tinySA/demos/ARMCM4-STM32F407-DISCOVERY-.../main.c

330 lines
9.9 KiB
C

/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
2011,2012 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ch.h"
#include "hal.h"
#include "test.h"
#include "chprintf.h"
#include "shell.h"
#include "lis302dl.h"
#include "usbcfg.h"
/* Virtual serial port over USB.*/
static SerialUSBDriver SDU1;
/*===========================================================================*/
/* Command line related. */
/*===========================================================================*/
#define SHELL_WA_SIZE THD_WA_SIZE(2048)
#define TEST_WA_SIZE THD_WA_SIZE(256)
static void cmd_mem(BaseSequentialStream *chp, int argc, char *argv[]) {
size_t n, size;
(void)argv;
if (argc > 0) {
chprintf(chp, "Usage: mem\r\n");
return;
}
n = chHeapStatus(NULL, &size);
chprintf(chp, "core free memory : %u bytes\r\n", chCoreStatus());
chprintf(chp, "heap fragments : %u\r\n", n);
chprintf(chp, "heap free total : %u bytes\r\n", size);
}
static void cmd_threads(BaseSequentialStream *chp, int argc, char *argv[]) {
static const char *states[] = {THD_STATE_NAMES};
Thread *tp;
(void)argv;
if (argc > 0) {
chprintf(chp, "Usage: threads\r\n");
return;
}
chprintf(chp, " addr stack prio refs state time\r\n");
tp = chRegFirstThread();
do {
chprintf(chp, "%.8lx %.8lx %4lu %4lu %9s %lu\r\n",
(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
states[tp->p_state], (uint32_t)tp->p_time);
tp = chRegNextThread(tp);
} while (tp != NULL);
}
static void cmd_test(BaseSequentialStream *chp, int argc, char *argv[]) {
Thread *tp;
(void)argv;
if (argc > 0) {
chprintf(chp, "Usage: test\r\n");
return;
}
tp = chThdCreateFromHeap(NULL, TEST_WA_SIZE, chThdGetPriority(),
TestThread, chp);
if (tp == NULL) {
chprintf(chp, "out of memory\r\n");
return;
}
chThdWait(tp);
}
static const ShellCommand commands[] = {
{"mem", cmd_mem},
{"threads", cmd_threads},
{"test", cmd_test},
{NULL, NULL}
};
static const ShellConfig shell_cfg1 = {
(BaseSequentialStream *)&SDU1,
commands
};
/*===========================================================================*/
/* Accelerometer related. */
/*===========================================================================*/
/*
* PWM configuration structure.
* Cyclic callback enabled, channels 1 and 4 enabled without callbacks,
* the active state is a logic one.
*/
static const PWMConfig pwmcfg = {
100000, /* 100kHz PWM clock frequency. */
128, /* PWM period is 128 cycles. */
NULL,
{
{PWM_OUTPUT_ACTIVE_HIGH, NULL},
{PWM_OUTPUT_ACTIVE_HIGH, NULL},
{PWM_OUTPUT_ACTIVE_HIGH, NULL},
{PWM_OUTPUT_ACTIVE_HIGH, NULL}
},
/* HW dependent part.*/
0
};
/*
* SPI1 configuration structure.
* Speed 5.25MHz, CPHA=1, CPOL=1, 8bits frames, MSb transmitted first.
* The slave select line is the pin GPIOE_CS_SPI on the port GPIOE.
*/
static const SPIConfig spi1cfg = {
NULL,
/* HW dependent part.*/
GPIOE,
GPIOE_CS_SPI,
SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_CPOL | SPI_CR1_CPHA
};
/*
* SPI2 configuration structure.
* Speed 21MHz, CPHA=0, CPOL=0, 8bits frames, MSb transmitted first.
* The slave select line is the pin 12 on the port GPIOA.
*/
static const SPIConfig spi2cfg = {
NULL,
/* HW dependent part.*/
GPIOB,
12,
0
};
/*
* This is a periodic thread that reads accelerometer and outputs
* result to SPI2 and PWM.
*/
static WORKING_AREA(waThread1, 128);
static msg_t Thread1(void *arg) {
static int8_t xbuf[4], ybuf[4]; /* Last accelerometer data.*/
systime_t time; /* Next deadline.*/
(void)arg;
chRegSetThreadName("reader");
/* LIS302DL initialization.*/
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG1, 0x43);
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG2, 0x00);
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG3, 0x00);
/* Reader thread loop.*/
time = chTimeNow();
while (TRUE) {
int32_t x, y;
unsigned i;
/* Keeping an history of the latest four accelerometer readings.*/
for (i = 3; i > 0; i--) {
xbuf[i] = xbuf[i - 1];
ybuf[i] = ybuf[i - 1];
}
/* Reading MEMS accelerometer X and Y registers.*/
xbuf[0] = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTX);
ybuf[0] = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTY);
/* Transmitting accelerometer the data over SPI2.*/
spiSelect(&SPID2);
spiSend(&SPID2, 4, xbuf);
spiSend(&SPID2, 4, ybuf);
spiUnselect(&SPID2);
/* Calculating average of the latest four accelerometer readings.*/
x = ((int32_t)xbuf[0] + (int32_t)xbuf[1] +
(int32_t)xbuf[2] + (int32_t)xbuf[3]) / 4;
y = ((int32_t)ybuf[0] + (int32_t)ybuf[1] +
(int32_t)ybuf[2] + (int32_t)ybuf[3]) / 4;
/* Reprogramming the four PWM channels using the accelerometer data.*/
if (y < 0) {
pwmEnableChannel(&PWMD4, 0, (pwmcnt_t)-y);
pwmEnableChannel(&PWMD4, 2, (pwmcnt_t)0);
}
else {
pwmEnableChannel(&PWMD4, 2, (pwmcnt_t)y);
pwmEnableChannel(&PWMD4, 0, (pwmcnt_t)0);
}
if (x < 0) {
pwmEnableChannel(&PWMD4, 1, (pwmcnt_t)-x);
pwmEnableChannel(&PWMD4, 3, (pwmcnt_t)0);
}
else {
pwmEnableChannel(&PWMD4, 3, (pwmcnt_t)x);
pwmEnableChannel(&PWMD4, 1, (pwmcnt_t)0);
}
/* Waiting until the next 250 milliseconds time interval.*/
chThdSleepUntil(time += MS2ST(100));
}
}
/*===========================================================================*/
/* Initialization and main thread. */
/*===========================================================================*/
/*
* Application entry point.
*/
int main(void) {
Thread *shelltp = NULL;
/*
* System initializations.
* - HAL initialization, this also initializes the configured device drivers
* and performs the board-specific initializations.
* - Kernel initialization, the main() function becomes a thread and the
* RTOS is active.
*/
halInit();
chSysInit();
/*
* Shell manager initialization.
*/
shellInit();
/*
* Initializes a serial-over-USB CDC driver.
*/
sduObjectInit(&SDU1);
sduStart(&SDU1, &serusbcfg);
/*
* Activates the USB driver and then the USB bus pull-up on D+.
* Note, a delay is inserted in order to not have to disconnect the cable
* after a reset.
*/
usbDisconnectBus(serusbcfg.usbp);
chThdSleepMilliseconds(1000);
usbStart(serusbcfg.usbp, &usbcfg);
usbConnectBus(serusbcfg.usbp);
/*
* Activates the serial driver 2 using the driver default configuration.
* PA2(TX) and PA3(RX) are routed to USART2.
*/
sdStart(&SD2, NULL);
palSetPadMode(GPIOA, 2, PAL_MODE_ALTERNATE(7));
palSetPadMode(GPIOA, 3, PAL_MODE_ALTERNATE(7));
/*
* Initializes the SPI driver 1 in order to access the MEMS. The signals
* are already initialized in the board file.
*/
spiStart(&SPID1, &spi1cfg);
/*
* Initializes the SPI driver 2. The SPI2 signals are routed as follow:
* PB12 - NSS.
* PB13 - SCK.
* PB14 - MISO.
* PB15 - MOSI.
*/
spiStart(&SPID2, &spi2cfg);
palSetPad(GPIOB, 12);
palSetPadMode(GPIOB, 12, PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST); /* NSS. */
palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(5) |
PAL_STM32_OSPEED_HIGHEST); /* SCK. */
palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(5)); /* MISO. */
palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(5) |
PAL_STM32_OSPEED_HIGHEST); /* MOSI. */
/*
* Initializes the PWM driver 4, routes the TIM4 outputs to the board LEDs.
*/
pwmStart(&PWMD4, &pwmcfg);
palSetPadMode(GPIOD, GPIOD_LED4, PAL_MODE_ALTERNATE(2)); /* Green. */
palSetPadMode(GPIOD, GPIOD_LED3, PAL_MODE_ALTERNATE(2)); /* Orange. */
palSetPadMode(GPIOD, GPIOD_LED5, PAL_MODE_ALTERNATE(2)); /* Red. */
palSetPadMode(GPIOD, GPIOD_LED6, PAL_MODE_ALTERNATE(2)); /* Blue. */
/*
* Creates the example thread.
*/
chThdCreateStatic(waThread1, sizeof(waThread1),
NORMALPRIO + 10, Thread1, NULL);
/*
* Normal main() thread activity, in this demo it just performs
* a shell respawn upon its termination.
*/
while (TRUE) {
if (!shelltp) {
if (SDU1.config->usbp->state == USB_ACTIVE) {
/* Spawns a new shell.*/
shelltp = shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO);
}
}
else {
/* If the previous shell exited.*/
if (chThdTerminated(shelltp)) {
/* Recovers memory of the previous shell.*/
chThdRelease(shelltp);
shelltp = NULL;
}
}
chThdSleepMilliseconds(500);
}
}