normal file
View File

@ -0,0 +1,81 @@
# script for stm32l
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME stm32l
}
if { [info exists ENDIAN] } {
set _ENDIAN $ENDIAN
} else {
set _ENDIAN little
}
# Work-area is a space in RAM used for flash programming
# By default use 14kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x3800
}
# JTAG speed should be <= F_CPU/6.
# F_CPU after reset is 2MHz, so use F_JTAG max = 333kHz
adapter_khz 100
adapter_nsrst_delay 100
jtag_ntrst_delay 100
#jtag scan chain
if { [info exists CPUTAPID ] } {
set _CPUTAPID $CPUTAPID
} else {
# See STM Document RM0038
# Section 24.6.3
set _CPUTAPID 0x4ba00477
}
jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
if { [info exists BSTAPID ] } {
# FIXME this never gets used to override defaults...
set _BSTAPID $BSTAPID
} else {
# See STM Document RM0038
# Section 24.6.2
set _BSTAPID 0x06416041
}
jtag newtap $_CHIPNAME bs -irlen 5 -expected-id $_BSTAPID
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m3 -endian $_ENDIAN -chain-position $_TARGETNAME
$_TARGETNAME configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
# flash size will be probed
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME stm32lx 0x08000000 0 0 0 $_TARGETNAME
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
cortex_m3 reset_config sysresetreq
proc stm32l_enable_HSI {} {
# Enable HSI as clock source
echo "STM32L: Enabling HSI"
# Set HSION in RCC_CR
mww 0x40023800 0x00000101
# Set HSI as SYSCLK
mww 0x40023808 0x00000001
# Increase JTAG speed
adapter_khz 2000
}
$_TARGETNAME configure -event reset-init {
stm32l_enable_HSI
}