549 lines
16 KiB
C
549 lines
16 KiB
C
/*
|
|
ChibiOS/RT - Copyright (C) 2006-2013 Giovanni Di Sirio
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file STM32F30x/adc_lld.c
|
|
* @brief STM32F30x ADC subsystem low level driver source.
|
|
*
|
|
* @addtogroup ADC
|
|
* @{
|
|
*/
|
|
|
|
#include "hal.h"
|
|
|
|
#if HAL_USE_ADC || defined(__DOXYGEN__)
|
|
|
|
/*===========================================================================*/
|
|
/* Driver local definitions. */
|
|
/*===========================================================================*/
|
|
|
|
#if STM32_ADC_DUAL_MODE
|
|
#if STM32_ADC_COMPACT_SAMPLES
|
|
/* Compact type dual mode.*/
|
|
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD)
|
|
#define ADC_DMA_MDMA ADC_CCR_MDMA_HWORD
|
|
|
|
#else /* !STM32_ADC_COMPACT_SAMPLES */
|
|
/* Large type dual mode.*/
|
|
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_PSIZE_WORD)
|
|
#define ADC_DMA_MDMA ADC_CCR_MDMA_WORD
|
|
#endif /* !STM32_ADC_COMPACT_SAMPLES */
|
|
|
|
#else /* !STM32_ADC_DUAL_MODE */
|
|
#if STM32_ADC_COMPACT_SAMPLES
|
|
/* Compact type single mode.*/
|
|
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_PSIZE_BYTE)
|
|
#define ADC_DMA_MDMA ADC_CCR_MDMA_DISABLED
|
|
|
|
#else /* !STM32_ADC_COMPACT_SAMPLES */
|
|
/* Large type single mode.*/
|
|
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD)
|
|
#define ADC_DMA_MDMA ADC_CCR_MDMA_DISABLED
|
|
#endif /* !STM32_ADC_COMPACT_SAMPLES */
|
|
#endif /* !STM32_ADC_DUAL_MODE */
|
|
|
|
/*===========================================================================*/
|
|
/* Driver exported variables. */
|
|
/*===========================================================================*/
|
|
|
|
/** @brief ADC1 driver identifier.*/
|
|
#if STM32_ADC_USE_ADC1 || defined(__DOXYGEN__)
|
|
ADCDriver ADCD1;
|
|
#endif
|
|
|
|
/** @brief ADC1 driver identifier.*/
|
|
#if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__)
|
|
ADCDriver ADCD3;
|
|
#endif
|
|
|
|
/*===========================================================================*/
|
|
/* Driver local variables and types. */
|
|
/*===========================================================================*/
|
|
|
|
/*===========================================================================*/
|
|
/* Driver local functions. */
|
|
/*===========================================================================*/
|
|
|
|
/**
|
|
* @brief Enables the ADC voltage regulator.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*/
|
|
static void adc_lld_vreg_on(ADCDriver *adcp) {
|
|
|
|
adcp->adcm->CR = 0; /* RM 12.4.3.*/
|
|
adcp->adcm->CR = ADC_CR_ADVREGEN_0;
|
|
#if STM32_ADC_DUAL_MODE
|
|
adcp->adcs->CR = ADC_CR_ADVREGEN_0;
|
|
#endif
|
|
osalSysPolledDelayX(US2RTC(10));
|
|
}
|
|
|
|
/**
|
|
* @brief Disables the ADC voltage regulator.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*/
|
|
static void adc_lld_vreg_off(ADCDriver *adcp) {
|
|
|
|
adcp->adcm->CR = 0; /* RM 12.4.3.*/
|
|
adcp->adcm->CR = ADC_CR_ADVREGEN_1;
|
|
#if STM32_ADC_DUAL_MODE
|
|
adcp->adcs->CR = ADC_CR_ADVREGEN_1;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Enables the ADC analog circuit.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*/
|
|
static void adc_lld_analog_on(ADCDriver *adcp) {
|
|
|
|
adcp->adcm->CR |= ADC_CR_ADEN;
|
|
while ((adcp->adcm->ISR & ADC_ISR_ADRDY) == 0)
|
|
;
|
|
#if STM32_ADC_DUAL_MODE
|
|
adcp->adcs->CR |= ADC_CR_ADEN;
|
|
while ((adcp->adcs->ISR & ADC_ISR_ADRDY) == 0)
|
|
;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Disables the ADC analog circuit.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*/
|
|
static void adc_lld_analog_off(ADCDriver *adcp) {
|
|
|
|
adcp->adcm->CR |= ADC_CR_ADDIS;
|
|
while ((adcp->adcm->CR & ADC_CR_ADDIS) != 0)
|
|
;
|
|
#if STM32_ADC_DUAL_MODE
|
|
adcp->adcs->CR |= ADC_CR_ADDIS;
|
|
while ((adcp->adcs->CR & ADC_CR_ADDIS) != 0)
|
|
;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Calibrates and ADC unit.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*/
|
|
static void adc_lld_calibrate(ADCDriver *adcp) {
|
|
|
|
osalDbgAssert(adcp->adcm->CR == ADC_CR_ADVREGEN_0, "invalid register state");
|
|
adcp->adcm->CR |= ADC_CR_ADCAL;
|
|
while ((adcp->adcm->CR & ADC_CR_ADCAL) != 0)
|
|
;
|
|
#if STM32_ADC_DUAL_MODE
|
|
osalDbgAssert(adcp->adcs->CR == ADC_CR_ADVREGEN_0, "invalid register state");
|
|
adcp->adcs->CR |= ADC_CR_ADCAL;
|
|
while ((adcp->adcs->CR & ADC_CR_ADCAL) != 0)
|
|
;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Stops an ongoing conversion, if any.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*/
|
|
static void adc_lld_stop_adc(ADCDriver *adcp) {
|
|
|
|
if (adcp->adcm->CR & ADC_CR_ADSTART) {
|
|
adcp->adcm->CR |= ADC_CR_ADSTP;
|
|
while (adcp->adcm->CR & ADC_CR_ADSTP)
|
|
;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief ADC DMA ISR service routine.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
* @param[in] flags pre-shifted content of the ISR register
|
|
*/
|
|
static void adc_lld_serve_dma_interrupt(ADCDriver *adcp, uint32_t flags) {
|
|
|
|
/* DMA errors handling.*/
|
|
if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) {
|
|
/* DMA, this could help only if the DMA tries to access an unmapped
|
|
address space or violates alignment rules.*/
|
|
_adc_isr_error_code(adcp, ADC_ERR_DMAFAILURE);
|
|
}
|
|
else {
|
|
/* It is possible that the conversion group has already be reset by the
|
|
ADC error handler, in this case this interrupt is spurious.*/
|
|
if (adcp->grpp != NULL) {
|
|
if ((flags & STM32_DMA_ISR_HTIF) != 0) {
|
|
/* Half transfer processing.*/
|
|
_adc_isr_half_code(adcp);
|
|
}
|
|
if ((flags & STM32_DMA_ISR_TCIF) != 0) {
|
|
/* Transfer complete processing.*/
|
|
_adc_isr_full_code(adcp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief ADC ISR service routine.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
* @param[in] isr content of the ISR register
|
|
*/
|
|
static void adc_lld_serve_interrupt(ADCDriver *adcp, uint32_t isr) {
|
|
|
|
/* It could be a spurious interrupt caused by overflows after DMA disabling,
|
|
just ignore it in this case.*/
|
|
if (adcp->grpp != NULL) {
|
|
/* Note, an overflow may occur after the conversion ended before the driver
|
|
is able to stop the ADC, this is why the DMA channel is checked too.*/
|
|
if ((isr & ADC_ISR_OVR) &&
|
|
(dmaStreamGetTransactionSize(adcp->dmastp) > 0)) {
|
|
/* ADC overflow condition, this could happen only if the DMA is unable
|
|
to read data fast enough.*/
|
|
_adc_isr_error_code(adcp, ADC_ERR_OVERFLOW);
|
|
}
|
|
if (isr & ADC_ISR_AWD1) {
|
|
/* Analog watchdog error.*/
|
|
_adc_isr_error_code(adcp, ADC_ERR_AWD1);
|
|
}
|
|
if (isr & ADC_ISR_AWD2) {
|
|
/* Analog watchdog error.*/
|
|
_adc_isr_error_code(adcp, ADC_ERR_AWD2);
|
|
}
|
|
if (isr & ADC_ISR_AWD3) {
|
|
/* Analog watchdog error.*/
|
|
_adc_isr_error_code(adcp, ADC_ERR_AWD3);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
/* Driver interrupt handlers. */
|
|
/*===========================================================================*/
|
|
|
|
#if STM32_ADC_USE_ADC1 || defined(__DOXYGEN__)
|
|
/**
|
|
* @brief ADC1/ADC2 interrupt handler.
|
|
*
|
|
* @isr
|
|
*/
|
|
OSAL_IRQ_HANDLER(Vector88) {
|
|
uint32_t isr;
|
|
|
|
OSAL_IRQ_PROLOGUE();
|
|
|
|
#if STM32_ADC_DUAL_MODE
|
|
isr = ADC1->ISR;
|
|
isr |= ADC2->ISR;
|
|
ADC1->ISR = isr;
|
|
ADC2->ISR = isr;
|
|
#else /* !STM32_ADC_DUAL_MODE */
|
|
isr = ADC1->ISR;
|
|
ADC1->ISR = isr;
|
|
#endif /* !STM32_ADC_DUAL_MODE */
|
|
|
|
adc_lld_serve_interrupt(&ADCD1, isr);
|
|
|
|
OSAL_IRQ_EPILOGUE();
|
|
}
|
|
#endif /* STM32_ADC_USE_ADC1 */
|
|
|
|
#if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__)
|
|
/**
|
|
* @brief ADC3 interrupt handler.
|
|
*
|
|
* @isr
|
|
*/
|
|
OSAL_IRQ_HANDLER(VectorFC) {
|
|
uint32_t isr;
|
|
|
|
OSAL_IRQ_PROLOGUE();
|
|
|
|
isr = ADC3->ISR;
|
|
ADC3->ISR = isr;
|
|
|
|
adc_lld_serve_interrupt(&ADCD3, isr);
|
|
|
|
OSAL_IRQ_EPILOGUE();
|
|
}
|
|
|
|
#if STM32_ADC_DUAL_MODE
|
|
/**
|
|
* @brief ADC4 interrupt handler (as ADC3 slave).
|
|
*
|
|
* @isr
|
|
*/
|
|
OSAL_IRQ_HANDLER(Vector134) {
|
|
uint32_t isr;
|
|
|
|
OSAL_IRQ_PROLOGUE();
|
|
|
|
isr = ADC4->ISR;
|
|
ADC4->ISR = isr;
|
|
|
|
adc_lld_serve_interrupt(&ADCD3, isr);
|
|
|
|
OSAL_IRQ_EPILOGUE();
|
|
}
|
|
#endif /* STM32_ADC_DUAL_MODE */
|
|
#endif /* STM32_ADC_USE_ADC3 */
|
|
|
|
/*===========================================================================*/
|
|
/* Driver exported functions. */
|
|
/*===========================================================================*/
|
|
|
|
/**
|
|
* @brief Low level ADC driver initialization.
|
|
*
|
|
* @notapi
|
|
*/
|
|
void adc_lld_init(void) {
|
|
|
|
#if STM32_ADC_USE_ADC1
|
|
/* Driver initialization.*/
|
|
adcObjectInit(&ADCD1);
|
|
ADCD1.adcc = ADC1_2;
|
|
ADCD1.adcm = ADC1;
|
|
#if STM32_ADC_DUAL_MODE
|
|
ADCD1.adcs = ADC2;
|
|
#endif
|
|
ADCD1.dmastp = STM32_DMA1_STREAM1;
|
|
ADCD1.dmamode = ADC_DMA_SIZE |
|
|
STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) |
|
|
STM32_DMA_CR_DIR_P2M |
|
|
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
|
|
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
|
|
nvicEnableVector(ADC1_2_IRQn, STM32_ADC_ADC12_IRQ_PRIORITY);
|
|
#endif /* STM32_ADC_USE_ADC1 */
|
|
|
|
#if STM32_ADC_USE_ADC3
|
|
/* Driver initialization.*/
|
|
adcObjectInit(&ADCD3);
|
|
ADCD3.adcc = ADC3_4;
|
|
ADCD3.adcm = ADC3;
|
|
#if STM32_ADC_DUAL_MODE
|
|
ADCD3.adcs = ADC4;
|
|
#endif
|
|
ADCD3.dmastp = STM32_DMA2_STREAM5;
|
|
ADCD3.dmamode = ADC_DMA_SIZE |
|
|
STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) |
|
|
STM32_DMA_CR_DIR_P2M |
|
|
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
|
|
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
|
|
nvicEnableVector(ADC3_IRQn, STM32_ADC_ADC34_IRQ_PRIORITY);
|
|
#if STM32_ADC_DUAL_MODE
|
|
nvicEnableVector(ADC4_IRQn, STM32_ADC_ADC34_IRQ_PRIORITY);
|
|
#endif
|
|
#endif /* STM32_ADC_USE_ADC3 */
|
|
}
|
|
|
|
/**
|
|
* @brief Configures and activates the ADC peripheral.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*
|
|
* @notapi
|
|
*/
|
|
void adc_lld_start(ADCDriver *adcp) {
|
|
|
|
/* If in stopped state then enables the ADC and DMA clocks.*/
|
|
if (adcp->state == ADC_STOP) {
|
|
#if STM32_ADC_USE_ADC1
|
|
if (&ADCD1 == adcp) {
|
|
bool_t b;
|
|
b = dmaStreamAllocate(adcp->dmastp,
|
|
STM32_ADC_ADC12_DMA_IRQ_PRIORITY,
|
|
(stm32_dmaisr_t)adc_lld_serve_dma_interrupt,
|
|
(void *)adcp);
|
|
osalDbgAssert(!b, "stream already allocated");
|
|
rccEnableADC12(FALSE);
|
|
}
|
|
#endif /* STM32_ADC_USE_ADC1 */
|
|
|
|
#if STM32_ADC_USE_ADC3
|
|
if (&ADCD3 == adcp) {
|
|
bool_t b;
|
|
b = dmaStreamAllocate(adcp->dmastp,
|
|
STM32_ADC_ADC34_DMA_IRQ_PRIORITY,
|
|
(stm32_dmaisr_t)adc_lld_serve_dma_interrupt,
|
|
(void *)adcp);
|
|
osalDbgAssert(!b, "stream already allocated");
|
|
rccEnableADC34(FALSE);
|
|
}
|
|
#endif /* STM32_ADC_USE_ADC2 */
|
|
|
|
/* Setting DMA peripheral-side pointer.*/
|
|
#if STM32_ADC_DUAL_MODE
|
|
dmaStreamSetPeripheral(adcp->dmastp, &adcp->adcc->CDR);
|
|
#else
|
|
dmaStreamSetPeripheral(adcp->dmastp, &adcp->adcm->DR);
|
|
#endif
|
|
|
|
/* Clock source setting.*/
|
|
adcp->adcc->CCR = STM32_ADC_ADC12_CLOCK_MODE | ADC_DMA_MDMA;
|
|
|
|
/* Master ADC calibration.*/
|
|
adc_lld_vreg_on(adcp);
|
|
adc_lld_calibrate(adcp);
|
|
|
|
/* Master ADC enabled here in order to reduce conversions latencies.*/
|
|
adc_lld_analog_on(adcp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Deactivates the ADC peripheral.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*
|
|
* @notapi
|
|
*/
|
|
void adc_lld_stop(ADCDriver *adcp) {
|
|
|
|
/* If in ready state then disables the ADC clock and analog part.*/
|
|
if (adcp->state == ADC_READY) {
|
|
|
|
/* Releasing the associated DMA channel.*/
|
|
dmaStreamRelease(adcp->dmastp);
|
|
|
|
/* Stopping the ongoing conversion, if any.*/
|
|
adc_lld_stop_adc(adcp);
|
|
|
|
/* Disabling ADC analog circuit and regulator.*/
|
|
adc_lld_analog_off(adcp);
|
|
adc_lld_vreg_off(adcp);
|
|
|
|
#if STM32_ADC_USE_ADC1
|
|
if (&ADCD1 == adcp)
|
|
rccDisableADC12(FALSE);
|
|
#endif
|
|
|
|
#if STM32_ADC_USE_ADC3
|
|
if (&ADCD1 == adcp)
|
|
rccDisableADC34(FALSE);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Starts an ADC conversion.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*
|
|
* @notapi
|
|
*/
|
|
void adc_lld_start_conversion(ADCDriver *adcp) {
|
|
uint32_t dmamode, ccr, cfgr;
|
|
const ADCConversionGroup *grpp = adcp->grpp;
|
|
|
|
osalDbgAssert(!STM32_ADC_DUAL_MODE || ((grpp->num_channels & 1) == 0),
|
|
"odd number of channels in dual mode");
|
|
|
|
/* Calculating control registers values.*/
|
|
dmamode = adcp->dmamode;
|
|
ccr = grpp->ccr | (adcp->adcc->CCR & (ADC_CCR_CKMODE_MASK |
|
|
ADC_CCR_MDMA_MASK));
|
|
cfgr = grpp->cfgr | ADC_CFGR_CONT | ADC_CFGR_DMAEN;
|
|
if (grpp->circular) {
|
|
dmamode |= STM32_DMA_CR_CIRC;
|
|
#if STM32_ADC_DUAL_MODE
|
|
ccr |= ADC_CCR_DMACFG_CIRCULAR;
|
|
#else
|
|
cfgr |= ADC_CFGR_DMACFG_CIRCULAR;
|
|
#endif
|
|
}
|
|
|
|
/* DMA setup.*/
|
|
if (adcp->depth > 1) {
|
|
/* If the buffer depth is greater than one then the half transfer interrupt
|
|
interrupt is enabled in order to allows streaming processing.*/
|
|
dmamode |= STM32_DMA_CR_HTIE;
|
|
}
|
|
dmaStreamSetMemory0(adcp->dmastp, adcp->samples);
|
|
#if STM32_ADC_DUAL_MODE
|
|
dmaStreamSetTransactionSize(adcp->dmastp, ((uint32_t)grpp->num_channels/2) *
|
|
(uint32_t)adcp->depth);
|
|
#else
|
|
dmaStreamSetTransactionSize(adcp->dmastp, (uint32_t)grpp->num_channels *
|
|
(uint32_t)adcp->depth);
|
|
#endif
|
|
dmaStreamSetMode(adcp->dmastp, dmamode);
|
|
dmaStreamEnable(adcp->dmastp);
|
|
|
|
/* Configuring the CCR register with the static settings ORed with
|
|
the user-specified settings in the conversion group configuration
|
|
structure.*/
|
|
adcp->adcc->CCR = ccr;
|
|
|
|
/* ADC setup, if it is defined a callback for the analog watch dog then it
|
|
is enabled.*/
|
|
adcp->adcm->ISR = adcp->adcm->ISR;
|
|
adcp->adcm->IER = ADC_IER_OVR | ADC_IER_AWD1;
|
|
adcp->adcm->TR1 = grpp->tr1;
|
|
#if STM32_ADC_DUAL_MODE
|
|
adcp->adcm->SMPR1 = grpp->smpr[0];
|
|
adcp->adcm->SMPR2 = grpp->smpr[1];
|
|
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
|
|
adcp->adcm->SQR2 = grpp->sqr[1];
|
|
adcp->adcm->SQR3 = grpp->sqr[2];
|
|
adcp->adcm->SQR4 = grpp->sqr[3];
|
|
adcp->adcs->SMPR1 = grpp->ssmpr[0];
|
|
adcp->adcs->SMPR2 = grpp->ssmpr[1];
|
|
adcp->adcs->SQR1 = grpp->ssqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
|
|
adcp->adcs->SQR2 = grpp->ssqr[1];
|
|
adcp->adcs->SQR3 = grpp->ssqr[2];
|
|
adcp->adcs->SQR4 = grpp->ssqr[3];
|
|
|
|
#else /* !STM32_ADC_DUAL_MODE */
|
|
adcp->adcm->SMPR1 = grpp->smpr[0];
|
|
adcp->adcm->SMPR2 = grpp->smpr[1];
|
|
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels);
|
|
adcp->adcm->SQR2 = grpp->sqr[1];
|
|
adcp->adcm->SQR3 = grpp->sqr[2];
|
|
adcp->adcm->SQR4 = grpp->sqr[3];
|
|
#endif /* !STM32_ADC_DUAL_MODE */
|
|
|
|
/* ADC configuration.*/
|
|
adcp->adcm->CFGR = cfgr;
|
|
|
|
/* Starting conversion.*/
|
|
adcp->adcm->CR |= ADC_CR_ADSTART;
|
|
}
|
|
|
|
/**
|
|
* @brief Stops an ongoing conversion.
|
|
*
|
|
* @param[in] adcp pointer to the @p ADCDriver object
|
|
*
|
|
* @notapi
|
|
*/
|
|
void adc_lld_stop_conversion(ADCDriver *adcp) {
|
|
|
|
dmaStreamDisable(adcp->dmastp);
|
|
adc_lld_stop_adc(adcp);
|
|
}
|
|
|
|
#endif /* HAL_USE_ADC */
|
|
|
|
/** @} */
|