kinetis: update support for all program flash granularities

Updates the Kinetis NOR flash support to handle all known block and sector
sizes.  Previously only 2kiB sectors were hard-coded, now all four known
combinations non-volatile sector sizes are supported.

The premise of separating Kinetis Program Flash (PFLASH) from FlexNVM is
also introduced.  This means each "block" of flash (in Freescale terms) is
treated as a bank in OpenOCD.  Correspondingly, the existing board
configuration for the TWR-K60M512 eval system is updated to recognize two
banks instead of one.

A board config for the TWR-K60F120M is also added.

Bank and sector erase and programming has been checked with both of the
mentioned eval boards.

Change-Id: Iae2d10ebf8f548d0a3698df5430bbbe1ccadc58a
Signed-off-by: Christopher Kilgour <techie@whiterocker.com>
Reviewed-on: http://openocd.zylin.com/663
Tested-by: jenkins
Reviewed-by: Mathias Küster <kesmtp@freenet.de>
Reviewed-by: Jan Dakinevich <jan.dakinevich@gmail.com>
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
__archive__
Christopher Kilgour 2012-05-23 11:05:28 -07:00 committed by Spencer Oliver
parent 4b6af97978
commit aeb3c4f37e
3 changed files with 471 additions and 263 deletions

View File

@ -5,6 +5,9 @@
* Copyright (C) 2011 sleep(5) ltd *
* tomas@sleepfive.com *
* *
* Copyright (C) 2012 by Christopher D. Kilgour *
* techie at whiterocker.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
@ -28,42 +31,87 @@
#include "imp.h"
#include "helper/binarybuffer.h"
struct kinetis_flash_bank {
uint32_t nvm_start;
/*
* Implementation Notes
*
* The persistent memories in the Kinetis chip families K10 through
* K70 are all manipulated with the Flash Memory Module. Some
* variants call this module the FTFE, others call it the FTFL. To
* indicate that both are considered here, we use FTFX.
*
* Within the module, according to the chip variant, the persistent
* memory is divided into what Freescale terms Program Flash, FlexNVM,
* and FlexRAM. All chip variants have Program Flash. Some chip
* variants also have FlexNVM and FlexRAM, which always appear
* together.
*
* A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
* each block to a separate bank. Each block size varies by chip and
* may be determined by the read-only SIM_FCFG1 register. The sector
* size within each bank/block varies by the chip granularity as
* described below.
*
* Kinetis offers four different of flash granularities applicable
* across the chip families. The granularity is apparently reflected
* by at least the reference manual suffix. For example, for chip
* MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
* where the "3" indicates there are four flash blocks with 4kiB
* sectors. All possible granularities are indicated below.
*
* The first half of the flash (1 or 2 blocks, depending on the
* granularity) is always Program Flash and always starts at address
* 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
* register, determines whether the second half of the flash is also
* Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
* half of flash is Program Flash and is contiguous in the memory map
* from the first half. When PFLSH is clear, the second half of flash
* is FlexNVM and always starts at address 0x10000000. FlexRAM, which
* is also present when PFLSH is clear, always starts at address
* 0x14000000.
*
* The Flash Memory Module provides a register set where flash
* commands are loaded to perform flash operations like erase and
* program. Different commands are available depending on whether
* Program Flash or FlexNVM/FlexRAM is being manipulated. Although
* the commands used are quite consistent between flash blocks, the
* parameters they accept differ according to the flash granularity.
* Some Kinetis chips have different granularity between Program Flash
* and FlexNVM/FlexRAM, so flash command arguments may differ between
* blocks in the same chip.
*
* Although not documented as such by Freescale, it appears that bits
* 8:7 of the read-only SIM_SDID register reflect the granularity
* settings 0..3, so sector sizes and block counts are applicable
* according to the following table.
*/
const struct {
unsigned pflash_sector_size_bytes;
unsigned nvm_sector_size_bytes;
unsigned num_blocks;
} kinetis_flash_params[4] = {
{ 1<<10, 1<<10, 2 },
{ 2<<10, 1<<10, 2 },
{ 2<<10, 2<<10, 2 },
{ 4<<10, 4<<10, 4 }
};
static int kinetis_get_master_bank(struct flash_bank *bank,
struct flash_bank **master_bank)
{
*master_bank = get_flash_bank_by_name_noprobe(bank->name);
if (*master_bank == NULL) {
LOG_ERROR("master flash bank '%s' does not exist",
(char *)bank->driver_priv);
return ERROR_FLASH_OPERATION_FAILED;
}
struct kinetis_flash_bank {
unsigned granularity;
unsigned bank_ordinal;
uint32_t sector_size;
uint32_t protection_size;
return ERROR_OK;
}
uint32_t sim_sdid;
uint32_t sim_fcfg1;
uint32_t sim_fcfg2;
static int kinetis_update_bank_info(struct flash_bank *bank)
{
int result;
struct flash_bank *master_bank;
result = kinetis_get_master_bank(bank, &master_bank);
if (result != ERROR_OK)
return result;
/* update the info we do not have */
bank->size = master_bank->size;
bank->chip_width = master_bank->chip_width;
bank->bus_width = master_bank->bus_width;
bank->num_sectors = master_bank->num_sectors;
bank->sectors = master_bank->sectors;
return ERROR_OK;
}
enum {
FC_AUTO = 0,
FC_PFLASH,
FC_FLEX_NVM,
FC_FLEX_RAM,
} flash_class;
};
FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
{
@ -84,76 +132,71 @@ FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
}
static int kinetis_protect(struct flash_bank *bank, int set, int first,
int last)
int last)
{
int result;
struct flash_bank *master_bank;
result = kinetis_get_master_bank(bank, &master_bank);
if (result != ERROR_OK)
return result;
LOG_WARNING("kinetis_protect not supported yet");
/* FIXME: TODO */
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_OK;
return ERROR_FLASH_BANK_INVALID;
}
static int kinetis_protect_check(struct flash_bank *bank)
{
int result;
struct flash_bank *master_bank;
uint8_t buffer[4];
uint32_t fprot, psize, psec;
int i, b;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_get_master_bank(bank, &master_bank);
if (kinfo->flash_class == FC_PFLASH) {
int result;
uint8_t buffer[4];
uint32_t fprot, psec;
int i, b;
if (result != ERROR_OK)
return result;
/* read protection register FTFx_FPROT */
result = target_read_memory(bank->target, 0x40020010, 1, 4, buffer);
/* read protection register FTFL_FPROT */
result = target_read_memory(bank->target, 0x40020010, 1, 4, buffer);
if (result != ERROR_OK)
return result;
if (result != ERROR_OK)
return result;
fprot = target_buffer_get_u32(bank->target, buffer);
fprot = target_buffer_get_u32(bank->target, buffer);
/*
* Every bit protects 1/32 of the full flash (not necessarily
* just this bank), but we enforce the bank ordinals for
* PFlash to start at zero.
*/
b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
for (psec = 0, i = 0; i < bank->num_sectors; i++) {
if ((fprot >> b) & 1)
bank->sectors[i].is_protected = 0;
else
bank->sectors[i].is_protected = 1;
/* every bit protect 1/32 of the full flash */
psize = bank->size / 32;
psec = 0;
b = 0;
psec += bank->sectors[i].size;
for (i = 0; i < bank->num_sectors; i++) {
if ((fprot >> b) & 1)
bank->sectors[i].is_protected = 0;
else
bank->sectors[i].is_protected = 1;
psec += bank->sectors[i].size;
if (psec >= psize) {
psec = 0;
b++;
if (psec >= kinfo->protection_size) {
psec = 0;
b++;
}
}
} else {
LOG_ERROR("Protection checks for FlexNVM not yet supported");
return ERROR_FLASH_BANK_INVALID;
}
return ERROR_OK;
}
static int kinetis_ftfl_command(struct flash_bank *bank, uint32_t w0,
uint32_t w1, uint32_t w2)
static int kinetis_ftfx_command(struct flash_bank *bank, uint32_t w0,
uint32_t w1, uint32_t w2, uint8_t *ftfx_fstat)
{
uint8_t buffer[12];
int result, i;
@ -199,21 +242,19 @@ static int kinetis_ftfl_command(struct flash_bank *bank, uint32_t w0,
/* wait for done */
for (i = 0; i < 50; i++) {
result =
target_read_memory(bank->target, 0x40020000, 1, 1, buffer);
target_read_memory(bank->target, 0x40020000, 1, 1, ftfx_fstat);
if (result != ERROR_OK)
return result;
if (buffer[0] & 0x80)
if (*ftfx_fstat & 0x80)
break;
buffer[0] = 0x00;
}
if (buffer[0] != 0x80) {
if ((*ftfx_fstat & 0xf0) != 0x80) {
LOG_ERROR
("ftfl command failed FSTAT: %02X W0: %08X W1: %08X W2: %08X",
buffer[0], w0, w1, w2);
("ftfx command failed FSTAT: %02X W0: %08X W1: %08X W2: %08X",
*ftfx_fstat, w0, w1, w2);
return ERROR_FLASH_OPERATION_FAILED;
}
@ -223,7 +264,6 @@ static int kinetis_ftfl_command(struct flash_bank *bank, uint32_t w0,
static int kinetis_erase(struct flash_bank *bank, int first, int last)
{
struct flash_bank *master_bank;
int result, i;
uint32_t w0 = 0, w1 = 0, w2 = 0;
@ -232,19 +272,20 @@ static int kinetis_erase(struct flash_bank *bank, int first, int last)
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_get_master_bank(bank, &master_bank);
if (result != ERROR_OK)
return result;
if ((first > bank->num_sectors) || (last > bank->num_sectors))
return ERROR_FLASH_OPERATION_FAILED;
/*
* FIXME: TODO: use the 'Erase Flash Block' command if the
* requested erase is PFlash or NVM and encompasses the entire
* block. Should be quicker.
*/
for (i = first; i <= last; i++) {
uint8_t ftfx_fstat;
/* set command and sector address */
w0 = (0x09 << 24) | bank->sectors[i].offset;
w0 = (0x09 << 24) | (bank->base + bank->sectors[i].offset);
result = kinetis_ftfl_command(bank, w0, w1, w2);
result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_WARNING("erase sector %d failed", i);
@ -263,44 +304,27 @@ static int kinetis_erase(struct flash_bank *bank, int first, int last)
}
static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
uint32_t offset, uint32_t count)
{
struct flash_bank *master_bank;
unsigned int i, result, fallback = 0, nvm = 0;
unsigned int i, result, fallback = 0;
uint8_t buf[8];
uint32_t wc, w0 = 0, w1 = 0, w2 = 0;
struct kinetis_flash_bank *kbank = (struct kinetis_flash_bank *)
bank->driver_priv;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_get_master_bank(bank, &master_bank);
if (kinfo->flash_class == FC_FLEX_NVM) {
uint8_t ftfx_fstat;
if (result != ERROR_OK)
return result;
if (offset >= kbank->nvm_start)
nvm = 1;
if (!nvm && (offset + count) > kbank->nvm_start) {
/* we could flash this in two goes, but if the segment
spans across the pflash/nvm boundary, something is probably
not right.
*/
LOG_ERROR("Segment spans NVM boundary");
return ERROR_FLASH_DST_OUT_OF_BANK;
}
if (nvm) {
LOG_DEBUG("flash write into NVM @%08X", offset);
LOG_DEBUG("flash write into FlexNVM @%08X", offset);
/* make flex ram available */
w0 = (0x81 << 24) | 0x00ff0000;
result = kinetis_ftfl_command(bank, w0, w1, w2);
result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
@ -316,7 +340,7 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
fallback = 1;
LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)",
buf[0]);
buf[0]);
}
} else {
LOG_DEBUG("flash write into PFLASH @08%X", offset);
@ -325,21 +349,24 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
/* program section command */
if (fallback == 0) {
for (i = 0; i < count; i += (2 * 1024)) {
wc = 512;
unsigned prog_section_bytes = kinfo->sector_size >> 8;
for (i = 0; i < count; i += kinfo->sector_size) {
uint8_t ftfx_fstat;
if ((count - i) < (2 * 1024)) {
wc = kinfo->sector_size / 4;
if ((count - i) < kinfo->sector_size) {
wc = count - i;
wc /= 4;
}
LOG_DEBUG("write section @ %08X with length %d",
offset + i, wc * 4);
offset + i, wc * 4);
/* write data to flexram */
result =
target_write_memory(bank->target, 0x14000000, 4, wc,
buffer + i);
buffer + i);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
@ -348,28 +375,272 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
}
/* execute section command */
w0 = (0x0b << 24) | (offset + i);
w1 = (256 << 16);
w0 = (0x0b << 24) | (bank->base + offset + i);
w1 = ((wc * 4 / prog_section_bytes) << 16);
result = kinetis_ftfl_command(bank, w0, w1, w2);
result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
}
}
/* program longword command */
else {
/* program longword command, not supported in "SF3" devices */
else if (kinfo->granularity != 3) {
for (i = 0; i < count; i += 4) {
uint8_t ftfx_fstat;
LOG_DEBUG("write longword @ %08X", offset + i);
w0 = (0x06 << 24) | (offset + i);
w0 = (0x06 << 24) | (bank->base + offset + i);
w1 = buf_get_u32(buffer + offset + i, 0, 32);
result = kinetis_ftfl_command(bank, w0, w1, w2);
result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
}
} else {
LOG_ERROR("Flash write strategy not implemented");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int kinetis_read_part_info(struct flash_bank *bank)
{
int result, i;
uint8_t buf[4];
uint32_t offset = 0;
uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
first_nvm_bank = 0, reassign = 0;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
result = target_read_memory(bank->target, 0x40048024, 1, 4, buf);
if (result != ERROR_OK)
return result;
kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf);
granularity = (kinfo->sim_sdid >> 7) & 0x03;
result = target_read_memory(bank->target, 0x4004804c, 1, 4, buf);
if (result != ERROR_OK)
return result;
kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf);
result = target_read_memory(bank->target, 0x40048050, 1, 4, buf);
if (result != ERROR_OK)
return result;
kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf);
fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid,
kinfo->sim_fcfg1, kinfo->sim_fcfg2);
fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
/* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
if (!fcfg2_pflsh) {
switch (fcfg1_nvmsize) {
case 0x03:
case 0x07:
case 0x09:
case 0x0b:
nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
break;
case 0x0f:
if (granularity == 3)
nvm_size = 512<<10;
else
nvm_size = 256<<10;
break;
default:
nvm_size = 0;
break;
}
switch (fcfg1_eesize) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
ee_size = (16 << (10 - fcfg1_eesize));
break;
default:
ee_size = 0;
break;
}
}
switch (fcfg1_pfsize) {
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
case 0x0d:
pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
break;
case 0x0f:
if (granularity == 3)
pf_size = 1024<<10;
else if (fcfg2_pflsh)
pf_size = 512<<10;
else
pf_size = 256<<10;
break;
default:
pf_size = 0;
break;
}
LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d",
nvm_size, pf_size, ee_size, fcfg2_pflsh);
num_blocks = kinetis_flash_params[granularity].num_blocks;
num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
first_nvm_bank = num_pflash_blocks;
num_nvm_blocks = num_blocks - num_pflash_blocks;
LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
num_blocks, num_pflash_blocks, num_nvm_blocks);
/*
* If the flash class is already assigned, verify the
* parameters.
*/
if (kinfo->flash_class != FC_AUTO) {
if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
LOG_WARNING("Flash ordinal/bank number mismatch");
reassign = 1;
} else if (kinfo->granularity != granularity) {
LOG_WARNING("Flash granularity mismatch");
reassign = 1;
} else {
switch (kinfo->flash_class) {
case FC_PFLASH:
if (kinfo->bank_ordinal >= first_nvm_bank) {
LOG_WARNING("Class mismatch, bank %d is not PFlash",
bank->bank_number);
reassign = 1;
} else if (bank->size != (pf_size / num_pflash_blocks)) {
LOG_WARNING("PFlash size mismatch");
reassign = 1;
} else if (bank->base !=
(0x00000000 + bank->size * kinfo->bank_ordinal)) {
LOG_WARNING("PFlash address range mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].pflash_sector_size_bytes) {
LOG_WARNING("PFlash sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("PFlash bank %d already configured okay",
kinfo->bank_ordinal);
}
break;
case FC_FLEX_NVM:
if ((kinfo->bank_ordinal >= num_blocks) ||
(kinfo->bank_ordinal < first_nvm_bank)) {
LOG_WARNING("Class mismatch, bank %d is not FlexNVM",
bank->bank_number);
reassign = 1;
} else if (bank->size != (nvm_size / num_nvm_blocks)) {
LOG_WARNING("FlexNVM size mismatch");
reassign = 1;
} else if (bank->base !=
(0x10000000 + bank->size * kinfo->bank_ordinal)) {
LOG_WARNING("FlexNVM address range mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].nvm_sector_size_bytes) {
LOG_WARNING("FlexNVM sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("FlexNVM bank %d already configured okay",
kinfo->bank_ordinal);
}
break;
case FC_FLEX_RAM:
if (kinfo->bank_ordinal != num_blocks) {
LOG_WARNING("Class mismatch, bank %d is not FlexRAM",
bank->bank_number);
reassign = 1;
} else if (bank->size != ee_size) {
LOG_WARNING("FlexRAM size mismatch");
reassign = 1;
} else if (bank->base != 0x14000000) {
LOG_WARNING("FlexRAM address mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].nvm_sector_size_bytes) {
LOG_WARNING("FlexRAM sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("FlexRAM bank %d already configured okay",
kinfo->bank_ordinal);
}
default:
LOG_WARNING("Unknown or inconsistent flash class");
reassign = 1;
break;
}
}
} else {
LOG_INFO("Probing flash info for bank %d", bank->bank_number);
reassign = 1;
}
if (!reassign)
return ERROR_OK;
kinfo->granularity = granularity;
if ((unsigned)bank->bank_number < num_pflash_blocks) {
/* pflash, banks start at address zero */
kinfo->flash_class = FC_PFLASH;
bank->size = (pf_size / num_pflash_blocks);
bank->base = 0x00000000 + bank->size * bank->bank_number;
kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
kinfo->protection_size = pf_size / 32;
} else if ((unsigned)bank->bank_number < num_blocks) {
/* nvm, banks start at address 0x10000000 */
kinfo->flash_class = FC_FLEX_NVM;
bank->size = (nvm_size / num_nvm_blocks);
bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
} else if ((unsigned)bank->bank_number == num_blocks) {
LOG_ERROR("FlexRAM support not yet implemented");
return ERROR_FLASH_OPER_UNSUPPORTED;
} else {
LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
bank->bank_number, num_blocks);
return ERROR_FLASH_BANK_INVALID;
}
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->num_sectors = bank->size / kinfo->sector_size;
assert(bank->num_sectors > 0);
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
for (i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = offset;
bank->sectors[i].size = kinfo->sector_size;
offset += kinfo->sector_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
return ERROR_OK;
@ -377,172 +648,96 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
static int kinetis_probe(struct flash_bank *bank)
{
struct flash_bank *master_bank;
int result, i;
uint8_t buf[4];
uint32_t sim_sdid, sim_fcfg1, sim_fcfg2, offset = 0;
uint32_t nvm_size, pf_size, ee_size;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_get_master_bank(bank, &master_bank);
if (result != ERROR_OK)
return result;
result = target_read_memory(bank->target, 0x40048024, 1, 4, buf);
if (result != ERROR_OK)
return result;
sim_sdid = target_buffer_get_u32(bank->target, buf);
result = target_read_memory(bank->target, 0x4004804c, 1, 4, buf);
if (result != ERROR_OK)
return result;
sim_fcfg1 = target_buffer_get_u32(bank->target, buf);
result = target_read_memory(bank->target, 0x40048050, 1, 4, buf);
if (result != ERROR_OK)
return result;
sim_fcfg2 = target_buffer_get_u32(bank->target, buf);
LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", sim_sdid, sim_fcfg1,
sim_fcfg2);
switch ((sim_fcfg1 >> 28) & 0x0f) {
case 0x07:
nvm_size = 128 * 1024;
break;
case 0x09:
case 0x0f:
nvm_size = 256 * 1024;
break;
default:
nvm_size = 0;
break;
}
switch ((sim_fcfg1 >> 24) & 0x0f) {
case 0x07:
pf_size = 128 * 1024;
break;
case 0x09:
pf_size = 256 * 1024;
break;
case 0x0b:
case 0x0f:
pf_size = 512 * 1024;
break;
default:
pf_size = 0;
break;
}
switch ((sim_fcfg1 >> 16) & 0x0f) {
case 0x02:
ee_size = 4 * 1024;
break;
case 0x03:
ee_size = 2 * 1024;
break;
case 0x04:
ee_size = 1 * 1024;
break;
case 0x05:
ee_size = 512;
break;
case 0x06:
ee_size = 256;
break;
case 0x07:
ee_size = 128;
break;
case 0x08:
ee_size = 64;
break;
case 0x09:
ee_size = 32;
break;
default:
ee_size = 0;
break;
}
((struct kinetis_flash_bank *) bank->driver_priv)->nvm_start =
pf_size - nvm_size;
LOG_DEBUG("NVM: %d PF: %d EE: %d BL1: %d", nvm_size, pf_size, ee_size,
(sim_fcfg2 >> 23) & 1);
if (pf_size != bank->size) {
LOG_WARNING("flash size is different %d != %d", pf_size,
bank->size);
}
bank->num_sectors = bank->size / (2 * 1024);
assert(bank->num_sectors > 0);
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
for (i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = offset;
bank->sectors[i].size = 2 * 1024;
offset += bank->sectors[i].size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
/* update the info we do not have */
return kinetis_update_bank_info(bank);
return kinetis_read_part_info(bank);
}
static int kinetis_auto_probe(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (kinfo->sim_sdid)
return ERROR_OK;
return kinetis_probe(bank);
}
static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
{
int result;
struct flash_bank *master_bank;
const char *bank_class_names[] = {
"(ANY)", "PFlash", "FlexNVM", "FlexRAM"
};
result = kinetis_get_master_bank(bank, &master_bank);
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (result != ERROR_OK)
return result;
snprintf(buf, buf_size,
"%s driver for flash bank %s at 0x%8.8" PRIx32 "",
bank->driver->name, master_bank->name, master_bank->base);
(void) snprintf(buf, buf_size,
"%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
bank->driver->name, bank_class_names[kinfo->flash_class],
bank->name, bank->base);
return ERROR_OK;
}
static int kinetis_blank_check(struct flash_bank *bank)
{
int result;
struct flash_bank *master_bank;
LOG_WARNING("kinetis_blank_check not supported yet");
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_get_master_bank(bank, &master_bank);
if (kinfo->flash_class == FC_PFLASH) {
int result;
uint32_t w0 = 0, w1 = 0, w2 = 0;
uint8_t ftfx_fstat;
if (result != ERROR_OK)
return result;
/* check if whole bank is blank */
w0 = (0x00 << 24) | bank->base;
w1 = 0; /* "normal margin" */
result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
if (result != ERROR_OK)
return result;
if (ftfx_fstat & 0x01) {
/* the whole bank is not erased, check sector-by-sector */
int i;
for (i = 0; i < bank->num_sectors; i++) {
w0 = (0x01 << 24) | (bank->base + bank->sectors[i].offset);
w1 = (0x100 << 16) | 0; /* normal margin */
result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
if (result == ERROR_OK) {
bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
} else {
LOG_DEBUG("Ignoring errored PFlash sector blank-check");
bank->sectors[i].is_erased = -1;
}
}
} else {
/* the whole bank is erased, update all sectors */
int i;
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
}
} else {
LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int kinetis_flash_read(struct flash_bank *bank,
uint8_t *buffer, uint32_t offset, uint32_t count)
uint8_t *buffer, uint32_t offset, uint32_t count)
{
int result;
struct flash_bank *master_bank;
LOG_WARNING("kinetis_flash_read not supported yet");
if (bank->target->state != TARGET_HALTED) {
@ -550,12 +745,7 @@ static int kinetis_flash_read(struct flash_bank *bank,
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_get_master_bank(bank, &master_bank);
if (result != ERROR_OK)
return result;
return ERROR_OK;
return ERROR_FLASH_OPERATION_FAILED;
}
struct flash_driver kinetis_flash = {

View File

@ -0,0 +1,17 @@
#
# Freescale TWRK60F120M development board
#
source [find target/k60.cfg]
$_TARGETNAME configure -event reset-init {
puts "-event reset-init occured"
}
#
# Bank definition for the 'program flash' (instructions and/or data)
#
flash bank pflash.0 kinetis 0x00000000 0x40000 0 4 $_TARGETNAME
flash bank pflash.1 kinetis 0x00040000 0x40000 0 4 $_TARGETNAME
flash bank pflash.2 kinetis 0x00080000 0x40000 0 4 $_TARGETNAME
flash bank pflash.3 kinetis 0x000c0000 0x40000 0 4 $_TARGETNAME

View File

@ -11,4 +11,5 @@ $_TARGETNAME configure -event reset-init {
#
# Bank definition for the 'program flash' (instructions and/or data)
#
flash bank pflash.pflash kinetis 0x00000000 0x80000 0 4 $_TARGETNAME
flash bank pflash.0 kinetis 0x00000000 0x40000 0 4 $_TARGETNAME
flash bank pflash.1 kinetis 0x00040000 0x40000 0 4 $_TARGETNAME