tinySA/os/ports/GCC/ARMCMx/port.dox

208 lines
10 KiB
Plaintext

/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @defgroup ARMCMx ARM Cortex-Mx
* @details ARM Cortex-Mx port for the GCC compiler.
* @section ARMCMx_INTRO Introduction
* This port supports all the cores implementing the ARMv6-M and ARMv7-M
* architectures.
*
* @section ARMCMx_STATES_A System logical states in ARMv6-M mode
* The ChibiOS/RT logical system states are mapped as follow in the ARM
* Cortex-M0 port:
* - <b>Init</b>. This state is represented by the startup code and the
* initialization code before @p chSysInit() is executed. It has not a
* special hardware state associated.
* - <b>Normal</b>. This is the state the system has after executing
* @p chSysInit(). In this state interrupts are enabled. The processor
* is running in thread-privileged mode.
* - <b>Suspended</b>. In this state the interrupt sources are globally
* disabled. The processor is running in thread-privileged mode. In this
* mode this state is not different from the <b>Disabled</b> state.
* - <b>Disabled</b>. In this state the interrupt sources are globally
* disabled. The processor is running in thread-privileged mode. In this
* mode this state is not different from the <b>Suspended</b> state.
* - <b>Sleep</b>. This state is entered with the execution of the specific
* instruction @p <b>wfi</b>.
* - <b>S-Locked</b>. In this state the interrupt sources are globally
* disabled. The processor is running in thread-privileged mode.
* - <b>I-Locked</b>. In this state the interrupt sources are globally
* disabled. The processor is running in exception-privileged mode.
* - <b>Serving Regular Interrupt</b>. In this state the interrupt sources are
* not globally masked but only interrupts with higher priority can preempt
* the current handler. The processor is running in exception-privileged
* mode.
* - <b>Serving Fast Interrupt</b>. This state is not implemented in the
* ARMv6-M implementation.
* - <b>Serving Non-Maskable Interrupt</b>. The Cortex-M3 has a specific
* asynchronous NMI vector and several synchronous fault vectors that can
* be considered belonging to this category.
* - <b>Halted</b>. Implemented as an infinite loop after globally masking all
* the maskable interrupt sources. The ARM state is whatever the processor
* was running when @p chSysHalt() was invoked.
*
* @section ARMCMx_STATES_B System logical states in ARMv7-M mode
* The ChibiOS/RT logical system states are mapped as follow in the ARM
* Cortex-M3 port:
* - <b>Init</b>. This state is represented by the startup code and the
* initialization code before @p chSysInit() is executed. It has not a
* special hardware state associated.
* - <b>Normal</b>. This is the state the system has after executing
* @p chSysInit(). In this state the ARM Cortex-M3 has the BASEPRI register
* set at @p CORTEX_BASEPRI_USER level, interrupts are not masked. The
* processor is running in thread-privileged mode.
* - <b>Suspended</b>. In this state the interrupt sources are not globally
* masked but the BASEPRI register is set to @p CORTEX_BASEPRI_KERNEL thus
* masking any interrupt source with lower or equal priority. The processor
* is running in thread-privileged mode.
* - <b>Disabled</b>. Interrupt sources are globally masked. The processor
* is running in thread-privileged mode.
* - <b>Sleep</b>. This state is entered with the execution of the specific
* instruction @p <b>wfi</b>.
* - <b>S-Locked</b>. In this state the interrupt sources are not globally
* masked but the BASEPRI register is set to @p CORTEX_BASEPRI_KERNEL thus
* masking any interrupt source with lower or equal priority. The processor
* is running in thread-privileged mode.
* - <b>I-Locked</b>. In this state the interrupt sources are not globally
* masked but the BASEPRI register is set to @p CORTEX_BASEPRI_KERNEL thus
* masking any interrupt source with lower or equal priority. The processor
* is running in exception-privileged mode.
* - <b>Serving Regular Interrupt</b>. In this state the interrupt sources are
* not globally masked but only interrupts with higher priority can preempt
* the current handler. The processor is running in exception-privileged
* mode.
* - <b>Serving Fast Interrupt</b>. It is basically the same of the SRI state
* but it is not possible to switch to the I-Locked state because fast
* interrupts can preempt the kernel critical zone.
* - <b>Serving Non-Maskable Interrupt</b>. The Cortex-M3 has a specific
* asynchronous NMI vector and several synchronous fault vectors that can
* be considered belonging to this category.
* - <b>Halted</b>. Implemented as an infinite loop after globally masking all
* the maskable interrupt sources. The ARM state is whatever the processor
* was running when @p chSysHalt() was invoked.
* .
* @section ARMCMx_NOTES ARM Cortex-Mx/GCC port notes
* The ARM Cortex-Mx port is organized as follow:
* - The @p main() function is invoked in thread-privileged mode.
* - Each thread has a private process stack, the system has a single main
* stack where all the interrupts and exceptions are processed.
* - The threads are started in thread-privileged mode.
* - Interrupt nesting and the other advanced core/NVIC features are supported.
* .
* @ingroup gcc
*/
/**
* @defgroup ARMCMx_CONF Configuration Options
* @details ARM Cortex-Mx Configuration Options. The ARMCMx port allows some
* architecture-specific configurations settings that can be overridden
* by redefining them in @p chconf.h. Usually there is no need to change
* the default values.
* - @p INT_REQUIRED_STACK, this value represent the amount of stack space used
* by an interrupt handler between the @p extctx and @p intctx
* structures.
* - @p IDLE_THREAD_STACK_SIZE, stack area size to be assigned to the IDLE
* thread. Usually there is no need to change this value unless inserting
* code in the IDLE thread hook macro.
* - @p CORTEX_BASEPRI_KERNEL, this is the @p BASEPRI value for the kernel lock
* code. Code running at higher priority levels must not invoke any OS API.
* This setting is specific to the ARMv7-M architecture.
* - @p CORTEX_PRIORITY_SYSTICK, priority of the SYSTICK handler.
* - @p CORTEX_PRIORITY_SVCALL, priority of the SVCALL handler.
* - @p CORTEX_PRIORITY_PENDSV, priority of the PENDSV handler.
* - @p CORTEX_ENABLE_WFI_IDLE, if set to @p TRUE enables the use of the
* @p <b>wfi</b> instruction from within the idle loop. This is defaulted to
* FALSE because it can create problems with some debuggers. Setting this
* option to TRUE reduces the system power requirements.
* .
* @ingroup ARMCMx
*/
/**
* @defgroup ARMCMx_CORE Core Port Implementation
* @details ARM Cortex-Mx specific port code, structures and macros.
*
* @ingroup ARMCMx
*/
/**
* @defgroup ARMCMx_V6M_CORE ARMv6-M Specific Implementation
* @details ARMv6-M specific port code, structures and macros.
*
* @ingroup ARMCMx_CORE
*/
/**
* @defgroup ARMCMx_V7M_CORE ARMv7-M Specific Implementation
* @details ARMv7-M specific port code, structures and macros.
*
* @ingroup ARMCMx_CORE
*/
/**
* @defgroup ARMCMx_STARTUP Startup Support
* @details ChibiOS/RT provides its own generic startup file for the ARM
* Cortex-Mx port.
* Of course it is not mandatory to use it but care should be taken about the
* startup phase details.
*
* <h2>Startup Process</h2>
* The startup process, as implemented, is the following:
* -# Interrupts are masked globally.
* -# The two stacks are initialized by assigning them the sizes defined in the
* linker script (usually named @p ch.ld). Stack areas are allocated from
* the highest RAM location downward.
* -# An early initialization routine @p hwinit0 is invoked, if the symbol is
* not defined then an empty default routine is executed (weak symbol).
* -# DATA and BSS segments are initialized.
* -# The CPU state is switched to Privileged and the PSP stack is used.
* -# A late initialization routine @p hwinit1 is invoked, if the symbol not
* defined then an empty default routine is executed (weak symbol).<br>
* This late initialization function is also the proper place for a
* @a bootloader, if your application requires one.
* -# The @p main() function is invoked with the parameters @p argc and @p argv
* set to zero.
* -# Should the @p main() function return a branch is performed to the weak
* symbol MainExitHandler. The default code is an endless empty loop.
* .
* <h2>Expected linker symbols</h2>
* The startup code starts at the symbol @p ResetHandler and expects the
* following symbols to be defined in the linker script:
* - @p __ram_end__ RAM end location +1.
* - @p __main_stack_size__ Exception stack size.
* - @p __process_stack_size__ Process stack size. This is the stack area used
* by the @p main() function.
* - @p _textdata address of the data segment source read only data.
* - @p _data data segment start location.
* - @p _edata data segment end location +1.
* - @p _bss_start BSS start location.
* - @p _bss_end BSS end location +1.
* .
* @ingroup ARMCMx
*/
/**
* @defgroup ARMCMx_NVIC NVIC Support
* @details ARM Cortex-Mx NVIC support.
*
* @ingroup ARMCMx
*/