psoc4: support for Cypress PSoC 41xx/42xx family

New NOR flash driver was derived from stm32lx.
Procedure ocd_process_reset_inner is overriden in psoc4.cfg
to handle reset halt and system ROM peculiarities.

Change-Id: Ib835324412d106ad749e1351a8e18e6be34ca500
Signed-off-by: Tomas Vanek <vanekt@fbl.cz>
Reviewed-on: http://openocd.zylin.com/2282
Tested-by: jenkins
Reviewed-by: Paul Fertser <fercerpav@gmail.com>
__archive__
Tomas Vanek 2014-09-08 10:34:10 +02:00 committed by Paul Fertser
parent a9c90a0f8f
commit 1d7176f50b
6 changed files with 988 additions and 2 deletions

2
README
View File

@ -123,7 +123,7 @@ Flash drivers
-------------
ADUC702x, AT91SAM, AVR, CFI, DSP5680xx, EFM32, EM357, FM3, Kinetis,
LPC2000, LPC2900, LPCSPIFI, Milandr, NuMicro, PIC32mx, Stellaris,
LPC2000, LPC2900, LPCSPIFI, Milandr, NuMicro, PIC32mx, PSoC4, Stellaris,
STM32, STMSMI, STR7x, STR9x, nRF51; NAND controllers of AT91SAM9, LPC3180,
LPC32xx, i.MX31, MXC, NUC910, Orion/Kirkwood, S3C24xx, S3C6400.

View File

@ -5440,6 +5440,40 @@ This will remove any Code Protection.
@end deffn
@end deffn
@deffn {Flash Driver} psoc4
All members of the PSoC 41xx/42xx microcontroller family from Cypress
include internal flash and use ARM Cortex M0 cores.
The driver automatically recognizes a number of these chips using
the chip identification register, and autoconfigures itself.
Note: Erased internal flash reads as 00.
System ROM of PSoC 4 does not implement erase of a flash sector.
@example
flash bank $_FLASHNAME psoc4 0 0 0 0 $_TARGETNAME
@end example
psoc4-specific commands
@deffn Command {psoc4 flash_autoerase} num (on|off)
Enables or disables autoerase mode for a flash bank.
If flash_autoerase is off, use mass_erase before flash programming.
Flash erase command fails if region to erase is not whole flash memory.
If flash_autoerase is on, a sector is both erased and programmed in one
system ROM call. Flash erase command is ignored.
This mode is suitable for gdb load.
The @var{num} parameter is a value shown by @command{flash banks}.
@end deffn
@deffn Command {psoc4 mass_erase} num
Erases the contents of the flash memory, protection and security lock.
The @var{num} parameter is a value shown by @command{flash banks}.
@end deffn
@end deffn
@deffn {Flash Driver} stellaris
All members of the Stellaris LM3Sxxx microcontroller family from
Texas Instruments

View File

@ -44,7 +44,8 @@ NOR_DRIVERS = \
mini51.c \
nuc1x.c \
nrf51.c \
mrvlqspi.c
mrvlqspi.c \
psoc4.c
noinst_HEADERS = \
core.h \

View File

@ -57,6 +57,7 @@ extern struct flash_driver mini51_flash;
extern struct flash_driver nuc1x_flash;
extern struct flash_driver nrf51_flash;
extern struct flash_driver mrvlqspi_flash;
extern struct flash_driver psoc4_flash;
/**
* The list of built-in flash drivers.
@ -98,6 +99,7 @@ static struct flash_driver *flash_drivers[] = {
&nuc1x_flash,
&nrf51_flash,
&mrvlqspi_flash,
&psoc4_flash,
NULL,
};

797
src/flash/nor/psoc4.c Normal file
View File

@ -0,0 +1,797 @@
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* Copyright (C) 2014 by Tomas Vanek (PSoC 4 support derived from STM32) *
* vanekt@fbl.cz *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <jtag/jtag.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* device documets:
PSoC(R) 4: PSoC 4200 Family Datasheet
Document Number: 001-87197 Rev. *B Revised August 29, 2013
PSoC 4100/4200 Family PSoC(R) 4 Architecture TRM
Document No. 001-85634 Rev. *C March 25, 2014
PSoC(R) 4 Registers TRM Spec.
Document No. 001-85847 Rev. *A June 25, 2013
CY8C41xx, CY8C42xx Programming Specifications
Document No. 001-81799 Rev. *C March 4, 2014
*/
/* register locations */
#define PSOC4_CPUSS_SYSREQ 0x40000004
#define PSOC4_CPUSS_SYSARG 0x40000008
#define PSOC4_TEST_MODE 0x40030014
#define PSOC4_SPCIF_GEOMETRY 0x400E0000
#define PSOC4_SFLASH_MACRO 0x0ffff000
/* constants */
#define PSOC4_SROM_KEY1 0xb6
#define PSOC4_SROM_KEY2 0xd3
#define PSOC4_SROM_SYSREQ_BIT (1<<31)
#define PSOC4_SROM_HMASTER_BIT (1<<30)
#define PSOC4_SROM_PRIVILEGED_BIT (1<<28)
#define PSOC4_SROM_STATUS_SUCCEEDED 0xa0000000
#define PSOC4_SROM_STATUS_FAILED 0xf0000000
#define PSOC4_CMD_GET_SILICON_ID 0
#define PSOC4_CMD_LOAD_LATCH 4
#define PSOC4_CMD_WRITE_ROW 5
#define PSOC4_CMD_PROGRAM_ROW 6
#define PSOC4_CMD_ERASE_ALL 0xa
#define PSOC4_CMD_CHECKSUM 0xb
#define PSOC4_CMD_WRITE_PROTECTION 0xd
#define PSOC4_CHIP_PROT_VIRGIN 0x0
#define PSOC4_CHIP_PROT_OPEN 0x1
#define PSOC4_CHIP_PROT_PROTECTED 0x2
#define PSOC4_CHIP_PROT_KILL 0x4
struct psoc4_chip_details {
uint16_t id;
const char *type;
const char *package;
uint16_t flash_size_in_kb;
};
/* list of PSoC 4 chips
* flash_size_in_kb is not necessary as it can be decoded from SPCIF_GEOMETRY
*/
const struct psoc4_chip_details psoc4_devices[] = {
/* 4200 series */
{ 0x04A6, "CY8C4245PVI-482", "SSOP-28", .flash_size_in_kb = 32 },
{ 0x04B6, "CY8C4245LQI-483", "QFN-40", .flash_size_in_kb = 32 },
{ 0x04C8, "CY8C4245AXI-483", "TQFP-44", .flash_size_in_kb = 32 },
{ 0x04FB, "CY8C4245AXI-473", "TQFP-44", .flash_size_in_kb = 32 },
{ 0x04F0, "CY8C4244PVI-432", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x04F1, "CY8C4244PVI-442", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x04F6, "CY8C4244LQI-443", "QFN-40", .flash_size_in_kb = 16 },
{ 0x04FA, "CY8C4244AXI-443", "TQFP-44", .flash_size_in_kb = 16 },
/* 4100 series */
{ 0x0410, "CY8C4124PVI-432", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x0411, "CY8C4124PVI-442", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x0416, "CY8C4124LQI-443", "QFN-40", .flash_size_in_kb = 16 },
{ 0x041A, "CY8C4124AXI-443", "TQFP-44", .flash_size_in_kb = 16 },
{ 0x041B, "CY8C4125AXI-473", "TQFP-44", .flash_size_in_kb = 32 },
{ 0x0412, "CY8C4125PVI-482", "SSOP-28", .flash_size_in_kb = 32 },
{ 0x0417, "CY8C4125LQI-483", "QFN-40", .flash_size_in_kb = 32 },
{ 0x041C, "CY8C4125AXI-483", "TQFP-44", .flash_size_in_kb = 32 },
};
struct psoc4_flash_bank {
uint16_t row_size;
uint32_t user_bank_size;
int probed;
uint32_t silicon_id;
uint8_t chip_protection;
uint16_t cmd_program_row;
};
static const struct psoc4_chip_details *psoc4_details_by_id(uint32_t silicon_id)
{
const struct psoc4_chip_details *p = psoc4_devices;
unsigned int i;
uint16_t id = silicon_id >> 16; /* ignore die revision */
for (i = 0; i < sizeof(psoc4_devices)/sizeof(psoc4_devices[0]); i++, p++) {
if (p->id == id)
return p;
}
LOG_DEBUG("Unknown PSoC 4 device silicon id 0x%08" PRIx32 ".", silicon_id);
return NULL;
}
static const char *psoc4_decode_chip_protection(uint8_t protection)
{
switch (protection) {
case PSOC4_CHIP_PROT_VIRGIN:
return "protection VIRGIN";
case PSOC4_CHIP_PROT_OPEN:
return "protection open";
case PSOC4_CHIP_PROT_PROTECTED:
return "PROTECTED";
case PSOC4_CHIP_PROT_KILL:
return "protection KILL";
default:
LOG_WARNING("Unknown protection state 0x%02" PRIx8 "", protection);
return "";
}
}
/* flash bank <name> psoc <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(psoc4_flash_bank_command)
{
struct psoc4_flash_bank *psoc4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
psoc4_info = calloc(1, sizeof(struct psoc4_flash_bank));
bank->driver_priv = psoc4_info;
psoc4_info->user_bank_size = bank->size;
return ERROR_OK;
}
/* PSoC 4 system ROM request
* Setting SROM_SYSREQ_BIT in CPUSS_SYSREQ register runs NMI service
* in sysrem ROM. Algorithm just waits for NMI to finish.
* When sysreq_params_size == 0 only one parameter is passed in CPUSS_SYSARG register.
* Otherwise address of memory parameter block is set in CPUSS_SYSARG
* and the first parameter is written to the first word of parameter block
*/
static int psoc4_sysreq(struct target *target, uint8_t cmd, uint16_t cmd_param,
uint32_t *sysreq_params, uint32_t sysreq_params_size)
{
struct working_area *sysreq_wait_algorithm;
struct working_area *sysreq_mem;
struct reg_param reg_params[1];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
uint32_t param1 = PSOC4_SROM_KEY1
| ((PSOC4_SROM_KEY2 + cmd) << 8)
| (cmd_param << 16);
static uint8_t psoc4_sysreq_wait_code[] = {
/* system request NMI is served immediately after algo run
now we are done: break */
0x00, 0xbe, /* bkpt 0 */
};
const int code_words = (sizeof(psoc4_sysreq_wait_code) + 3) / 4;
/* stack must be aligned */
const int stack_size = 196;
/* tested stack sizes on PSoC 4:
ERASE_ALL 144
PROGRAM_ROW 112
other sysreq 68
*/
/* allocate area for sysreq wait code and stack */
if (target_alloc_working_area(target, code_words * 4 + stack_size,
&sysreq_wait_algorithm) != ERROR_OK) {
LOG_DEBUG("no working area for sysreq code");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
/* Write the code */
retval = target_write_buffer(target,
sysreq_wait_algorithm->address,
sizeof(psoc4_sysreq_wait_code),
psoc4_sysreq_wait_code);
if (retval != ERROR_OK) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
goto cleanup_algo;
}
if (sysreq_params_size) {
/* Allocate memory for sysreq_params */
retval = target_alloc_working_area(target, sysreq_params_size, &sysreq_mem);
if (retval != ERROR_OK) {
LOG_WARNING("no working area for sysreq parameters");
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup_algo;
}
/* Write sysreq_params */
sysreq_params[0] = param1;
retval = target_write_buffer(target, sysreq_mem->address,
sysreq_params_size, (uint8_t *)sysreq_params);
if (retval != ERROR_OK)
goto cleanup_mem;
/* Set address of sysreq parameters block */
retval = target_write_u32(target, PSOC4_CPUSS_SYSARG, sysreq_mem->address);
if (retval != ERROR_OK)
goto cleanup_mem;
} else {
/* Sysreq without memory block of parameters */
/* Set register parameter */
retval = target_write_u32(target, PSOC4_CPUSS_SYSARG, param1);
if (retval != ERROR_OK)
goto cleanup_mem;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
/* sysreq stack */
init_reg_param(&reg_params[0], "sp", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32,
sysreq_wait_algorithm->address + sysreq_wait_algorithm->size);
struct armv7m_common *armv7m = target_to_armv7m(target);
if (armv7m == NULL) {
/* something is very wrong if armv7m is NULL */
LOG_ERROR("unable to get armv7m target");
goto cleanup;
}
/* Set SROM request */
retval = target_write_u32(target, PSOC4_CPUSS_SYSREQ,
PSOC4_SROM_SYSREQ_BIT | PSOC4_SROM_HMASTER_BIT | cmd);
if (retval != ERROR_OK)
goto cleanup;
/* Execute wait code */
retval = target_run_algorithm(target, 0, NULL,
sizeof(reg_params) / sizeof(*reg_params), reg_params,
sysreq_wait_algorithm->address, 0, 1000, &armv7m_info);
if (retval != ERROR_OK)
LOG_ERROR("sysreq wait code execution failed");
cleanup:
destroy_reg_param(&reg_params[0]);
cleanup_mem:
if (sysreq_params_size)
target_free_working_area(target, sysreq_mem);
cleanup_algo:
target_free_working_area(target, sysreq_wait_algorithm);
return retval;
}
/* helper routine to get silicon ID from a PSoC 4 chip */
static int psoc4_get_silicon_id(struct target *target, uint32_t *silicon_id, uint8_t *protection)
{
uint32_t params = PSOC4_SROM_KEY1
| ((PSOC4_SROM_KEY2 + PSOC4_CMD_GET_SILICON_ID) << 8);
uint32_t part0, part1;
int retval = psoc4_sysreq(target, PSOC4_CMD_GET_SILICON_ID, 0, NULL, 0);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, PSOC4_CPUSS_SYSARG, &part0);
if (retval != ERROR_OK)
return retval;
if (part0 == params) {
LOG_ERROR("sysreq silicon id request not served");
return ERROR_FAIL;
}
retval = target_read_u32(target, PSOC4_CPUSS_SYSREQ, &part1);
if (retval != ERROR_OK)
return retval;
uint32_t silicon = ((part0 & 0xffff) << 16)
| (((part0 >> 16) & 0xff) << 8)
| (part1 & 0xff);
uint8_t prot = (part1 >> 12) & 0xff;
if (silicon_id)
*silicon_id = silicon;
if (protection)
*protection = prot;
LOG_DEBUG("silicon id: 0x%" PRIx32 "", silicon);
LOG_DEBUG("protection: 0x%" PRIx8 "", prot);
return retval;
}
static int psoc4_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
uint32_t prot_addr = PSOC4_SFLASH_MACRO;
uint32_t protection;
int i, s;
int num_bits;
int retval = ERROR_OK;
num_bits = bank->num_sectors;
for (i = 0; i < num_bits; i += 32) {
retval = target_read_u32(target, prot_addr, &protection);
if (retval != ERROR_OK)
return retval;
prot_addr += 4;
for (s = 0; s < 32; s++) {
if (i + s >= num_bits)
break;
bank->sectors[i + s].is_protected = (protection & (1 << s)) ? 1 : 0;
}
}
retval = psoc4_get_silicon_id(target, NULL, &(psoc4_info->chip_protection));
return retval;
}
static int psoc4_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
int i;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Call "Erase All" system ROM API */
uint32_t param;
int retval = psoc4_sysreq(target, PSOC4_CMD_ERASE_ALL,
0,
&param, sizeof(param));
if (retval == ERROR_OK)
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
return retval;
}
static int psoc4_erase(struct flash_bank *bank, int first, int last)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
if (psoc4_info->cmd_program_row == PSOC4_CMD_WRITE_ROW) {
LOG_INFO("Autoerase enabled, erase command ignored");
return ERROR_OK;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
return psoc4_mass_erase(bank);
LOG_ERROR("Only mass erase available");
return ERROR_FAIL;
}
static int psoc4_protect(struct flash_bank *bank, int set, int first, int last)
{
struct target *target = bank->target;
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
if (psoc4_info->probed == 0)
return ERROR_FAIL;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint32_t *sysrq_buffer = NULL;
int retval;
int num_bits = bank->num_sectors;
const int param_sz = 8;
int prot_sz = num_bits / 8;
int chip_prot = PSOC4_CHIP_PROT_OPEN;
int flash_macro = 0; /* PSoC 42xx has only macro 0 */
int i;
sysrq_buffer = calloc(1, param_sz + prot_sz);
if (sysrq_buffer == NULL) {
LOG_ERROR("no memory for row buffer");
return ERROR_FAIL;
}
for (i = first; i < num_bits && i <= last; i++)
bank->sectors[i].is_protected = set;
uint32_t *p = sysrq_buffer + 2;
for (i = 0; i < num_bits; i++) {
if (bank->sectors[i].is_protected)
p[i / 32] |= 1 << (i % 32);
}
/* Call "Load Latch" system ROM API */
sysrq_buffer[1] = prot_sz - 1;
retval = psoc4_sysreq(target, PSOC4_CMD_LOAD_LATCH,
0, /* Byte number in latch from what to write */
sysrq_buffer, param_sz + psoc4_info->row_size);
if (retval != ERROR_OK)
goto cleanup;
/* Call "Write Protection" system ROM API */
retval = psoc4_sysreq(target, PSOC4_CMD_WRITE_PROTECTION,
chip_prot | (flash_macro << 8), NULL, 0);
cleanup:
if (retval != ERROR_OK)
psoc4_protect_check(bank);
if (sysrq_buffer)
free(sysrq_buffer);
return retval;
}
COMMAND_HANDLER(psoc4_handle_flash_autoerase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
bool enable = psoc4_info->cmd_program_row == PSOC4_CMD_WRITE_ROW;
if (CMD_ARGC >= 2)
COMMAND_PARSE_ON_OFF(CMD_ARGV[1], enable);
if (enable) {
psoc4_info->cmd_program_row = PSOC4_CMD_WRITE_ROW;
LOG_INFO("Flash auto-erase enabled, non mass erase commands will be ignored.");
} else {
psoc4_info->cmd_program_row = PSOC4_CMD_PROGRAM_ROW;
LOG_INFO("Flash auto-erase disabled. Use psoc mass_erase before flash programming.");
}
return retval;
}
static int psoc4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t *sysrq_buffer = NULL;
int retval = ERROR_OK;
const int param_sz = 8;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
sysrq_buffer = malloc(param_sz + psoc4_info->row_size);
if (sysrq_buffer == NULL) {
LOG_ERROR("no memory for row buffer");
return ERROR_FAIL;
}
uint8_t *row_buffer = (uint8_t *)sysrq_buffer + param_sz;
uint32_t row_num = offset / psoc4_info->row_size;
uint32_t row_offset = offset - row_num * psoc4_info->row_size;
if (row_offset)
memset(row_buffer, 0, row_offset);
bool save_poll = jtag_poll_get_enabled();
jtag_poll_set_enabled(false);
while (count) {
uint32_t chunk_size = psoc4_info->row_size - row_offset;
if (chunk_size > count) {
chunk_size = count;
memset(row_buffer + chunk_size, 0, psoc4_info->row_size - chunk_size);
}
memcpy(row_buffer + row_offset, buffer, chunk_size);
LOG_DEBUG("offset / row: 0x%" PRIx32 " / %d size %d",
offset, row_offset, chunk_size);
/* Call "Load Latch" system ROM API */
sysrq_buffer[1] = psoc4_info->row_size - 1;
retval = psoc4_sysreq(target, PSOC4_CMD_LOAD_LATCH,
0, /* Byte number in latch from what to write */
sysrq_buffer, param_sz + psoc4_info->row_size);
if (retval != ERROR_OK)
goto cleanup;
/* Call "Program Row" or "Write Row" system ROM API */
uint32_t sysrq_param;
retval = psoc4_sysreq(target, psoc4_info->cmd_program_row,
row_num & 0xffff,
&sysrq_param, sizeof(sysrq_param));
if (retval != ERROR_OK)
goto cleanup;
buffer += chunk_size;
row_num++;
row_offset = 0;
count -= chunk_size;
}
cleanup:
jtag_poll_set_enabled(save_poll);
if (sysrq_buffer)
free(sysrq_buffer);
return retval;
}
static int psoc4_probe(struct flash_bank *bank)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
struct target *target = bank->target;
int i;
uint16_t flash_size_in_kb = 0;
uint16_t max_flash_size_in_kb;
uint32_t cpu_id;
uint32_t silicon_id;
int row_size;
uint32_t base_address = 0x00000000;
uint8_t protection;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
psoc4_info->probed = 0;
psoc4_info->cmd_program_row = PSOC4_CMD_PROGRAM_ROW;
/* Get the CPUID from the ARM Core
* http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
int retval = target_read_u32(target, 0xE000ED00, &cpu_id);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("cpu id = 0x%08" PRIx32 "", cpu_id);
/* set page size, protection granularity and max flash size depending on family */
switch ((cpu_id >> 4) & 0xFFF) {
case 0xc20: /* M0 -> PSoC4 */
row_size = 128;
max_flash_size_in_kb = 32;
break;
default:
LOG_WARNING("Cannot identify target as a PSoC 4 family.");
return ERROR_FAIL;
}
uint32_t spcif_geometry;
retval = target_read_u32(target, PSOC4_SPCIF_GEOMETRY, &spcif_geometry);
if (retval == ERROR_OK) {
row_size = 128 * ((spcif_geometry >> 22) & 3);
flash_size_in_kb = (spcif_geometry & 0xffff) * 256 / 1024;
LOG_INFO("SPCIF geometry: %d kb flash, row %d bytes.", flash_size_in_kb, row_size);
}
/* ST-Link v2 has some problem reading PSOC4_SPCIF_GEOMETRY
and an error is reported late. Dummy read gets this error. */
uint32_t dummy;
target_read_u32(target, PSOC4_CPUSS_SYSREQ, &dummy);
/* get silicon ID from target. */
retval = psoc4_get_silicon_id(target, &silicon_id, &protection);
if (retval != ERROR_OK)
return retval;
const struct psoc4_chip_details *details = psoc4_details_by_id(silicon_id);
if (details) {
LOG_INFO("%s device detected.", details->type);
if (flash_size_in_kb == 0)
flash_size_in_kb = details->flash_size_in_kb;
else if (flash_size_in_kb != details->flash_size_in_kb)
LOG_ERROR("Flash size mismatch");
}
psoc4_info->row_size = row_size;
psoc4_info->silicon_id = silicon_id;
psoc4_info->chip_protection = protection;
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("PSoC 4 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (psoc4_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = psoc4_info->user_bank_size / 1024;
}
LOG_INFO("flash size = %d kbytes", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* calculate numbers of pages */
int num_rows = flash_size_in_kb * 1024 / row_size;
/* check that calculation result makes sense */
assert(num_rows > 0);
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->size = (num_rows * row_size);
bank->num_sectors = num_rows;
bank->sectors = malloc(sizeof(struct flash_sector) * num_rows);
for (i = 0; i < num_rows; i++) {
bank->sectors[i].offset = i * row_size;
bank->sectors[i].size = row_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
LOG_INFO("flash bank set %d rows", num_rows);
psoc4_info->probed = 1;
return ERROR_OK;
}
static int psoc4_auto_probe(struct flash_bank *bank)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
if (psoc4_info->probed)
return ERROR_OK;
return psoc4_probe(bank);
}
static int get_psoc4_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
int printed = 0;
if (psoc4_info->probed == 0)
return ERROR_FAIL;
const struct psoc4_chip_details *details = psoc4_details_by_id(psoc4_info->silicon_id);
if (details)
printed = snprintf(buf, buf_size, "PSoC 4 %s rev 0x%04" PRIx16 " package %s",
details->type, psoc4_info->silicon_id & 0xffff, details->package);
else
printed = snprintf(buf, buf_size, "PSoC 4 silicon id 0x%08" PRIx32 "",
psoc4_info->silicon_id);
buf += printed;
buf_size -= printed;
const char *prot_txt = psoc4_decode_chip_protection(psoc4_info->chip_protection);
snprintf(buf, buf_size, " flash %d kb %s", bank->size / 1024, prot_txt);
return ERROR_OK;
}
COMMAND_HANDLER(psoc4_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = psoc4_mass_erase(bank);
if (retval == ERROR_OK)
command_print(CMD_CTX, "psoc mass erase complete");
else
command_print(CMD_CTX, "psoc mass erase failed");
return retval;
}
static const struct command_registration psoc4_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = psoc4_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "flash_autoerase",
.handler = psoc4_handle_flash_autoerase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id on|off",
.help = "Set autoerase mode for flash bank.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration psoc4_command_handlers[] = {
{
.name = "psoc4",
.mode = COMMAND_ANY,
.help = "PSoC 4 flash command group",
.usage = "",
.chain = psoc4_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver psoc4_flash = {
.name = "psoc4",
.commands = psoc4_command_handlers,
.flash_bank_command = psoc4_flash_bank_command,
.erase = psoc4_erase,
.protect = psoc4_protect,
.write = psoc4_write,
.read = default_flash_read,
.probe = psoc4_probe,
.auto_probe = psoc4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = psoc4_protect_check,
.info = get_psoc4_info,
};

152
tcl/target/psoc4.cfg Normal file
View File

@ -0,0 +1,152 @@
# script for Cypress PSoC 41xx/42xx family
#
# PSoC 4 devices support SWD transports only.
#
source [find target/swj-dp.tcl]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME psoc4
}
# Work-area is a space in RAM used for flash programming
# By default use 4kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x1000
}
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x0bb11477
}
swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m -chain-position $_TARGETNAME
$_TARGETNAME configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME psoc4 0 0 0 0 $_TARGETNAME
adapter_khz 1500
# Reset, bloody PSoC 4 reset
#
# 1) XRES (nSRST) resets also SWD DP so SWD line reset and DP reinit is needed.
# High level adapter stops working after SRST and needs OpenOCD restart.
# If your hw does not use SRST for other circuits, use sysresetreq instead
#
# 2) PSoC 4 executes initialization code from system ROM after reset.
# This code subsequently jumps to user flash reset vector address.
# Unfortunately the system ROM code is protected from reading and debugging.
# Protection breaks vector catch VC_CORERESET used for "reset halt" by cortex_m.
#
# Cypress uses TEST_MODE flag to loop CPU in system ROM before executing code
# from user flash. Programming specifications states that TEST_MODE flag must be
# set in time frame 400 usec delayed about 1 msec from reset.
#
# OpenOCD have no standard way how to set TEST_MODE in specified time frame.
# TEST_MODE flag is set before reset instead. It worked for tested chips
# despite it is not guaranteed by specification.
#
# 3) SWD cannot be connected during system initialization after reset.
# This might be a reason for unconnecting ST-Link v2 when deasserting reset.
# As a workaround arp_reset deassert is not called for hla
if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
cortex_m reset_config sysresetreq
}
proc ocd_process_reset_inner { MODE } {
if { 0 != [string compare psoc4.cpu [target names]] } {
return -code error "PSoC 4 reset can handle only one psoc4.cpu target";
}
set t psoc4.cpu
# If this target must be halted...
set halt -1
if { 0 == [string compare $MODE halt] } {
set halt 1
}
if { 0 == [string compare $MODE init] } {
set halt 1;
}
if { 0 == [string compare $MODE run ] } {
set halt 0;
}
if { $halt < 0 } {
return -code error "Invalid mode: $MODE, must be one of: halt, init, or run";
}
#$t invoke-event reset-start
$t invoke-event reset-assert-pre
set TEST_MODE 0x40030014
if { $halt == 1 } {
mww $TEST_MODE 0x80000000
} else {
mww $TEST_MODE 0
}
$t arp_reset assert 0
$t invoke-event reset-assert-post
$t invoke-event reset-deassert-pre
if {![using_hla]} { # workaround ST-Link v2 fails and forcing reconnect
$t arp_reset deassert 0
}
$t invoke-event reset-deassert-post
# Pass 1 - Now wait for any halt (requested as part of reset
# assert/deassert) to happen. Ideally it takes effect without
# first executing any instructions.
if { $halt } {
# Now PSoC CPU should loop in system ROM
$t arp_waitstate running 200
$t arp_halt
# Catch, but ignore any errors.
catch { $t arp_waitstate halted 1000 }
# Did we succeed?
set s [$t curstate]
if { 0 != [string compare $s "halted" ] } {
return -code error [format "TARGET: %s - Not halted" $t]
}
# Check if PSoC CPU is stopped in system ROM
set pc [ocd_reg pc]
regsub {pc[^:]*: } $pc "" pc
if { $pc < 0x10000000 || $pc > 0x1000ffff } {
return -code error [format "TARGET: %s - Not halted is system ROM" $t]
}
# Set registers to reset vector values
mem2array value 32 0 2
reg pc [expr $value(1) & 0xfffffffe ]
reg msp $value(0)
mww $TEST_MODE 0
}
#Pass 2 - if needed "init"
if { 0 == [string compare init $MODE] } {
set err [catch "$t arp_waitstate halted 5000"]
# Did it halt?
if { $err == 0 } {
$t invoke-event reset-init
}
}
$t invoke-event reset-end
}