Added address alignment test, code fixups from review

sba_tests
Ryan Macdonald 2018-04-11 14:26:16 -07:00
parent 836bd7cb69
commit cc98a14839
3 changed files with 135 additions and 93 deletions

View File

@ -58,9 +58,11 @@ static void riscv013_fill_dmi_read_u64(struct target *target, char *buf, int a);
static int riscv013_dmi_write_u64_bits(struct target *target); static int riscv013_dmi_write_u64_bits(struct target *target);
static void riscv013_fill_dmi_nop_u64(struct target *target, char *buf); static void riscv013_fill_dmi_nop_u64(struct target *target, char *buf);
static int riscv013_test_sba_config_reg(struct target *target, target_addr_t legal_address, static int riscv013_test_sba_config_reg(struct target *target, target_addr_t legal_address,
target_addr_t illegal_address); uint32_t num_words, target_addr_t illegal_address, bool run_sbbusyerror_test);
uint32_t read_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t sbcs); void write_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t* write_data,
void write_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t data, uint32_t sbcs); uint32_t write_size, uint32_t sbcs);
uint32_t* read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t read_size, uint32_t sbcs);
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number); static int register_read_direct(struct target *target, uint64_t *value, uint32_t number);
static int register_write_direct(struct target *target, unsigned number, static int register_write_direct(struct target *target, unsigned number,
uint64_t value); uint64_t value);
@ -2816,7 +2818,7 @@ void riscv013_fill_dmi_nop_u64(struct target *target, char *buf)
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, 0); buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, 0);
} }
static uint32_t get_max_sbaccess(struct target *target) static int get_max_sbaccess(struct target *target)
{ {
RISCV013_INFO(info); RISCV013_INFO(info);
@ -2840,8 +2842,24 @@ static uint32_t get_max_sbaccess(struct target *target)
return -1; return -1;
} }
static uint32_t get_num_sbdata_regs(struct target *target)
{
RISCV013_INFO(info);
uint32_t sbaccess128 = get_field(info->sbcs, DMI_SBCS_SBACCESS128);
uint32_t sbaccess64 = get_field(info->sbcs, DMI_SBCS_SBACCESS64);
if(sbaccess128)
return 4;
else if(sbaccess64)
return 2;
else
return 1;
}
static int riscv013_test_sba_config_reg(struct target *target, static int riscv013_test_sba_config_reg(struct target *target,
target_addr_t legal_address, target_addr_t illegal_address) target_addr_t legal_address, uint32_t num_words,
target_addr_t illegal_address, bool run_sbbusyerror_test)
{ {
LOG_INFO("Testing System Bus Access as defined by RISC-V Debug Spec v0.13"); LOG_INFO("Testing System Bus Access as defined by RISC-V Debug Spec v0.13");
@ -2864,35 +2882,47 @@ static int riscv013_test_sba_config_reg(struct target *target,
return ERROR_FAIL; return ERROR_FAIL;
} }
// Test 1: Simple write/read test, no address autoincrement uint32_t num_sbdata_regs = get_num_sbdata_regs(target);
// Test 1: Simple write/read test
test_passed = true; test_passed = true;
sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 0); sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 0);
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
uint32_t test_patterns[4] = {0xdeadbeef, 0xfeedbabe, 0x12345678, 0x08675309};
for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) { for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) {
sbcs = set_field(sbcs, DMI_SBCS_SBACCESS, sbaccess); sbcs = set_field(sbcs, DMI_SBCS_SBACCESS, sbaccess);
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
for (int i = 0; i < 100; i++) { uint32_t compare_mask = (sbaccess == 0) ? 0xff :
(sbaccess == 1) ? 0xffff : 0xffffffff;
for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess); uint32_t addr = legal_address + (i << sbaccess);
write_memory_sba_simple(target, addr, i, sbcs); uint32_t wr_data[num_sbdata_regs];
for (uint32_t j = 0; j < num_sbdata_regs; j++)
wr_data[j] = test_patterns[j] + i;
write_memory_sba_simple(target, addr, wr_data, num_sbdata_regs, sbcs);
} }
for (uint32_t i = 0; i < 100; i++) { for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess); uint32_t addr = legal_address + (i << sbaccess);
uint32_t val = read_memory_sba_simple(target, addr, sbcs); uint32_t* val = read_memory_sba_simple(target, addr, num_sbdata_regs, sbcs);
if (i != val) { for (uint32_t j = 0; j < num_sbdata_regs; j++) {
LOG_ERROR("System Bus Access Test 1: Error reading non-autoincremented address %x, expected val = %d, read val = %d", addr, i, val); if (((test_patterns[j]+i)&compare_mask) != (val[j]&compare_mask)) {
LOG_ERROR("System Bus Access Test 1: Error reading non-autoincremented address %x, expected val = %x, read val = %x", addr, test_patterns[j]+i, val[j]);
test_passed = false; test_passed = false;
} }
} }
free(val);
}
} }
if (test_passed) if (test_passed)
LOG_INFO("System Bus Access Test 1: Read/write test, no addr autoincrement PASSED"); LOG_INFO("System Bus Access Test 1: Simple write/read test PASSED.");
// Test 2: Simple write/read test, with address autoincrement // Test 2: Address autoincrement test
uint32_t curr_addr; target_addr_t curr_addr;
uint32_t prev_addr; target_addr_t prev_addr;
test_passed = true; test_passed = true;
sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 1); sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 1);
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
@ -2904,12 +2934,12 @@ static int riscv013_test_sba_config_reg(struct target *target,
dmi_write(target, DMI_SBADDRESS0, legal_address); dmi_write(target, DMI_SBADDRESS0, legal_address);
read_sbcs_nonbusy(target, &sbcs); read_sbcs_nonbusy(target, &sbcs);
curr_addr = legal_address; curr_addr = legal_address;
for (int i = 0; i < 100; i++) { for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr; prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs); read_sbcs_nonbusy(target, &sbcs);
dmi_read(target, &curr_addr, DMI_SBADDRESS0); curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && i != 0) { if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && i != 0) {
LOG_ERROR("System Bus Access Test 2: Error with address autoincrement, sbaccess = %x", sbaccess); LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x", sbaccess);
test_passed = false; test_passed = false;
} }
dmi_write(target, DMI_SBDATA0, i); dmi_write(target, DMI_SBDATA0, i);
@ -2924,110 +2954,109 @@ static int riscv013_test_sba_config_reg(struct target *target,
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &val, DMI_SBDATA0); // Dummy read to trigger first system bus read dmi_read(target, &val, DMI_SBDATA0); // Dummy read to trigger first system bus read
curr_addr = legal_address; curr_addr = legal_address;
for (uint32_t i = 0; i < 100; i++) { for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr; prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs); read_sbcs_nonbusy(target, &sbcs);
dmi_read(target, &curr_addr, DMI_SBADDRESS0); curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && i != 0) { if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && i != 0) {
LOG_ERROR("System Bus Access Test 2: Error with address autoincrement, sbaccess = %x", sbaccess); LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x", sbaccess);
test_passed = false; test_passed = false;
} }
dmi_read(target, &val, DMI_SBDATA0); dmi_read(target, &val, DMI_SBDATA0);
read_sbcs_nonbusy(target, &sbcs); read_sbcs_nonbusy(target, &sbcs);
if (i != val) { if (i != val) {
LOG_ERROR("System Bus Access Test 2: Error reading autoincremented address, expected val = %d, read val = %d",i,val); LOG_ERROR("System Bus Access Test 2: Error reading auto-incremented address, expected val = %x, read val = %x",i,val);
test_passed = false; test_passed = false;
} }
} }
} }
if (test_passed) if (test_passed)
LOG_INFO("System Bus Access Test 2: Read/write test, addr autoincrement PASSED"); LOG_INFO("System Bus Access Test 2: Address auto-increment test PASSED.");
// Test 3: Read from illegal address // Test 3: Read from illegal address
read_memory_sba_simple(target, illegal_address, sbcs_orig); uint32_t* illegal_addr_read = read_memory_sba_simple(target, illegal_address, 1, sbcs_orig);
free(illegal_addr_read);
dmi_read(target, &rd_val, DMI_SBCS); dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) { if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) {
LOG_INFO("System Bus Access Test 3: Illegal address read test PASSED"); LOG_INFO("System Bus Access Test 3: Illegal address read test PASSED.");
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 1); sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 1);
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
} else { } else {
LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED"); LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED.");
} }
// Test 4: Write to illegal address // Test 4: Write to illegal address
write_memory_sba_simple(target, illegal_address, 0xdeadbeef, sbcs_orig); write_memory_sba_simple(target, illegal_address, test_patterns, 1, sbcs_orig);
dmi_read(target, &rd_val, DMI_SBCS); dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) { if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) {
LOG_INFO("System Bus Access Test 4: Illegal address write test PASSED"); LOG_INFO("System Bus Access Test 4: Illegal address write test PASSED.");
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 1); sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 1);
dmi_write(target, DMI_SBCS,sbcs); dmi_write(target, DMI_SBCS,sbcs);
} else { } else {
LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED"); LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED.");
} }
// Test 5: Write to unsupported sbaccess size // Test 5: Write with unsupported sbaccess size
uint32_t sbaccess128 = get_field(sbcs_orig, DMI_SBCS_SBACCESS128); uint32_t sbaccess128 = get_field(sbcs_orig, DMI_SBCS_SBACCESS128);
if (sbaccess128) { if (sbaccess128) {
LOG_INFO("System Bus Access Test 5: SBCS Alignment error test PASSED, all alignments supported"); LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED, all sbaccess sizes supported.");
} else { } else {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBACCESS, 4); sbcs = set_field(sbcs_orig, DMI_SBCS_SBACCESS, 4);
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
write_memory_sba_simple(target, legal_address, 0xdeadbeef, sbcs_orig); write_memory_sba_simple(target, legal_address, test_patterns, 1, sbcs_orig);
dmi_read(target, &rd_val, DMI_SBCS); dmi_read(target, &rd_val, DMI_SBCS);
LOG_INFO("SBCS.SBACCESS128 = %x",sbaccess128);
LOG_INFO("SBCS.SBERROR = %x",get_field(rd_val,DMI_SBCS_SBERROR));
if (get_field(rd_val, DMI_SBCS_SBERROR) == 3) { if (get_field(rd_val, DMI_SBCS_SBERROR) == 3) {
LOG_INFO("System Bus Access Test 5: SBCS Alignment error test PASSED");
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 1); sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 1);
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if(get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED.");
else
LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to clear to 0.");
} else { } else {
LOG_ERROR("System Bus Access Test 5: SBCS Alignment error test FAILED"); LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to set error code.");
} }
} }
/* Test 6: Set sbbusyerror, only run this case in simulation as it is likely // Test 6: Write to misaligned address
sbcs = set_field(sbcs_orig, DMI_SBCS_SBACCESS, 1);
dmi_write(target, DMI_SBCS, sbcs);
dmi_write(target, DMI_SBADDRESS0, legal_address+1);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 3) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 1);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if(get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 6: SBCS address alignment error test PASSED");
else
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to clear to 0.");
} else {
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to set error code.");
}
/* Test 7: Set sbbusyerror, only run this case in simulation as it is likely
* impossible to hit otherwise */ * impossible to hit otherwise */
if (riscv_run_sim_only_tests) { if (run_sbbusyerror_test) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBREADONADDR, 1); sbcs = set_field(sbcs_orig, DMI_SBCS_SBREADONADDR, 1);
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
for (int i = 0; i < 16; i++) {
dmi_write(target, DMI_SBDATA0, 0xdeadbeef); dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef); }
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
for (int i = 0; i < 16; i++) {
dmi_write(target, DMI_SBADDRESS0, legal_address); dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address); }
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_read(target, &rd_val, DMI_SBCS); dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBBUSYERROR)) { if (get_field(rd_val, DMI_SBCS_SBBUSYERROR)) {
@ -3035,11 +3064,11 @@ static int riscv013_test_sba_config_reg(struct target *target,
dmi_write(target, DMI_SBCS, sbcs); dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS); dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBBUSYERROR) == 0) if (get_field(rd_val, DMI_SBCS_SBBUSYERROR) == 0)
LOG_INFO("System Bus Access Test 6: SBCS sbbusyerror test PASSED"); LOG_INFO("System Bus Access Test 7: SBCS sbbusyerror test PASSED.");
else else
LOG_ERROR("System Bus Access Test 6: SBCS sbbusyerror test FAILED, unable to clear to 0"); LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to clear to 0.");
} else { } else {
LOG_ERROR("System Bus Access Test 6: SBCS sbbusyerror test FAILED, unable to set"); LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to set error code.");
} }
} }
@ -3047,7 +3076,8 @@ static int riscv013_test_sba_config_reg(struct target *target,
} }
void write_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t data, uint32_t sbcs) void write_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t* write_data, uint32_t write_size, uint32_t sbcs)
{ {
RISCV013_INFO(info); RISCV013_INFO(info);
@ -3070,14 +3100,19 @@ void write_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t
dmi_write(target, DMI_SBADDRESS3, masked_addr); dmi_write(target, DMI_SBADDRESS3, masked_addr);
} }
dmi_write(target, DMI_SBDATA0, data); /* Write SBDATA registers starting with highest address, since write to
* SBDATA0 triggers write */
for (int i = write_size-1; i >= 0; i--) {
dmi_write(target,DMI_SBDATA0+i,write_data[i]);
}
} }
uint32_t read_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t sbcs) uint32_t* read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t read_size, uint32_t sbcs)
{ {
RISCV013_INFO(info); RISCV013_INFO(info);
uint32_t rd_val; uint32_t* rd_val = malloc(read_size*sizeof(uint32_t));
uint32_t rd_sbcs; uint32_t rd_sbcs;
uint32_t masked_addr; uint32_t masked_addr;
@ -3088,7 +3123,8 @@ uint32_t read_memory_sba_simple(struct target *target, target_addr_t addr, uint3
uint32_t sbcs_readonaddr = set_field(sbcs, DMI_SBCS_SBREADONADDR, 1); uint32_t sbcs_readonaddr = set_field(sbcs, DMI_SBCS_SBREADONADDR, 1);
dmi_write(target, DMI_SBCS, sbcs_readonaddr); dmi_write(target, DMI_SBCS, sbcs_readonaddr);
for (uint32_t i = 0; i < sba_size/32; i++) { // Write addresses starting with highest address register
for (int i = sba_size/32-1; i >= 0; i--) {
masked_addr = (addr >> 32*i) & 0xffffffff; masked_addr = (addr >> 32*i) & 0xffffffff;
if (i != 3) if (i != 3)
@ -3099,7 +3135,9 @@ uint32_t read_memory_sba_simple(struct target *target, target_addr_t addr, uint3
read_sbcs_nonbusy(target, &rd_sbcs); read_sbcs_nonbusy(target, &rd_sbcs);
dmi_read(target, &rd_val, DMI_SBDATA0); for (uint32_t i = 0; i < read_size; i++) {
dmi_read(target, &(rd_val[i]), DMI_SBDATA0+i);
}
return rd_val; return rd_val;
} }

View File

@ -190,8 +190,6 @@ uint64_t riscv_scratch_ram_address;
bool riscv_prefer_sba; bool riscv_prefer_sba;
bool riscv_run_sim_only_tests;
/* In addition to the ones in the standard spec, we'll also expose additional /* In addition to the ones in the standard spec, we'll also expose additional
* CSRs in this list. * CSRs in this list.
* The list is either NULL, or a series of ranges (inclusive), terminated with * The list is either NULL, or a series of ranges (inclusive), terminated with
@ -1432,8 +1430,8 @@ COMMAND_HANDLER(riscv_dmi_write)
COMMAND_HANDLER(riscv_test_sba_config_reg) COMMAND_HANDLER(riscv_test_sba_config_reg)
{ {
if (CMD_ARGC != 3) { if (CMD_ARGC != 4) {
LOG_ERROR("Command takes exactly 3 arguments"); LOG_ERROR("Command takes exactly 4 arguments");
return ERROR_COMMAND_SYNTAX_ERROR; return ERROR_COMMAND_SYNTAX_ERROR;
} }
@ -1441,13 +1439,17 @@ COMMAND_HANDLER(riscv_test_sba_config_reg)
RISCV_INFO(r); RISCV_INFO(r);
target_addr_t legal_address; target_addr_t legal_address;
uint32_t num_words;
target_addr_t illegal_address; target_addr_t illegal_address;
bool run_sbbusyerror_test;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[0], legal_address); COMMAND_PARSE_NUMBER(u64, CMD_ARGV[0], legal_address);
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], illegal_address); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], num_words);
COMMAND_PARSE_ON_OFF(CMD_ARGV[2], riscv_run_sim_only_tests); COMMAND_PARSE_NUMBER(u64, CMD_ARGV[2], illegal_address);
COMMAND_PARSE_ON_OFF(CMD_ARGV[3], run_sbbusyerror_test);
if (r->test_sba_config_reg) { if (r->test_sba_config_reg) {
return r->test_sba_config_reg(target, legal_address, illegal_address); return r->test_sba_config_reg(target, legal_address, num_words,
illegal_address, run_sbbusyerror_test);
} else { } else {
LOG_ERROR("test_sba_config_reg is not implemented for this target."); LOG_ERROR("test_sba_config_reg is not implemented for this target.");
return ERROR_FAIL; return ERROR_FAIL;
@ -1525,12 +1527,14 @@ static const struct command_registration riscv_exec_command_handlers[] = {
.name = "test_sba_config_reg", .name = "test_sba_config_reg",
.handler = riscv_test_sba_config_reg, .handler = riscv_test_sba_config_reg,
.mode = COMMAND_ANY, .mode = COMMAND_ANY,
.usage = "riscv test_sba_config_reg legal_address" .usage = "riscv test_sba_config_reg legal_address num_words"
"illegal_address riscv_run_sim_only_tests[on/off]", "illegal_address run_sbbusyerror_test[on/off]",
.help = "Perform a series of tests on the SBCS register." .help = "Perform a series of tests on the SBCS register."
"Inputs are a legal address for read/write tests," "Inputs are a legal, 128-byte aligned address and a number of words to"
"an illegal address for error flag/handling cases, and" "read/write starting at that address (i.e., address range [legal address,"
"whether sim_only tests should be run." "legal_address+word_size*num_words) must be legally readaable/writable)"
", an illegal, 128-byte aligned address for error flag/handling cases,"
"and whether sbbusyerror test should be run."
}, },
COMMAND_REGISTRATION_DONE COMMAND_REGISTRATION_DONE
}; };

View File

@ -118,7 +118,7 @@ typedef struct {
int (*dmi_write)(struct target *target, uint32_t address, uint32_t value); int (*dmi_write)(struct target *target, uint32_t address, uint32_t value);
int (*test_sba_config_reg)(struct target *target, target_addr_t legal_address, int (*test_sba_config_reg)(struct target *target, target_addr_t legal_address,
target_addr_t illegal_address); uint32_t num_words, target_addr_t illegal_address, bool run_sbbusyerror_test);
} riscv_info_t; } riscv_info_t;
@ -133,7 +133,7 @@ extern uint64_t riscv_scratch_ram_address;
extern bool riscv_prefer_sba; extern bool riscv_prefer_sba;
extern bool riscv_run_sim_only_tests; extern bool riscv_run_sbbusyerror_test;
/* Everything needs the RISC-V specific info structure, so here's a nice macro /* Everything needs the RISC-V specific info structure, so here's a nice macro
* that provides that. */ * that provides that. */