aarch64: Implement MA mode for bulk memory reads and writes

- 64bit addresses are supported
- Aarch32 state is supported

Change-Id: I8c37fa166954d09195d08c6963b8017194e350f5
Signed-off-by: Matthias Welwarsky <matthias.welwarsky@sysgo.com>
gitignore-build
Matthias Welwarsky 2016-09-15 12:12:25 +02:00
parent db97bb4a9d
commit 53573f7860
1 changed files with 169 additions and 88 deletions

View File

@ -26,7 +26,7 @@
#include "register.h" #include "register.h"
#include "target_request.h" #include "target_request.h"
#include "target_type.h" #include "target_type.h"
#include "arm_opcodes.h" #include "armv8_opcodes.h"
#include <helper/time_support.h> #include <helper/time_support.h>
static int aarch64_poll(struct target *target); static int aarch64_poll(struct target *target);
@ -43,7 +43,7 @@ static int aarch64_unset_breakpoint(struct target *target,
static int aarch64_mmu(struct target *target, int *enabled); static int aarch64_mmu(struct target *target, int *enabled);
static int aarch64_virt2phys(struct target *target, static int aarch64_virt2phys(struct target *target,
target_addr_t virt, target_addr_t *phys); target_addr_t virt, target_addr_t *phys);
static int aarch64_read_apb_ab_memory(struct target *target, static int aarch64_read_apb_ap_memory(struct target *target,
uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer); uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
static int aarch64_instr_write_data_r0(struct arm_dpm *dpm, static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
uint32_t opcode, uint32_t data); uint32_t opcode, uint32_t data);
@ -1673,7 +1673,7 @@ static int aarch64_deassert_reset(struct target *target)
return ERROR_OK; return ERROR_OK;
} }
static int aarch64_write_apb_ab_memory(struct target *target, static int aarch64_write_apb_ap_memory(struct target *target,
uint64_t address, uint32_t size, uint64_t address, uint32_t size,
uint32_t count, const uint8_t *buffer) uint32_t count, const uint8_t *buffer)
{ {
@ -1688,7 +1688,6 @@ static int aarch64_write_apb_ab_memory(struct target *target,
struct reg *reg; struct reg *reg;
uint32_t dscr; uint32_t dscr;
uint8_t *tmp_buff = NULL; uint8_t *tmp_buff = NULL;
uint32_t i = 0;
LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %" PRIu32 " count%" PRIu32, LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %" PRIu32 " count%" PRIu32,
address, size, count); address, size, count);
@ -1711,15 +1710,13 @@ static int aarch64_write_apb_ab_memory(struct target *target,
reg->dirty = true; reg->dirty = true;
/* clear any abort */ /* clear any abort */
retval = mem_ap_write_atomic_u32(armv8->debug_ap, armv8->debug_base + CPUDBG_DRCR, 1<<2); retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DRCR, DRCR_CSE);
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
/* This algorithm comes from either :
* Cortex-A8 TRM Example 12-25 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
* Cortex-R4 TRM Example 11-26
* (slight differences)
*/
/* The algorithm only copies 32 bit words, so the buffer /* The algorithm only copies 32 bit words, so the buffer
* should be expanded to include the words at either end. * should be expanded to include the words at either end.
@ -1732,7 +1729,7 @@ static int aarch64_write_apb_ab_memory(struct target *target,
/* First bytes not aligned - read the 32 bit word to avoid corrupting /* First bytes not aligned - read the 32 bit word to avoid corrupting
* the other bytes in the word. * the other bytes in the word.
*/ */
retval = aarch64_read_apb_ab_memory(target, (address & ~0x3), 4, 1, tmp_buff); retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto error_free_buff_w; goto error_free_buff_w;
} }
@ -1743,7 +1740,7 @@ static int aarch64_write_apb_ab_memory(struct target *target,
/* Read the last word to avoid corruption during 32 bit write */ /* Read the last word to avoid corruption during 32 bit write */
int mem_offset = (total_u32-1) * 4; int mem_offset = (total_u32-1) * 4;
retval = aarch64_read_apb_ab_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]); retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto error_free_buff_w; goto error_free_buff_w;
} }
@ -1759,48 +1756,54 @@ static int aarch64_write_apb_ab_memory(struct target *target,
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto error_free_buff_w; goto error_free_buff_w;
/* Set DTR mode to Normal*/ /* Set Normal access mode */
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING; dscr = (dscr & ~DSCR_MA);
retval = mem_ap_write_atomic_u32(armv8->debug_ap, retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr); armv8->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_free_buff_w;
if (size > 4) { if (arm->core_state == ARM_STATE_AARCH64) {
LOG_WARNING("reading size >4 bytes not yet supported"); /* Write X0 with value 'address' using write procedure */
goto error_unset_dtr_w; /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
/* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
retval += aarch64_exec_opcode(target,
ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
} else {
/* Write R0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTRRX */
retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
/* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
retval += aarch64_exec_opcode(target,
T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
} }
/* Step 1.d - Change DCC to memory mode */
retval = aarch64_instr_write_data_dcc_64(arm->dpm, 0xd5330401, address+4); dscr = dscr | DSCR_MA;
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto error_unset_dtr_w; goto error_unset_dtr_w;
dscr = DSCR_INSTR_COMP;
while (i < count * size) {
uint32_t val;
memcpy(&val, &buffer[i], size); /* Step 2.a - Do the write */
retval = aarch64_instr_write_data_dcc(arm->dpm, 0xd5330500, val); retval = mem_ap_write_buf_noincr(armv8->debug_ap,
if (retval != ERROR_OK) tmp_buff, 4, total_u32, armv8->debug_base + CPUDBG_DTRRX);
goto error_unset_dtr_w; if (retval != ERROR_OK)
goto error_unset_dtr_w;
retval = aarch64_exec_opcode(target, 0xb81fc020, &dscr); /* Step 3.a - Switch DTR mode back to Normal mode */
if (retval != ERROR_OK) dscr = (dscr & ~DSCR_MA);
goto error_unset_dtr_w; retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr);
retval = aarch64_exec_opcode(target, 0x91001021, &dscr); if (retval != ERROR_OK)
if (retval != ERROR_OK) goto error_unset_dtr_w;
goto error_unset_dtr_w;
i += 4;
}
/* Check for sticky abort flags in the DSCR */ /* Check for sticky abort flags in the DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap, retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, &dscr); armv8->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto error_free_buff_w; goto error_free_buff_w;
if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) { if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
/* Abort occurred - clear it and exit */ /* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr); LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
mem_ap_write_atomic_u32(armv8->debug_ap, mem_ap_write_atomic_u32(armv8->debug_ap,
@ -1816,7 +1819,7 @@ error_unset_dtr_w:
/* Unset DTR mode */ /* Unset DTR mode */
mem_ap_read_atomic_u32(armv8->debug_ap, mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, &dscr); armv8->debug_base + CPUDBG_DSCR, &dscr);
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING; dscr = (dscr & ~DSCR_MA);
mem_ap_write_atomic_u32(armv8->debug_ap, mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr); armv8->debug_base + CPUDBG_DSCR, dscr);
error_free_buff_w: error_free_buff_w:
@ -1825,19 +1828,23 @@ error_free_buff_w:
return ERROR_FAIL; return ERROR_FAIL;
} }
static int aarch64_read_apb_ab_memory(struct target *target, static int aarch64_read_apb_ap_memory(struct target *target,
target_addr_t address, uint32_t size, target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer) uint32_t count, uint8_t *buffer)
{ {
/* read memory through APB-AP */ /* read memory through APB-AP */
int retval = ERROR_COMMAND_SYNTAX_ERROR; int retval = ERROR_COMMAND_SYNTAX_ERROR;
struct armv8_common *armv8 = target_to_armv8(target); struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm; struct arm *arm = &armv8->arm;
int total_bytes = count * size;
int total_u32;
int start_byte = address & 0x3;
int end_byte = (address + total_bytes) & 0x3;
struct reg *reg; struct reg *reg;
uint32_t dscr, val; uint32_t dscr;
uint8_t *tmp_buff = NULL; uint8_t *tmp_buff = NULL;
uint32_t i = 0; uint8_t *u8buf_ptr;
uint32_t value;
LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%" PRIu32, LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%" PRIu32,
address, size, count); address, size, count);
@ -1846,72 +1853,146 @@ static int aarch64_read_apb_ab_memory(struct target *target,
return ERROR_TARGET_NOT_HALTED; return ERROR_TARGET_NOT_HALTED;
} }
/* Mark register R0 as dirty, as it will be used total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
/* Mark register X0, X1 as dirty, as it will be used
* for transferring the data. * for transferring the data.
* It will be restored automatically when exiting * It will be restored automatically when exiting
* debug mode * debug mode
*/ */
reg = armv8_reg_current(arm, 1);
reg->dirty = true;
reg = armv8_reg_current(arm, 0); reg = armv8_reg_current(arm, 0);
reg->dirty = true; reg->dirty = true;
/* clear any abort */ /* clear any abort */
retval = mem_ap_write_atomic_u32(armv8->debug_ap, retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DRCR, 1<<2); armv8->debug_base + CPUDBG_DRCR, DRCR_CSE);
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto error_free_buff_r; goto error_free_buff_r;
/* Read DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap, retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, &dscr); armv8->debug_base + CPUDBG_DSCR, &dscr);
/* This algorithm comes from DDI0487A.g, chapter J9.1 */
/* Set Normal access mode */
dscr = (dscr & ~DSCR_MA);
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr);
if (arm->core_state == ARM_STATE_AARCH64) {
/* Write X0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
/* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
/* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
/* Step 1.e - Change DCC to memory mode */
dscr = dscr | DSCR_MA;
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr);
/* Step 1.f - read DBGDTRTX and discard the value */
retval += mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DTRTX, &value);
} else {
/* Write R0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTRRXint */
retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
/* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
retval += aarch64_exec_opcode(target,
T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
/* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
retval += aarch64_exec_opcode(target,
T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
/* Step 1.e - Change DCC to memory mode */
dscr = dscr | DSCR_MA;
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr);
/* Step 1.f - read DBGDTRTX and discard the value */
retval += mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DTRTX, &value);
}
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto error_unset_dtr_r; goto error_unset_dtr_r;
if (size > 4) { /* Optimize the read as much as we can, either way we read in a single pass */
LOG_WARNING("reading size >4 bytes not yet supported"); if ((start_byte) || (end_byte)) {
goto error_unset_dtr_r; /* The algorithm only copies 32 bit words, so the buffer
* should be expanded to include the words at either end.
* The first and last words will be read into a temp buffer
* to avoid corruption
*/
tmp_buff = malloc(total_u32 * 4);
if (!tmp_buff)
goto error_unset_dtr_r;
/* use the tmp buffer to read the entire data */
u8buf_ptr = tmp_buff;
} else
/* address and read length are aligned so read directly into the passed buffer */
u8buf_ptr = buffer;
/* Read the data - Each read of the DTRTX register causes the instruction to be reissued
* Abort flags are sticky, so can be read at end of transactions
*
* This data is read in aligned to 32 bit boundary.
*/
/* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
* increments X0 by 4. */
retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
armv8->debug_base + CPUDBG_DTRTX);
if (retval != ERROR_OK)
goto error_unset_dtr_r;
/* Step 3.a - set DTR access mode back to Normal mode */
dscr = (dscr & ~DSCR_MA);
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_free_buff_r;
/* Step 3.b - read DBGDTRTX for the final value */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DTRTX, &value);
memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
/* Check for sticky abort flags in the DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_r;
if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
/* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DRCR, DRCR_CSE);
goto error_free_buff_r;
} }
while (i < count * size) { /* check if we need to copy aligned data by applying any shift necessary */
if (tmp_buff) {
retval = aarch64_instr_write_data_dcc_64(arm->dpm, 0xd5330400, address+4); memcpy(buffer, tmp_buff + start_byte, total_bytes);
if (retval != ERROR_OK) free(tmp_buff);
goto error_unset_dtr_r;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, &dscr);
dscr = DSCR_INSTR_COMP;
retval = aarch64_exec_opcode(target, 0xb85fc000, &dscr);
if (retval != ERROR_OK)
goto error_unset_dtr_r;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, &dscr);
retval = aarch64_instr_read_data_dcc(arm->dpm, 0xd5130400, &val);
if (retval != ERROR_OK)
goto error_unset_dtr_r;
memcpy(&buffer[i], &val, size);
i += 4;
address += 4;
} }
/* Clear any sticky error */
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DRCR, 1<<2);
/* Done */ /* Done */
return ERROR_OK; return ERROR_OK;
error_unset_dtr_r: error_unset_dtr_r:
LOG_WARNING("DSCR = 0x%" PRIx32, dscr); /* Unset DTR mode */
/* Todo: Unset DTR mode */ mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, &dscr);
dscr = (dscr & ~DSCR_MA);
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DSCR, dscr);
error_free_buff_r: error_free_buff_r:
LOG_ERROR("error"); LOG_ERROR("error");
free(tmp_buff); free(tmp_buff);
/* Clear any sticky error */
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUDBG_DRCR, 1<<2);
return ERROR_FAIL; return ERROR_FAIL;
} }
@ -1937,7 +2018,7 @@ static int aarch64_read_phys_memory(struct target *target,
retval = aarch64_mmu_modify(target, 0); retval = aarch64_mmu_modify(target, 0);
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
retval = aarch64_read_apb_ab_memory(target, address, size, count, buffer); retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
} }
} }
return retval; return retval;
@ -1988,7 +2069,7 @@ static int aarch64_read_memory(struct target *target, target_addr_t address,
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
} }
retval = aarch64_read_apb_ab_memory(target, address, size, retval = aarch64_read_apb_ap_memory(target, address, size,
count, buffer); count, buffer);
} }
return retval; return retval;
@ -2020,7 +2101,7 @@ static int aarch64_write_phys_memory(struct target *target,
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
} }
return aarch64_write_apb_ab_memory(target, address, size, count, buffer); return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
} }
} }
@ -2128,7 +2209,7 @@ static int aarch64_write_memory(struct target *target, target_addr_t address,
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
} }
retval = aarch64_write_apb_ab_memory(target, address, size, count, buffer); retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
} }
return retval; return retval;
} }