tinySA/os/hal/platforms/STM32F30x/adc_lld.c

560 lines
16 KiB
C

/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
2011,2012,2013 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file STM32F3xx/adc_lld.c
* @brief STM32F3xx ADC subsystem low level driver source.
*
* @addtogroup ADC
* @{
*/
#include "ch.h"
#include "hal.h"
#if HAL_USE_ADC || defined(__DOXYGEN__)
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#if STM32_ADC_DUAL_MODE
#if STM32_ADC_COMPACT_SAMPLES
/* Compact type dual mode.*/
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD)
#define ADC_DMA_MDMA ADC_CCR_MDMA_HWORD
#else /* !STM32_ADC_COMPACT_SAMPLES */
/* Large type dual mode.*/
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_PSIZE_WORD)
#define ADC_DMA_MDMA ADC_CCR_MDMA_WORD
#endif /* !STM32_ADC_COMPACT_SAMPLES */
#else /* !STM32_ADC_DUAL_MODE */
#if STM32_ADC_COMPACT_SAMPLES
/* Compact type single mode.*/
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_PSIZE_BYTE)
#define ADC_DMA_MDMA ADC_CCR_MDMA_DISABLED
#else /* !STM32_ADC_COMPACT_SAMPLES */
/* Large type single mode.*/
#define ADC_DMA_SIZE (STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD)
#define ADC_DMA_MDMA ADC_CCR_MDMA_DISABLED
#endif /* !STM32_ADC_COMPACT_SAMPLES */
#endif /* !STM32_ADC_DUAL_MODE */
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/** @brief ADC1 driver identifier.*/
#if STM32_ADC_USE_ADC1 || defined(__DOXYGEN__)
ADCDriver ADCD1;
#endif
/** @brief ADC1 driver identifier.*/
#if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__)
ADCDriver ADCD3;
#endif
/*===========================================================================*/
/* Driver local variables. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
/**
* @brief Enables the ADC voltage regulator.
*
* @param[in] adcp pointer to the @p ADCDriver object
*/
static void adc_lld_vreg_on(ADCDriver *adcp) {
adcp->adcm->CR = 0; /* RM 12.4.3.*/
adcp->adcm->CR = ADC_CR_ADVREGEN_0;
#if STM32_ADC_DUAL_MODE
adcp->adcs->CR = ADC_CR_ADVREGEN_0;
#endif
halPolledDelay(US2RTT(10));
}
/**
* @brief Disables the ADC voltage regulator.
*
* @param[in] adcp pointer to the @p ADCDriver object
*/
static void adc_lld_vreg_off(ADCDriver *adcp) {
adcp->adcm->CR = 0; /* RM 12.4.3.*/
adcp->adcm->CR = ADC_CR_ADVREGEN_1;
#if STM32_ADC_DUAL_MODE
adcp->adcs->CR = ADC_CR_ADVREGEN_1;
#endif
}
/**
* @brief Enables the ADC analog circuit.
*
* @param[in] adcp pointer to the @p ADCDriver object
*/
static void adc_lld_analog_on(ADCDriver *adcp) {
adcp->adcm->CR |= ADC_CR_ADEN;
while ((adcp->adcm->ISR & ADC_ISR_ADRDY) == 0)
;
#if STM32_ADC_DUAL_MODE
adcp->adcs->CR |= ADC_CR_ADEN;
while ((adcp->adcs->ISR & ADC_ISR_ADRDY) == 0)
;
#endif
}
/**
* @brief Disables the ADC analog circuit.
*
* @param[in] adcp pointer to the @p ADCDriver object
*/
static void adc_lld_analog_off(ADCDriver *adcp) {
adcp->adcm->CR |= ADC_CR_ADDIS;
while ((adcp->adcm->CR & ADC_CR_ADDIS) != 0)
;
#if STM32_ADC_DUAL_MODE
adcp->adcs->CR |= ADC_CR_ADDIS;
while ((adcp->adcs->CR & ADC_CR_ADDIS) != 0)
;
#endif
}
/**
* @brief Calibrates and ADC unit.
*
* @param[in] adcp pointer to the @p ADCDriver object
*/
static void adc_lld_calibrate(ADCDriver *adcp) {
chDbgAssert(adcp->adcm->CR == ADC_CR_ADVREGEN_0, "adc_lld_calibrate(), #1",
"invalid register state");
adcp->adcm->CR |= ADC_CR_ADCAL;
while ((adcp->adcm->CR & ADC_CR_ADCAL) != 0)
;
#if STM32_ADC_DUAL_MODE
chDbgAssert(adcp->adcs->CR == ADC_CR_ADVREGEN_0, "adc_lld_calibrate(), #2",
"invalid register state");
adcp->adcs->CR |= ADC_CR_ADCAL;
while ((adcp->adcs->CR & ADC_CR_ADCAL) != 0)
;
#endif
}
/**
* @brief Stops an ongoing conversion, if any.
*
* @param[in] adcp pointer to the @p ADCDriver object
*/
static void adc_lld_stop_adc(ADCDriver *adcp) {
if (adcp->adcm->CR & ADC_CR_ADSTART) {
adcp->adcm->CR |= ADC_CR_ADSTP;
while (adcp->adcm->CR & ADC_CR_ADSTP)
;
}
}
/**
* @brief ADC DMA ISR service routine.
*
* @param[in] adcp pointer to the @p ADCDriver object
* @param[in] flags pre-shifted content of the ISR register
*/
static void adc_lld_serve_dma_interrupt(ADCDriver *adcp, uint32_t flags) {
/* DMA errors handling.*/
if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) {
/* DMA, this could help only if the DMA tries to access an unmapped
address space or violates alignment rules.*/
_adc_isr_error_code(adcp, ADC_ERR_DMAFAILURE);
}
else {
/* It is possible that the conversion group has already be reset by the
ADC error handler, in this case this interrupt is spurious.*/
if (adcp->grpp != NULL) {
if ((flags & STM32_DMA_ISR_HTIF) != 0) {
/* Half transfer processing.*/
_adc_isr_half_code(adcp);
}
if ((flags & STM32_DMA_ISR_TCIF) != 0) {
/* Transfer complete processing.*/
_adc_isr_full_code(adcp);
}
}
}
}
/**
* @brief ADC ISR service routine.
*
* @param[in] adcp pointer to the @p ADCDriver object
* @param[in] isr pre-shifted content of the ISR register
*/
static void adc_lld_serve_interrupt(ADCDriver *adcp, uint32_t isr) {
/* It could be a spurious interrupt caused by overflows after DMA disabling,
just ignore it in this case.*/
if (adcp->grpp != NULL) {
/* Note, an overflow may occur after the conversion ended before the driver
is able to stop the ADC, this is why the DMA channel is checked too.*/
if ((isr & ADC_ISR_OVR) &&
(dmaStreamGetTransactionSize(adcp->dmastp) > 0)) {
/* ADC overflow condition, this could happen only if the DMA is unable
to read data fast enough.*/
_adc_isr_error_code(adcp, ADC_ERR_OVERFLOW);
}
if (isr & ADC_ISR_AWD1) {
/* Analog watchdog error.*/
_adc_isr_error_code(adcp, ADC_ERR_AWD1);
}
if (isr & ADC_ISR_AWD2) {
/* Analog watchdog error.*/
_adc_isr_error_code(adcp, ADC_ERR_AWD2);
}
if (isr & ADC_ISR_AWD3) {
/* Analog watchdog error.*/
_adc_isr_error_code(adcp, ADC_ERR_AWD3);
}
}
}
/*===========================================================================*/
/* Driver interrupt handlers. */
/*===========================================================================*/
#if STM32_ADC_USE_ADC1 || defined(__DOXYGEN__)
/**
* @brief ADC1/ADC2 interrupt handler.
*
* @isr
*/
CH_IRQ_HANDLER(Vector88) {
uint32_t isr;
CH_IRQ_PROLOGUE();
#if STM32_ADC_DUAL_MODE
isr = ADC1->ISR;
isr |= ADC2->ISR;
ADC1->ISR = isr;
ADC2->ISR = isr;
#else /* !STM32_ADC_DUAL_MODE */
isr = ADC1->ISR;
ADC1->ISR = isr;
#endif /* !STM32_ADC_DUAL_MODE */
adc_lld_serve_interrupt(&ADCD1, isr);
CH_IRQ_EPILOGUE();
}
#endif /* STM32_ADC_USE_ADC1 */
#if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__)
/**
* @brief ADC3 interrupt handler.
*
* @isr
*/
CH_IRQ_HANDLER(VectorFC) {
uint32_t isr;
CH_IRQ_PROLOGUE();
isr = ADC3->ISR;
ADC3->ISR = isr;
adc_lld_serve_interrupt(&ADCD3, isr);
CH_IRQ_EPILOGUE();
}
#if STM32_ADC_DUAL_MODE
/**
* @brief ADC4 interrupt handler (as ADC3 slave).
*
* @isr
*/
CH_IRQ_HANDLER(Vector134) {
uint32_t isr;
CH_IRQ_PROLOGUE();
isr = ADC4->ISR;
ADC4->ISR = isr;
adc_lld_serve_interrupt(&ADCD3, isr);
CH_IRQ_EPILOGUE();
}
#endif /* STM32_ADC_DUAL_MODE */
#endif /* STM32_ADC_USE_ADC3 */
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
/**
* @brief Low level ADC driver initialization.
*
* @notapi
*/
void adc_lld_init(void) {
#if STM32_ADC_USE_ADC1
/* Driver initialization.*/
adcObjectInit(&ADCD1);
ADCD1.adcc = ADC1_2;
ADCD1.adcm = ADC1;
#if STM32_ADC_DUAL_MODE
ADCD1.adcs = ADC2;
#endif
ADCD1.dmastp = STM32_DMA1_STREAM1;
ADCD1.dmamode = ADC_DMA_SIZE |
STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
nvicEnableVector(ADC1_2_IRQn,
CORTEX_PRIORITY_MASK(STM32_ADC_ADC12_IRQ_PRIORITY));
#endif /* STM32_ADC_USE_ADC1 */
#if STM32_ADC_USE_ADC3
/* Driver initialization.*/
adcObjectInit(&ADCD1);
ADCD3.adcc = ADC3_4;
ADCD3.adcm = ADC3;
#if STM32_ADC_DUAL_MODE
ADCD3.adcs = ADC4;
#endif
ADCD3.dmastp = STM32_DMA2_STREAM5;
ADCD3.dmamode = ADC_DMA_SIZE |
STM32_DMA_CR_PL(STM32_ADC_ADC12_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
nvicEnableVector(ADC3_IRQn,
CORTEX_PRIORITY_MASK(STM32_ADC_ADC34_IRQ_PRIORITY));
#if STM32_ADC_DUAL_MODE
nvicEnableVector(ADC4_IRQn,
CORTEX_PRIORITY_MASK(STM32_ADC_ADC34_IRQ_PRIORITY));
#endif
#endif /* STM32_ADC_USE_ADC3 */
}
/**
* @brief Configures and activates the ADC peripheral.
*
* @param[in] adcp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_start(ADCDriver *adcp) {
/* If in stopped state then enables the ADC and DMA clocks.*/
if (adcp->state == ADC_STOP) {
#if STM32_ADC_USE_ADC1
if (&ADCD1 == adcp) {
bool_t b;
b = dmaStreamAllocate(adcp->dmastp,
STM32_ADC_ADC12_DMA_IRQ_PRIORITY,
(stm32_dmaisr_t)adc_lld_serve_dma_interrupt,
(void *)adcp);
chDbgAssert(!b, "adc_lld_start(), #1", "stream already allocated");
rccEnableADC12(FALSE);
}
#endif /* STM32_ADC_USE_ADC1 */
#if STM32_ADC_USE_ADC3
if (&ADCD3 == adcp) {
bool_t b;
b = dmaStreamAllocate(adcp->dmastp,
STM32_ADC_ADC34_DMA_IRQ_PRIORITY,
(stm32_dmaisr_t)adc_lld_serve_dma_interrupt,
(void *)adcp);
chDbgAssert(!b, "adc_lld_start(), #2", "stream already allocated");
rccEnableADC34(FALSE);
}
#endif /* STM32_ADC_USE_ADC2 */
/* Setting DMA peripheral-side pointer.*/
#if STM32_ADC_DUAL_MODE
dmaStreamSetPeripheral(adcp->dmastp, &adcp->adcc->CDR);
#else
dmaStreamSetPeripheral(adcp->dmastp, &adcp->adcm->DR);
#endif
/* Clock source setting.*/
adcp->adcc->CCR = STM32_ADC_ADC12_CLOCK_MODE | ADC_DMA_MDMA;
/* Master ADC calibration.*/
adc_lld_vreg_on(adcp);
adc_lld_calibrate(adcp);
/* Master ADC enabled here in order to reduce conversions latencies.*/
adc_lld_analog_on(adcp);
}
}
/**
* @brief Deactivates the ADC peripheral.
*
* @param[in] adcp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_stop(ADCDriver *adcp) {
/* If in ready state then disables the ADC clock and analog part.*/
if (adcp->state == ADC_READY) {
/* Releasing the associated DMA channel.*/
dmaStreamRelease(adcp->dmastp);
/* Stopping the ongoing conversion, if any.*/
adc_lld_stop_adc(adcp);
/* Disabling ADC analog circuit and regulator.*/
adc_lld_analog_off(adcp);
adc_lld_vreg_off(adcp);
#if STM32_ADC_USE_ADC1
if (&ADCD1 == adcp)
rccDisableADC12(FALSE);
#endif
#if STM32_ADC_USE_ADC3
if (&ADCD1 == adcp)
rccDisableADC34(FALSE);
#endif
}
}
/**
* @brief Starts an ADC conversion.
*
* @param[in] adcp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_start_conversion(ADCDriver *adcp) {
uint32_t dmamode, ccr, cfgr;
const ADCConversionGroup *grpp = adcp->grpp;
chDbgAssert(!STM32_ADC_DUAL_MODE || ((grpp->num_channels & 1) == 0),
"adc_lld_start_conversion(), #1",
"odd number of channels in dual mode");
/* Calculating control registers values.*/
dmamode = adcp->dmamode;
ccr = grpp->ccr | (adcp->adcc->CCR & (ADC_CCR_CKMODE_MASK |
ADC_CCR_MDMA_MASK));
cfgr = grpp->cfgr | ADC_CFGR_CONT | ADC_CFGR_DMAEN;
if (grpp->circular) {
dmamode |= STM32_DMA_CR_CIRC;
#if STM32_ADC_DUAL_MODE
ccr |= ADC_CCR_DMACFG_CIRCULAR;
#else
cfgr |= ADC_CFGR_DMACFG_CIRCULAR;
#endif
}
/* DMA setup.*/
if (adcp->depth > 1) {
/* If the buffer depth is greater than one then the half transfer interrupt
interrupt is enabled in order to allows streaming processing.*/
dmamode |= STM32_DMA_CR_HTIE;
}
dmaStreamSetMemory0(adcp->dmastp, adcp->samples);
#if STM32_ADC_DUAL_MODE
dmaStreamSetTransactionSize(adcp->dmastp, ((uint32_t)grpp->num_channels/2) *
(uint32_t)adcp->depth);
#else
dmaStreamSetTransactionSize(adcp->dmastp, (uint32_t)grpp->num_channels *
(uint32_t)adcp->depth);
#endif
dmaStreamSetMode(adcp->dmastp, dmamode);
dmaStreamEnable(adcp->dmastp);
/* Configuring the CCR register with the static settings ORed with
the user-specified settings in the conversion group configuration
structure.*/
adcp->adcc->CCR = ccr;
/* ADC setup, if it is defined a callback for the analog watch dog then it
is enabled.*/
adcp->adcm->ISR = adcp->adcm->ISR;
adcp->adcm->IER = ADC_IER_OVR | ADC_IER_AWD1;
adcp->adcm->TR1 = grpp->tr1;
#if STM32_ADC_DUAL_MODE
adcp->adcm->SMPR1 = grpp->smpr[0];
adcp->adcm->SMPR2 = grpp->smpr[1];
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
adcp->adcm->SQR2 = grpp->sqr[1];
adcp->adcm->SQR3 = grpp->sqr[2];
adcp->adcm->SQR4 = grpp->sqr[3];
adcp->adcs->SMPR1 = grpp->ssmpr[0];
adcp->adcs->SMPR2 = grpp->ssmpr[1];
adcp->adcs->SQR1 = grpp->ssqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels / 2);
adcp->adcs->SQR2 = grpp->ssqr[1];
adcp->adcs->SQR3 = grpp->ssqr[2];
adcp->adcs->SQR4 = grpp->ssqr[3];
#else /* !STM32_ADC_DUAL_MODE */
adcp->adcm->SMPR1 = grpp->smpr[0];
adcp->adcm->SMPR2 = grpp->smpr[1];
adcp->adcm->SQR1 = grpp->sqr[0] | ADC_SQR1_NUM_CH(grpp->num_channels);
adcp->adcm->SQR2 = grpp->sqr[1];
adcp->adcm->SQR3 = grpp->sqr[2];
adcp->adcm->SQR4 = grpp->sqr[3];
#endif /* !STM32_ADC_DUAL_MODE */
/* ADC configuration.*/
adcp->adcm->CFGR = cfgr;
/* Starting conversion.*/
adcp->adcm->CR |= ADC_CR_ADSTART;
}
/**
* @brief Stops an ongoing conversion.
*
* @param[in] adcp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_stop_conversion(ADCDriver *adcp) {
dmaStreamDisable(adcp->dmastp);
adc_lld_stop_adc(adcp);
}
#endif /* HAL_USE_ADC */
/** @} */