tinySA/os/hal/ports/KINETIS/K20x/spi_lld.c

419 lines
13 KiB
C

/*
ChibiOS - Copyright (C) 2014-2015 Fabio Utzig
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @file KINETIS/spi_lld.c
* @brief KINETIS SPI subsystem low level driver source.
*
* @addtogroup SPI
* @{
*/
#include "hal.h"
#if HAL_USE_SPI || defined(__DOXYGEN__)
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#if !defined(KINETIS_SPI_USE_SPI0)
#define KINETIS_SPI_USE_SPI0 TRUE
#endif
#if !defined(KINETIS_SPI0_RX_DMA_IRQ_PRIORITY)
#define KINETIS_SPI0_RX_DMA_IRQ_PRIORITY 8
#endif
#if !defined(KINETIS_SPI0_RX_DMAMUX_CHANNEL)
#define KINETIS_SPI0_RX_DMAMUX_CHANNEL 0
#endif
#if !defined(KINETIS_SPI0_RX_DMA_CHANNEL)
#define KINETIS_SPI0_RX_DMA_CHANNEL 0
#endif
#if !defined(KINETIS_SPI0_TX_DMAMUX_CHANNEL)
#define KINETIS_SPI0_TX_DMAMUX_CHANNEL 1
#endif
#if !defined(KINETIS_SPI0_TX_DMA_CHANNEL)
#define KINETIS_SPI0_TX_DMA_CHANNEL 1
#endif
#define DMAMUX_SPI_RX_SOURCE 16
#define DMAMUX_SPI_TX_SOURCE 17
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/** @brief SPI0 driver identifier.*/
#if KINETIS_SPI_USE_SPI0 || defined(__DOXYGEN__)
SPIDriver SPID1;
#endif
/*===========================================================================*/
/* Driver local variables and types. */
/*===========================================================================*/
/* Use a dummy byte as the source/destination when a buffer is not provided */
/* Note: The MMC driver relies on 0xFF being sent for dummy bytes. */
static volatile uint16_t dmaRxDummy;
static uint16_t dmaTxDummy = 0xFFFF;
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
static void spi_start_xfer(SPIDriver *spip, bool polling)
{
/*
* Enable the DSPI peripheral in master mode.
* Clear the TX and RX FIFOs.
* */
spip->spi->MCR = SPIx_MCR_MSTR | SPIx_MCR_CLR_TXF | SPIx_MCR_CLR_RXF;
/* If we are not polling then enable DMA */
if (!polling) {
/* Enable receive dma and transmit dma */
spip->spi->RSER = SPIx_RSER_RFDF_DIRS | SPIx_RSER_RFDF_RE |
SPIx_RSER_TFFF_RE | SPIx_RSER_TFFF_DIRS;
/* Configure RX DMA */
if (spip->rxbuf) {
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].DADDR = (uint32_t)spip->rxbuf;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].DOFF = spip->word_size;
} else {
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].DADDR = (uint32_t)&dmaRxDummy;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].DOFF = 0;
}
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].BITER_ELINKNO = spip->count;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].CITER_ELINKNO = spip->count;
/* Enable Request Register (ERQ) for RX by writing 0 to SERQ */
DMA->SERQ = KINETIS_SPI0_RX_DMA_CHANNEL;
/* Configure TX DMA */
if (spip->txbuf) {
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].SADDR = (uint32_t)spip->txbuf;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].SOFF = spip->word_size;
} else {
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].SADDR = (uint32_t)&dmaTxDummy;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].SOFF = 0;
}
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].BITER_ELINKNO = spip->count;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].CITER_ELINKNO = spip->count;
/* Enable Request Register (ERQ) for TX by writing 1 to SERQ */
DMA->SERQ = KINETIS_SPI0_TX_DMA_CHANNEL;
}
}
static void spi_stop_xfer(SPIDriver *spip)
{
/* Halt the DSPI peripheral */
spip->spi->MCR = SPIx_MCR_MSTR | SPIx_MCR_HALT;
/* Clear all the flags which are currently set. */
spip->spi->SR |= spip->spi->SR;
}
/*===========================================================================*/
/* Driver interrupt handlers. */
/*===========================================================================*/
OSAL_IRQ_HANDLER(Vector40) {
OSAL_IRQ_PROLOGUE();
/* Clear bit 0 in Interrupt Request Register (INT) by writing 0 to CINT */
DMA->CINT = KINETIS_SPI0_RX_DMA_CHANNEL;
spi_stop_xfer(&SPID1);
_spi_isr_code(&SPID1);
OSAL_IRQ_EPILOGUE();
}
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
/**
* @brief Low level SPI driver initialization.
*
* @notapi
*/
void spi_lld_init(void) {
#if KINETIS_SPI_USE_SPI0
spiObjectInit(&SPID1);
#endif
}
/**
* @brief Configures and activates the SPI peripheral.
*
* @param[in] spip pointer to the @p SPIDriver object
*
* @notapi
*/
void spi_lld_start(SPIDriver *spip) {
/* If in stopped state then enables the SPI and DMA clocks.*/
if (spip->state == SPI_STOP) {
#if KINETIS_SPI_USE_SPI0
if (&SPID1 == spip) {
/* Enable the clock for SPI0 */
SIM->SCGC6 |= SIM_SCGC6_SPI0;
SPID1.spi = SPI0;
if (spip->config->tar0) {
spip->spi->CTAR[0] = spip->config->tar0;
} else {
spip->spi->CTAR[0] = KINETIS_SPI_TAR0_DEFAULT;
}
}
#endif
nvicEnableVector(DMA0_IRQn, KINETIS_SPI0_RX_DMA_IRQ_PRIORITY);
SIM->SCGC6 |= SIM_SCGC6_DMAMUX;
SIM->SCGC7 |= SIM_SCGC7_DMA;
/* Clear DMA error flags */
DMA->ERR = 0x0F;
/* Rx, select SPI Rx FIFO */
DMAMUX->CHCFG[KINETIS_SPI0_RX_DMAMUX_CHANNEL] = DMAMUX_CHCFGn_ENBL |
DMAMUX_CHCFGn_SOURCE(DMAMUX_SPI_RX_SOURCE);
/* Tx, select SPI Tx FIFO */
DMAMUX->CHCFG[KINETIS_SPI0_TX_DMAMUX_CHANNEL] = DMAMUX_CHCFGn_ENBL |
DMAMUX_CHCFGn_SOURCE(DMAMUX_SPI_TX_SOURCE);
/* Extract the frame size from the TAR */
uint16_t frame_size = ((spip->spi->CTAR[0] >> SPIx_CTARn_FMSZ_SHIFT) &
SPIx_CTARn_FMSZ_MASK) + 1;
/* DMA transfer size is 16 bits for a frame size > 8 bits */
uint16_t dma_size = frame_size > 8 ? 1 : 0;
/* DMA word size is 2 for a 16 bit frame size */
spip->word_size = frame_size > 8 ? 2 : 1;
/* configure DMA RX fixed values */
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].SADDR = (uint32_t)&SPI0->POPR;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].SOFF = 0;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].SLAST = 0;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].DLASTSGA = 0;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].ATTR = DMA_ATTR_SSIZE(dma_size) |
DMA_ATTR_DSIZE(dma_size);
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].NBYTES_MLNO = spip->word_size;
DMA->TCD[KINETIS_SPI0_RX_DMA_CHANNEL].CSR = DMA_CSR_DREQ_MASK |
DMA_CSR_INTMAJOR_MASK;
/* configure DMA TX fixed values */
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].SLAST = 0;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].DADDR = (uint32_t)&SPI0->PUSHR;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].DOFF = 0;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].DLASTSGA = 0;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].ATTR = DMA_ATTR_SSIZE(dma_size) |
DMA_ATTR_DSIZE(dma_size);
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].NBYTES_MLNO = spip->word_size;
DMA->TCD[KINETIS_SPI0_TX_DMA_CHANNEL].CSR = DMA_CSR_DREQ_MASK;
}
}
/**
* @brief Deactivates the SPI peripheral.
*
* @param[in] spip pointer to the @p SPIDriver object
*
* @notapi
*/
void spi_lld_stop(SPIDriver *spip) {
/* If in ready state then disables the SPI clock.*/
if (spip->state == SPI_READY) {
nvicDisableVector(DMA0_IRQn);
SIM->SCGC7 &= ~SIM_SCGC7_DMA;
SIM->SCGC6 &= ~SIM_SCGC6_DMAMUX;
#if KINETIS_SPI_USE_SPI0
if (&SPID1 == spip) {
/* SPI halt.*/
spip->spi->MCR |= SPIx_MCR_HALT;
}
#endif
/* Disable the clock for SPI0 */
SIM->SCGC6 &= ~SIM_SCGC6_SPI0;
}
}
/**
* @brief Asserts the slave select signal and prepares for transfers.
*
* @param[in] spip pointer to the @p SPIDriver object
*
* @notapi
*/
void spi_lld_select(SPIDriver *spip) {
palClearPad(spip->config->ssport, spip->config->sspad);
}
/**
* @brief Deasserts the slave select signal.
* @details The previously selected peripheral is unselected.
*
* @param[in] spip pointer to the @p SPIDriver object
*
* @notapi
*/
void spi_lld_unselect(SPIDriver *spip) {
palSetPad(spip->config->ssport, spip->config->sspad);
}
/**
* @brief Ignores data on the SPI bus.
* @details This asynchronous function starts the transmission of a series of
* idle words on the SPI bus and ignores the received data.
* @post At the end of the operation the configured callback is invoked.
*
* @param[in] spip pointer to the @p SPIDriver object
* @param[in] n number of words to be ignored
*
* @notapi
*/
void spi_lld_ignore(SPIDriver *spip, size_t n) {
spip->count = n;
spip->rxbuf = NULL;
spip->txbuf = NULL;
spi_start_xfer(spip, false);
}
/**
* @brief Exchanges data on the SPI bus.
* @details This asynchronous function starts a simultaneous transmit/receive
* operation.
* @post At the end of the operation the configured callback is invoked.
* @note The buffers are organized as uint8_t arrays for data sizes below or
* equal to 8 bits else it is organized as uint16_t arrays.
*
* @param[in] spip pointer to the @p SPIDriver object
* @param[in] n number of words to be exchanged
* @param[in] txbuf the pointer to the transmit buffer
* @param[out] rxbuf the pointer to the receive buffer
*
* @notapi
*/
void spi_lld_exchange(SPIDriver *spip, size_t n,
const void *txbuf, void *rxbuf) {
spip->count = n;
spip->rxbuf = rxbuf;
spip->txbuf = txbuf;
spi_start_xfer(spip, false);
}
/**
* @brief Sends data over the SPI bus.
* @details This asynchronous function starts a transmit operation.
* @post At the end of the operation the configured callback is invoked.
* @note The buffers are organized as uint8_t arrays for data sizes below or
* equal to 8 bits else it is organized as uint16_t arrays.
*
* @param[in] spip pointer to the @p SPIDriver object
* @param[in] n number of words to send
* @param[in] txbuf the pointer to the transmit buffer
*
* @notapi
*/
void spi_lld_send(SPIDriver *spip, size_t n, const void *txbuf) {
spip->count = n;
spip->rxbuf = NULL;
spip->txbuf = (void *)txbuf;
spi_start_xfer(spip, false);
}
/**
* @brief Receives data from the SPI bus.
* @details This asynchronous function starts a receive operation.
* @post At the end of the operation the configured callback is invoked.
* @note The buffers are organized as uint8_t arrays for data sizes below or
* equal to 8 bits else it is organized as uint16_t arrays.
*
* @param[in] spip pointer to the @p SPIDriver object
* @param[in] n number of words to receive
* @param[out] rxbuf the pointer to the receive buffer
*
* @notapi
*/
void spi_lld_receive(SPIDriver *spip, size_t n, void *rxbuf) {
spip->count = n;
spip->rxbuf = rxbuf;
spip->txbuf = NULL;
spi_start_xfer(spip, false);
}
/**
* @brief Exchanges one frame using a polled wait.
* @details This synchronous function exchanges one frame using a polled
* synchronization method. This function is useful when exchanging
* small amount of data on high speed channels, usually in this
* situation is much more efficient just wait for completion using
* polling than suspending the thread waiting for an interrupt.
*
* @param[in] spip pointer to the @p SPIDriver object
* @param[in] frame the data frame to send over the SPI bus
* @return The received data frame from the SPI bus.
*/
uint16_t spi_lld_polled_exchange(SPIDriver *spip, uint16_t frame) {
spi_start_xfer(spip, true);
spip->spi->PUSHR = SPIx_PUSHR_TXDATA(frame);
while ((spip->spi->SR & SPIx_SR_RFDF) == 0)
;
frame = spip->spi->POPR;
spi_stop_xfer(spip);
return frame;
}
#endif /* HAL_USE_SPI */
/** @} */