- added the patch CFI-BE-Fixes-Blockwrite-Support.diff

(thanks to Carsten Schlote for the patch)

git-svn-id: svn://svn.berlios.de/openocd/trunk@231 b42882b7-edfa-0310-969c-e2dbd0fdcd60
__archive__
mifi 2007-12-14 21:32:55 +00:00
parent 7ff3a0d12e
commit 55bdadcbcd
1 changed files with 303 additions and 83 deletions

View File

@ -52,6 +52,9 @@ int cfi_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, cha
#define CFI_MAX_BUS_WIDTH 4 #define CFI_MAX_BUS_WIDTH 4
#define CFI_MAX_CHIP_WIDTH 4 #define CFI_MAX_CHIP_WIDTH 4
/* defines internal maximum size for code fragment in cfi_intel_write_block() */
#define CFI_MAX_INTEL_CODESIZE 256
flash_driver_t cfi_flash = flash_driver_t cfi_flash =
{ {
.name = "cfi", .name = "cfi",
@ -498,9 +501,9 @@ int cfi_read_atmel_pri_ext(flash_bank_t *bank)
pri_ext->TopBottom = 2; pri_ext->TopBottom = 2;
else else
pri_ext->TopBottom = 3; pri_ext->TopBottom = 3;
pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1; pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2; pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
return ERROR_OK; return ERROR_OK;
} }
@ -614,8 +617,8 @@ int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **
} }
cfi_info = malloc(sizeof(cfi_flash_bank_t)); cfi_info = malloc(sizeof(cfi_flash_bank_t));
bank->driver_priv = cfi_info; bank->driver_priv = cfi_info;
cfi_info->write_algorithm = NULL; cfi_info->write_algorithm = NULL;
cfi_info->erase_check_algorithm = NULL; cfi_info->erase_check_algorithm = NULL;
@ -834,16 +837,18 @@ int cfi_intel_protect(struct flash_bank_s *bank, int set, int first, int last)
{ {
for (i = 0; i < bank->num_sectors; i++) for (i = 0; i < bank->num_sectors; i++)
{ {
cfi_intel_clear_status_register(bank);
cfi_command(bank, 0x60, command);
target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
if (bank->sectors[i].is_protected == 1) if (bank->sectors[i].is_protected == 1)
{ {
cfi_intel_clear_status_register(bank);
cfi_command(bank, 0x60, command);
target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
cfi_command(bank, 0x01, command); cfi_command(bank, 0x01, command);
target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command); target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
}
cfi_intel_wait_status_busy(bank, 100); cfi_intel_wait_status_busy(bank, 100);
}
} }
} }
@ -884,25 +889,45 @@ int cfi_protect(struct flash_bank_s *bank, int set, int first, int last)
return ERROR_OK; return ERROR_OK;
} }
void cfi_add_byte(struct flash_bank_s *bank, u8 *word, u8 byte) /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
static void cfi_add_byte(struct flash_bank_s *bank, u8 *word, u8 byte)
{ {
target_t *target = bank->target; target_t *target = bank->target;
int i; int i;
if (target->endianness == TARGET_LITTLE_ENDIAN) // NOTE:
{ // The data to flash must not be changed in endian! We write a bytestrem in
// target byte order already. Only the control and status byte lane of the flash
// WSM is interpreted by the CPU in different ways, when read a u16 or u32
// word (data seems to be in the upper or lower byte lane for u16 accesses).
//if (target->endianness == TARGET_LITTLE_ENDIAN)
//{
/* shift bytes */ /* shift bytes */
for (i = 0; i < bank->bus_width - 1; i++) for (i = 0; i < bank->bus_width - 1; i++)
word[i] = word[i + 1]; word[i] = word[i + 1];
word[bank->bus_width - 1] = byte; word[bank->bus_width - 1] = byte;
} //}
else //else
//{
// /* shift bytes */
// for (i = bank->bus_width - 1; i > 0; i--)
// word[i] = word[i - 1];
// word[0] = byte;
//}
}
/* Convert code image to target endian */
/* FIXME create general block conversion fcts in target.c?) */ static
void cfi_fix_code_endian(target_t *target, u32 *dest, const u32 *src, u32 count)
{
u32 i;
for (i=0; i< count; i++)
{ {
/* shift bytes */ target_buffer_set_u32(target, (u8*)dest, *src);
for (i = bank->bus_width - 1; i > 0; i--) dest++;
word[i] = word[i - 1]; src++;
word[0] = byte;
} }
} }
@ -918,7 +943,6 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
u8 busy_pattern_buf[CFI_MAX_BUS_WIDTH]; u8 busy_pattern_buf[CFI_MAX_BUS_WIDTH];
u8 error_pattern_buf[CFI_MAX_BUS_WIDTH]; u8 error_pattern_buf[CFI_MAX_BUS_WIDTH];
u32 write_command_val, busy_pattern_val, error_pattern_val; u32 write_command_val, busy_pattern_val, error_pattern_val;
int retval;
/* algorithm register usage: /* algorithm register usage:
* r0: source address (in RAM) * r0: source address (in RAM)
@ -944,7 +968,7 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
0x0a000001, /* beq done */ 0x0a000001, /* beq done */
0xe2811004, /* add r1, r1 #4 */ 0xe2811004, /* add r1, r1 #4 */
0xeafffff2, /* b loop */ 0xeafffff2, /* b loop */
0xeafffffe, /* done: b -2 */ 0xeafffffe /* done: b -2 */
}; };
static const u32 word_16_code[] = { static const u32 word_16_code[] = {
@ -961,7 +985,7 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
0x0a000001, /* beq done */ 0x0a000001, /* beq done */
0xe2811002, /* add r1, r1 #2 */ 0xe2811002, /* add r1, r1 #2 */
0xeafffff2, /* b loop */ 0xeafffff2, /* b loop */
0xeafffffe, /* done: b -2 */ 0xeafffffe /* done: b -2 */
}; };
static const u32 word_8_code[] = { static const u32 word_8_code[] = {
@ -978,8 +1002,13 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
0x0a000001, /* beq done */ 0x0a000001, /* beq done */
0xe2811001, /* add r1, r1 #1 */ 0xe2811001, /* add r1, r1 #1 */
0xeafffff2, /* b loop */ 0xeafffff2, /* b loop */
0xeafffffe, /* done: b -2 */ 0xeafffffe /* done: b -2 */
}; };
u32 target_code[CFI_MAX_INTEL_CODESIZE];
const u32 *target_code_src;
int target_code_size;
int retval = ERROR_OK;
cfi_intel_clear_status_register(bank); cfi_intel_clear_status_register(bank);
@ -990,53 +1019,64 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
/* flash write code */ /* flash write code */
if (!cfi_info->write_algorithm) if (!cfi_info->write_algorithm)
{ {
u8 write_code_buf[14 * 4]; /* prepare algorithm code for target endian */
int i; switch (bank->bus_width)
if (target_alloc_working_area(target, 4 * 14, &cfi_info->write_algorithm) != ERROR_OK)
{ {
WARNING("no working area available, can't do block memory writes"); case 1 :
target_code_src = word_8_code;
target_code_size = sizeof(word_8_code);
break;
case 2 :
target_code_src = word_16_code;
target_code_size = sizeof(word_16_code);
break;
case 4 :
target_code_src = word_32_code;
target_code_size = sizeof(word_32_code);
break;
default:
ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if ( target_code_size > sizeof(target_code) )
{
WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
cfi_fix_code_endian(target, target_code, target_code_src, target_code_size);
/* Get memory for block write handler */
retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
if (retval != ERROR_OK)
{
WARNING("No working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}; };
/* write algorithm code to working area */ /* write algorithm code to working area */
if (bank->bus_width == 1) retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, (u8*)target_code);
if (retval != ERROR_OK)
{ {
for (i = 0; i < 14; i++) ERROR("Unable to write block write code to target");
target_buffer_set_u32(target, write_code_buf + (i*4), word_8_code[i]); goto cleanup;
} }
else if (bank->bus_width == 2)
{
for (i = 0; i < 14; i++)
target_buffer_set_u32(target, write_code_buf + (i*4), word_16_code[i]);
}
else if (bank->bus_width == 4)
{
for (i = 0; i < 14; i++)
target_buffer_set_u32(target, write_code_buf + (i*4), word_32_code[i]);
}
else
{
return ERROR_FLASH_OPERATION_FAILED;
}
target_write_buffer(target, cfi_info->write_algorithm->address, 14 * 4, write_code_buf);
} }
/* Get a workspace buffer for the data to flash starting with 32k size.
Half size until buffer would be smaller 256 Bytem then fail back */
/* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{ {
buffer_size /= 2; buffer_size /= 2;
if (buffer_size <= 256) if (buffer_size <= 256)
{ {
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
if (cfi_info->write_algorithm)
target_free_working_area(target, cfi_info->write_algorithm);
WARNING("no large enough working area available, can't do block memory writes"); WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup;
} }
}; };
/* setup algo registers */
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
@ -1050,50 +1090,77 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
cfi_command(bank, 0x80, busy_pattern_buf); cfi_command(bank, 0x80, busy_pattern_buf);
cfi_command(bank, 0x7e, error_pattern_buf); cfi_command(bank, 0x7e, error_pattern_buf);
if (bank->bus_width == 1) switch (bank->bus_width)
{ {
case 1 :
write_command_val = write_command_buf[0]; write_command_val = write_command_buf[0];
busy_pattern_val = busy_pattern_buf[0]; busy_pattern_val = busy_pattern_buf[0];
error_pattern_val = error_pattern_buf[0]; error_pattern_val = error_pattern_buf[0];
} break;
else if (bank->bus_width == 2) case 2 :
{
write_command_val = target_buffer_get_u16(target, write_command_buf); write_command_val = target_buffer_get_u16(target, write_command_buf);
busy_pattern_val = target_buffer_get_u16(target, busy_pattern_buf); busy_pattern_val = target_buffer_get_u16(target, busy_pattern_buf);
error_pattern_val = target_buffer_get_u16(target, error_pattern_buf); error_pattern_val = target_buffer_get_u16(target, error_pattern_buf);
} break;
else if (bank->bus_width == 4) case 4 :
{
write_command_val = target_buffer_get_u32(target, write_command_buf); write_command_val = target_buffer_get_u32(target, write_command_buf);
busy_pattern_val = target_buffer_get_u32(target, busy_pattern_buf); busy_pattern_val = target_buffer_get_u32(target, busy_pattern_buf);
error_pattern_val = target_buffer_get_u32(target, error_pattern_buf); error_pattern_val = target_buffer_get_u32(target, error_pattern_buf);
break;
default :
ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup;
} }
INFO("Using target buffer at 0x%08x and of size 0x%04x", source->address, buffer_size );
/* Programming main loop */
while (count > 0) while (count > 0)
{ {
u32 thisrun_count = (count > buffer_size) ? buffer_size : count; u32 thisrun_count = (count > buffer_size) ? buffer_size : count;
u32 wsm_error;
target_write_buffer(target, source->address, thisrun_count, buffer); target_write_buffer(target, source->address, thisrun_count, buffer);
buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, write_command_val); buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val); buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val); buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
if ((retval = target->type->run_algorithm(target, 0, NULL, 7, reg_params, cfi_info->write_algorithm->address, cfi_info->write_algorithm->address + (13 * 4), 10000, &armv4_5_info)) != ERROR_OK) INFO("Write 0x%04x bytes to flash at 0x%08x", thisrun_count, address );
/* Execute algorithm, assume breakpoint for last instruction */
retval = target->type->run_algorithm(target, 0, NULL, 7, reg_params,
cfi_info->write_algorithm->address,
cfi_info->write_algorithm->address + target_code_size - sizeof(u32),
10000, /* 10s should be enough for max. 32k of data */
&armv4_5_info);
/* On failure try a fall back to direct word writes */
if (retval != ERROR_OK)
{ {
cfi_intel_clear_status_register(bank); cfi_intel_clear_status_register(bank);
return ERROR_FLASH_OPERATION_FAILED; ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
retval = ERROR_FLASH_OPERATION_FAILED;
//retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
// FIXME To allow fall back or recovery, we must save the actual status
// somewhere, so that a higher level code can start recovery.
goto cleanup;
} }
if (buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val) /* Check return value from algo code */
wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
if (wsm_error)
{ {
/* read status register (outputs debug inforation) */ /* read status register (outputs debug inforation) */
cfi_intel_wait_status_busy(bank, 100); cfi_intel_wait_status_busy(bank, 100);
cfi_intel_clear_status_register(bank); cfi_intel_clear_status_register(bank);
return ERROR_FLASH_OPERATION_FAILED; retval = ERROR_FLASH_OPERATION_FAILED;
goto cleanup;
} }
buffer += thisrun_count; buffer += thisrun_count;
@ -1101,7 +1168,16 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
count -= thisrun_count; count -= thisrun_count;
} }
target_free_working_area(target, source); /* free up resources */
cleanup:
if (source)
target_free_working_area(target, source);
if (cfi_info->write_algorithm)
{
target_free_working_area(target, cfi_info->write_algorithm);
cfi_info->write_algorithm = NULL;
}
destroy_reg_param(&reg_params[0]); destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]); destroy_reg_param(&reg_params[1]);
@ -1111,7 +1187,7 @@ int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u3
destroy_reg_param(&reg_params[5]); destroy_reg_param(&reg_params[5]);
destroy_reg_param(&reg_params[6]); destroy_reg_param(&reg_params[6]);
return ERROR_OK; return retval;
} }
int cfi_spansion_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u32 count) int cfi_spansion_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u32 count)
@ -1178,9 +1254,9 @@ int cfi_spansion_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address,
/* */ /* */
/* 00008154 <sp_32_done>: */ /* 00008154 <sp_32_done>: */
0xeafffffe /* b 8154 <sp_32_done> */ 0xeafffffe /* b 8154 <sp_32_done> */
}; };
u32 word_16_code[] = { u32 word_16_code[] = {
/* 00008158 <sp_16_code>: */ /* 00008158 <sp_16_code>: */
0xe0d050b2, /* ldrh r5, [r0], #2 */ 0xe0d050b2, /* ldrh r5, [r0], #2 */
0xe1c890b0, /* strh r9, [r8] */ 0xe1c890b0, /* strh r9, [r8] */
@ -1212,9 +1288,9 @@ int cfi_spansion_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address,
/* */ /* */
/* 000081ac <sp_16_done>: */ /* 000081ac <sp_16_done>: */
0xeafffffe /* b 81ac <sp_16_done> */ 0xeafffffe /* b 81ac <sp_16_done> */
}; };
u32 word_8_code[] = { u32 word_8_code[] = {
/* 000081b0 <sp_16_code_end>: */ /* 000081b0 <sp_16_code_end>: */
0xe4d05001, /* ldrb r5, [r0], #1 */ 0xe4d05001, /* ldrb r5, [r0], #1 */
0xe5c89000, /* strb r9, [r8] */ 0xe5c89000, /* strb r9, [r8] */
@ -1400,6 +1476,77 @@ int cfi_intel_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
return ERROR_OK; return ERROR_OK;
} }
int cfi_intel_write_words(struct flash_bank_s *bank, u8 *word, u32 wordcount, u32 address)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
u8 command[8];
int i;
/* Calculate buffer size and boundary mask */
u32 buffersize = 1UL << cfi_info->max_buf_write_size;
u32 buffermask = buffersize-1;
u32 bufferwsize;
/* Check for valid range */
if (address & buffermask)
{
ERROR("Write address at base 0x%x, address %x not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
switch(bank->chip_width)
{
case 4 : bufferwsize = buffersize / 4; break;
case 2 : bufferwsize = buffersize / 2; break;
case 1 : bufferwsize = buffersize; break;
default:
ERROR("Unsupported chip width %d", bank->chip_width);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check for valid size */
if (wordcount > bufferwsize)
{
ERROR("Number of data words %d exceeds available buffersize %d", wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write to flash buffer */
cfi_intel_clear_status_register(bank);
/* Initiate buffer operation _*/
cfi_command(bank, 0xE8, command);
target->type->write_memory(target, address, bank->bus_width, 1, command);
if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
{
cfi_command(bank, 0xff, command);
target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
ERROR("couldn't start buffer write operation at base 0x%x, address %x", bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write buffer wordcount-1 and data words */
cfi_command(bank, bufferwsize-1, command);
target->type->write_memory(target, address, bank->bus_width, 1, command);
target->type->write_memory(target, address, bank->bus_width, bufferwsize, word);
/* Commit write operation */
cfi_command(bank, 0xd0, command);
target->type->write_memory(target, address, bank->bus_width, 1, command);
if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
{
cfi_command(bank, 0xff, command);
target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
ERROR("Buffer write at base 0x%x, address %x failed.", bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
int cfi_spansion_write_word(struct flash_bank_s *bank, u8 *word, u32 address) int cfi_spansion_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
{ {
cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_flash_bank_t *cfi_info = bank->driver_priv;
@ -1451,6 +1598,28 @@ int cfi_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
return ERROR_FLASH_OPERATION_FAILED; return ERROR_FLASH_OPERATION_FAILED;
} }
int cfi_write_words(struct flash_bank_s *bank, u8 *word, u32 wordcount, u32 address)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
switch(cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_write_words(bank, word, wordcount, address);
break;
case 2:
//return cfi_spansion_write_words(bank, word, address);
ERROR("cfi primary command set %i unimplemented - FIXME", cfi_info->pri_id);
break;
default:
ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_FLASH_OPERATION_FAILED;
}
int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count) int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
{ {
cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_flash_bank_t *cfi_info = bank->driver_priv;
@ -1458,6 +1627,7 @@ int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
u32 address = bank->base + offset; /* address of first byte to be programmed */ u32 address = bank->base + offset; /* address of first byte to be programmed */
u32 write_p, copy_p; u32 write_p, copy_p;
int align; /* number of unaligned bytes */ int align; /* number of unaligned bytes */
int blk_count; /* number of bus_width bytes for block copy */
u8 current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */ u8 current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
int i; int i;
int retval; int retval;
@ -1477,6 +1647,8 @@ int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
write_p = address & ~(bank->bus_width - 1); write_p = address & ~(bank->bus_width - 1);
if ((align = address - write_p) != 0) if ((align = address - write_p) != 0)
{ {
INFO("Fixup %d unaligned head bytes", align );
for (i = 0; i < bank->bus_width; i++) for (i = 0; i < bank->bus_width; i++)
current_word[i] = 0; current_word[i] = 0;
copy_p = write_p; copy_p = write_p;
@ -1512,50 +1684,98 @@ int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
} }
/* handle blocks of bus_size aligned bytes */ /* handle blocks of bus_size aligned bytes */
blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
switch(cfi_info->pri_id) switch(cfi_info->pri_id)
{ {
/* try block writes (fails without working area) */ /* try block writes (fails without working area) */
case 1: case 1:
case 3: case 3:
retval = cfi_intel_write_block(bank, buffer, write_p, count); retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
break; break;
case 2: case 2:
retval = cfi_spansion_write_block(bank, buffer, write_p, count); retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
break; break;
default: default:
ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
retval = ERROR_FLASH_OPERATION_FAILED; retval = ERROR_FLASH_OPERATION_FAILED;
break; break;
} }
if (retval != ERROR_OK) if (retval == ERROR_OK)
{
/* Increment pointers and decrease count on succesful block write */
buffer += blk_count;
write_p += blk_count;
count -= blk_count;
}
else
{ {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{ {
u32 buffersize = 1UL << cfi_info->max_buf_write_size;
u32 buffermask = buffersize-1;
u32 bufferwsize;
switch(bank->chip_width)
{
case 4 : bufferwsize = buffersize / 4; break;
case 2 : bufferwsize = buffersize / 2; break;
case 1 : bufferwsize = buffersize; break;
default:
ERROR("Unsupported chip width %d", bank->chip_width);
return ERROR_FLASH_OPERATION_FAILED;
}
/* fall back to memory writes */ /* fall back to memory writes */
while (count > bank->bus_width) while (count > bank->bus_width)
{ {
for (i = 0; i < bank->bus_width; i++) if ((write_p & 0xff) == 0)
current_word[i] = 0;
for (i = 0; i < bank->bus_width; i++)
{ {
cfi_add_byte(bank, current_word, *buffer++); INFO("Programming at %08x, count %08x bytes remaining", write_p, count);
} }
if ((count > bufferwsize) && !(write_p & buffermask))
{
retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
if (retval != ERROR_OK)
return retval;
retval = cfi_write_word(bank, current_word, write_p); buffer += buffersize;
if (retval != ERROR_OK) write_p += buffersize;
return retval; count -= buffersize;
write_p += bank->bus_width; }
count -= bank->bus_width; else
{
for (i = 0; i < bank->bus_width; i++)
current_word[i] = 0;
for (i = 0; i < bank->bus_width; i++)
{
cfi_add_byte(bank, current_word, *buffer++);
}
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
count -= bank->bus_width;
}
} }
} }
else else
return retval; return retval;
} }
/* return to read array mode, so we can read from flash again for padding */
cfi_command(bank, 0xf0, current_word);
target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
cfi_command(bank, 0xff, current_word);
target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
/* handle unaligned tail bytes */ /* handle unaligned tail bytes */
if (count > 0) if (count > 0)
{ {
INFO("Fixup %d unaligned tail bytes", count );
copy_p = write_p; copy_p = write_p;
for (i = 0; i < bank->bus_width; i++) for (i = 0; i < bank->bus_width; i++)
current_word[i] = 0; current_word[i] = 0;