/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * @file STM32/USARTv1/uart_lld.c * @brief STM32 low level UART driver code. * * @addtogroup UART * @{ */ #include "ch.h" #include "hal.h" #if HAL_USE_UART || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ #define USART1_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART1_RX_DMA_STREAM, \ STM32_USART1_RX_DMA_CHN) #define USART1_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART1_TX_DMA_STREAM, \ STM32_USART1_TX_DMA_CHN) #define USART2_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART2_RX_DMA_STREAM, \ STM32_USART2_RX_DMA_CHN) #define USART2_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART2_TX_DMA_STREAM, \ STM32_USART2_TX_DMA_CHN) #define USART3_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART3_RX_DMA_STREAM, \ STM32_USART3_RX_DMA_CHN) #define USART3_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART3_TX_DMA_STREAM, \ STM32_USART3_TX_DMA_CHN) #define USART6_RX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART6_RX_DMA_STREAM, \ STM32_USART6_RX_DMA_CHN) #define USART6_TX_DMA_CHANNEL \ STM32_DMA_GETCHANNEL(STM32_UART_USART6_TX_DMA_STREAM, \ STM32_USART6_TX_DMA_CHN) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief USART1 UART driver identifier.*/ #if STM32_UART_USE_USART1 || defined(__DOXYGEN__) UARTDriver UARTD1; #endif /** @brief USART2 UART driver identifier.*/ #if STM32_UART_USE_USART2 || defined(__DOXYGEN__) UARTDriver UARTD2; #endif /** @brief USART3 UART driver identifier.*/ #if STM32_UART_USE_USART3 || defined(__DOXYGEN__) UARTDriver UARTD3; #endif /** @brief USART6 UART driver identifier.*/ #if STM32_UART_USE_USART6 || defined(__DOXYGEN__) UARTDriver UARTD6; #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Status bits translation. * * @param[in] sr USART SR register value * * @return The error flags. */ static uartflags_t translate_errors(uint16_t sr) { uartflags_t sts = 0; if (sr & USART_SR_ORE) sts |= UART_OVERRUN_ERROR; if (sr & USART_SR_PE) sts |= UART_PARITY_ERROR; if (sr & USART_SR_FE) sts |= UART_FRAMING_ERROR; if (sr & USART_SR_NE) sts |= UART_NOISE_ERROR; if (sr & USART_SR_LBD) sts |= UART_BREAK_DETECTED; return sts; } /** * @brief Puts the receiver in the UART_RX_IDLE state. * * @param[in] uartp pointer to the @p UARTDriver object */ static void set_rx_idle_loop(UARTDriver *uartp) { uint32_t mode; /* RX DMA channel preparation, if the char callback is defined then the TCIE interrupt is enabled too.*/ if (uartp->config->rxchar_cb == NULL) mode = STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_CIRC; else mode = STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_CIRC | STM32_DMA_CR_TCIE; dmaStreamSetMemory0(uartp->dmarx, &uartp->rxbuf); dmaStreamSetTransactionSize(uartp->dmarx, 1); dmaStreamSetMode(uartp->dmarx, uartp->dmamode | mode); dmaStreamEnable(uartp->dmarx); } /** * @brief USART de-initialization. * @details This function must be invoked with interrupts disabled. * * @param[in] uartp pointer to the @p UARTDriver object */ static void usart_stop(UARTDriver *uartp) { /* Stops RX and TX DMA channels.*/ dmaStreamDisable(uartp->dmarx); dmaStreamDisable(uartp->dmatx); /* Stops USART operations.*/ uartp->usart->CR1 = 0; uartp->usart->CR2 = 0; uartp->usart->CR3 = 0; } /** * @brief USART initialization. * @details This function must be invoked with interrupts disabled. * * @param[in] uartp pointer to the @p UARTDriver object */ static void usart_start(UARTDriver *uartp) { uint16_t cr1; USART_TypeDef *u = uartp->usart; /* Defensive programming, starting from a clean state.*/ usart_stop(uartp); /* Baud rate setting.*/ if ((uartp->usart == USART1) || (uartp->usart == USART6)) u->BRR = STM32_PCLK2 / uartp->config->speed; else u->BRR = STM32_PCLK1 / uartp->config->speed; /* Resetting eventual pending status flags.*/ (void)u->SR; /* SR reset step 1.*/ (void)u->DR; /* SR reset step 2.*/ u->SR = 0; /* Note that some bits are enforced because required for correct driver operations.*/ if (uartp->config->txend2_cb == NULL) cr1 = USART_CR1_UE | USART_CR1_PEIE | USART_CR1_TE | USART_CR1_RE; else cr1 = USART_CR1_UE | USART_CR1_PEIE | USART_CR1_TE | USART_CR1_RE | USART_CR1_TCIE; u->CR1 = uartp->config->cr1 | cr1; u->CR2 = uartp->config->cr2 | USART_CR2_LBDIE; u->CR3 = uartp->config->cr3 | USART_CR3_DMAT | USART_CR3_DMAR | USART_CR3_EIE; /* Starting the receiver idle loop.*/ set_rx_idle_loop(uartp); } /** * @brief RX DMA common service routine. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] flags pre-shifted content of the ISR register */ static void uart_lld_serve_rx_end_irq(UARTDriver *uartp, uint32_t flags) { /* DMA errors handling.*/ #if defined(STM32_UART_DMA_ERROR_HOOK) if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) { STM32_UART_DMA_ERROR_HOOK(uartp); } #else (void)flags; #endif if (uartp->rxstate == UART_RX_IDLE) { /* Receiver in idle state, a callback is generated, if enabled, for each received character and then the driver stays in the same state.*/ if (uartp->config->rxchar_cb != NULL) uartp->config->rxchar_cb(uartp, uartp->rxbuf); } else { /* Receiver in active state, a callback is generated, if enabled, after a completed transfer.*/ dmaStreamDisable(uartp->dmarx); uartp->rxstate = UART_RX_COMPLETE; if (uartp->config->rxend_cb != NULL) uartp->config->rxend_cb(uartp); /* If the callback didn't explicitly change state then the receiver automatically returns to the idle state.*/ if (uartp->rxstate == UART_RX_COMPLETE) { uartp->rxstate = UART_RX_IDLE; set_rx_idle_loop(uartp); } } } /** * @brief TX DMA common service routine. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] flags pre-shifted content of the ISR register */ static void uart_lld_serve_tx_end_irq(UARTDriver *uartp, uint32_t flags) { /* DMA errors handling.*/ #if defined(STM32_UART_DMA_ERROR_HOOK) if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) { STM32_UART_DMA_ERROR_HOOK(uartp); } #else (void)flags; #endif dmaStreamDisable(uartp->dmatx); /* A callback is generated, if enabled, after a completed transfer.*/ uartp->txstate = UART_TX_COMPLETE; if (uartp->config->txend1_cb != NULL) uartp->config->txend1_cb(uartp); /* If the callback didn't explicitly change state then the transmitter automatically returns to the idle state.*/ if (uartp->txstate == UART_TX_COMPLETE) uartp->txstate = UART_TX_IDLE; } /** * @brief USART common service routine. * * @param[in] uartp pointer to the @p UARTDriver object */ static void serve_usart_irq(UARTDriver *uartp) { uint16_t sr; USART_TypeDef *u = uartp->usart; sr = u->SR; /* SR reset step 1.*/ (void)u->DR; /* SR reset step 2.*/ if (sr & (USART_SR_LBD | USART_SR_ORE | USART_SR_NE | USART_SR_FE | USART_SR_PE)) { u->SR = ~USART_SR_LBD; if (uartp->config->rxerr_cb != NULL) uartp->config->rxerr_cb(uartp, translate_errors(sr)); } if (sr & USART_SR_TC) { u->SR = ~USART_SR_TC; /* End of transmission, a callback is generated.*/ if (uartp->config->txend2_cb != NULL) uartp->config->txend2_cb(uartp); } } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if STM32_UART_USE_USART1 || defined(__DOXYGEN__) #if !defined(STM32_USART1_HANDLER) #error "STM32_USART1_HANDLER not defined" #endif /** * @brief USART1 IRQ handler. * * @isr */ CH_IRQ_HANDLER(STM32_USART1_HANDLER) { CH_IRQ_PROLOGUE(); serve_usart_irq(&UARTD1); CH_IRQ_EPILOGUE(); } #endif /* STM32_UART_USE_USART1 */ #if STM32_UART_USE_USART2 || defined(__DOXYGEN__) #if !defined(STM32_USART2_HANDLER) #error "STM32_USART2_HANDLER not defined" #endif /** * @brief USART2 IRQ handler. * * @isr */ CH_IRQ_HANDLER(STM32_USART2_HANDLER) { CH_IRQ_PROLOGUE(); serve_usart_irq(&UARTD2); CH_IRQ_EPILOGUE(); } #endif /* STM32_UART_USE_USART2 */ #if STM32_UART_USE_USART3 || defined(__DOXYGEN__) #if !defined(STM32_USART3_HANDLER) #error "STM32_USART3_HANDLER not defined" #endif /** * @brief USART3 IRQ handler. * * @isr */ CH_IRQ_HANDLER(STM32_USART3_HANDLER) { CH_IRQ_PROLOGUE(); serve_usart_irq(&UARTD3); CH_IRQ_EPILOGUE(); } #endif /* STM32_UART_USE_USART3 */ #if STM32_UART_USE_USART6 || defined(__DOXYGEN__) #if !defined(STM32_USART6_HANDLER) #error "STM32_USART6_HANDLER not defined" #endif /** * @brief USART6 IRQ handler. * * @isr */ CH_IRQ_HANDLER(STM32_USART6_HANDLER) { CH_IRQ_PROLOGUE(); serve_usart_irq(&UARTD6); CH_IRQ_EPILOGUE(); } #endif /* STM32_UART_USE_USART6 */ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level UART driver initialization. * * @notapi */ void uart_lld_init(void) { #if STM32_UART_USE_USART1 uartObjectInit(&UARTD1); UARTD1.usart = USART1; UARTD1.dmarx = STM32_DMA_STREAM(STM32_UART_USART1_RX_DMA_STREAM); UARTD1.dmatx = STM32_DMA_STREAM(STM32_UART_USART1_TX_DMA_STREAM); #endif #if STM32_UART_USE_USART2 uartObjectInit(&UARTD2); UARTD2.usart = USART2; UARTD2.dmarx = STM32_DMA_STREAM(STM32_UART_USART2_RX_DMA_STREAM); UARTD2.dmatx = STM32_DMA_STREAM(STM32_UART_USART2_TX_DMA_STREAM); #endif #if STM32_UART_USE_USART3 uartObjectInit(&UARTD3); UARTD3.usart = USART3; UARTD3.dmarx = STM32_DMA_STREAM(STM32_UART_USART3_RX_DMA_STREAM); UARTD3.dmatx = STM32_DMA_STREAM(STM32_UART_USART3_TX_DMA_STREAM); #endif #if STM32_UART_USE_USART6 uartObjectInit(&UARTD6); UARTD6.usart = USART6; UARTD6.dmarx = STM32_DMA_STREAM(STM32_UART_USART6_RX_DMA_STREAM); UARTD6.dmatx = STM32_DMA_STREAM(STM32_UART_USART6_TX_DMA_STREAM); #endif } /** * @brief Configures and activates the UART peripheral. * * @param[in] uartp pointer to the @p UARTDriver object * * @notapi */ void uart_lld_start(UARTDriver *uartp) { uartp->dmamode = STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; if (uartp->state == UART_STOP) { #if STM32_UART_USE_USART1 if (&UARTD1 == uartp) { bool_t b; b = dmaStreamAllocate(uartp->dmarx, STM32_UART_USART1_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_rx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #1", "stream already allocated"); b = dmaStreamAllocate(uartp->dmatx, STM32_UART_USART1_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_tx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #2", "stream already allocated"); rccEnableUSART1(FALSE); nvicEnableVector(STM32_USART1_NUMBER, CORTEX_PRIORITY_MASK(STM32_UART_USART1_IRQ_PRIORITY)); uartp->dmamode |= STM32_DMA_CR_CHSEL(USART1_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_UART_USART1_DMA_PRIORITY); } #endif #if STM32_UART_USE_USART2 if (&UARTD2 == uartp) { bool_t b; b = dmaStreamAllocate(uartp->dmarx, STM32_UART_USART2_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_rx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #3", "stream already allocated"); b = dmaStreamAllocate(uartp->dmatx, STM32_UART_USART2_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_tx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #4", "stream already allocated"); rccEnableUSART2(FALSE); nvicEnableVector(STM32_USART2_NUMBER, CORTEX_PRIORITY_MASK(STM32_UART_USART2_IRQ_PRIORITY)); uartp->dmamode |= STM32_DMA_CR_CHSEL(USART2_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_UART_USART2_DMA_PRIORITY); } #endif #if STM32_UART_USE_USART3 if (&UARTD3 == uartp) { bool_t b; b = dmaStreamAllocate(uartp->dmarx, STM32_UART_USART3_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_rx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #5", "stream already allocated"); b = dmaStreamAllocate(uartp->dmatx, STM32_UART_USART3_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_tx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #6", "stream already allocated"); rccEnableUSART3(FALSE); nvicEnableVector(STM32_USART3_NUMBER, CORTEX_PRIORITY_MASK(STM32_UART_USART3_IRQ_PRIORITY)); uartp->dmamode |= STM32_DMA_CR_CHSEL(USART3_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_UART_USART3_DMA_PRIORITY); } #endif #if STM32_UART_USE_USART6 if (&UARTD6 == uartp) { bool_t b; b = dmaStreamAllocate(uartp->dmarx, STM32_UART_USART6_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_rx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #5", "stream already allocated"); b = dmaStreamAllocate(uartp->dmatx, STM32_UART_USART6_IRQ_PRIORITY, (stm32_dmaisr_t)uart_lld_serve_tx_end_irq, (void *)uartp); chDbgAssert(!b, "uart_lld_start(), #6", "stream already allocated"); rccEnableUSART6(FALSE); nvicEnableVector(STM32_USART6_NUMBER, CORTEX_PRIORITY_MASK(STM32_UART_USART6_IRQ_PRIORITY)); uartp->dmamode |= STM32_DMA_CR_CHSEL(USART6_RX_DMA_CHANNEL) | STM32_DMA_CR_PL(STM32_UART_USART6_DMA_PRIORITY); } #endif /* Static DMA setup, the transfer size depends on the USART settings, it is 16 bits if M=1 and PCE=0 else it is 8 bits.*/ if ((uartp->config->cr1 & (USART_CR1_M | USART_CR1_PCE)) == USART_CR1_M) uartp->dmamode |= STM32_DMA_CR_PSIZE_HWORD | STM32_DMA_CR_MSIZE_HWORD; dmaStreamSetPeripheral(uartp->dmarx, &uartp->usart->DR); dmaStreamSetPeripheral(uartp->dmatx, &uartp->usart->DR); uartp->rxbuf = 0; } uartp->rxstate = UART_RX_IDLE; uartp->txstate = UART_TX_IDLE; usart_start(uartp); } /** * @brief Deactivates the UART peripheral. * * @param[in] uartp pointer to the @p UARTDriver object * * @notapi */ void uart_lld_stop(UARTDriver *uartp) { if (uartp->state == UART_READY) { usart_stop(uartp); dmaStreamRelease(uartp->dmarx); dmaStreamRelease(uartp->dmatx); #if STM32_UART_USE_USART1 if (&UARTD1 == uartp) { nvicDisableVector(STM32_USART1_NUMBER); rccDisableUSART1(FALSE); return; } #endif #if STM32_UART_USE_USART2 if (&UARTD2 == uartp) { nvicDisableVector(STM32_USART2_NUMBER); rccDisableUSART2(FALSE); return; } #endif #if STM32_UART_USE_USART3 if (&UARTD3 == uartp) { nvicDisableVector(STM32_USART3_NUMBER); rccDisableUSART3(FALSE); return; } #endif #if STM32_UART_USE_USART6 if (&UARTD6 == uartp) { nvicDisableVector(STM32_USART6_NUMBER); rccDisableUSART6(FALSE); return; } #endif } } /** * @brief Starts a transmission on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[in] txbuf the pointer to the transmit buffer * * @notapi */ void uart_lld_start_send(UARTDriver *uartp, size_t n, const void *txbuf) { /* TX DMA channel preparation and start.*/ dmaStreamSetMemory0(uartp->dmatx, txbuf); dmaStreamSetTransactionSize(uartp->dmatx, n); dmaStreamSetMode(uartp->dmatx, uartp->dmamode | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE); dmaStreamEnable(uartp->dmatx); } /** * @brief Stops any ongoing transmission. * @note Stopping a transmission also suppresses the transmission callbacks. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not transmitted by the * stopped transmit operation. * * @notapi */ size_t uart_lld_stop_send(UARTDriver *uartp) { dmaStreamDisable(uartp->dmatx); return dmaStreamGetTransactionSize(uartp->dmatx); } /** * @brief Starts a receive operation on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void uart_lld_start_receive(UARTDriver *uartp, size_t n, void *rxbuf) { /* Stopping previous activity (idle state).*/ dmaStreamDisable(uartp->dmarx); /* RX DMA channel preparation and start.*/ dmaStreamSetMemory0(uartp->dmarx, rxbuf); dmaStreamSetTransactionSize(uartp->dmarx, n); dmaStreamSetMode(uartp->dmarx, uartp->dmamode | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE); dmaStreamEnable(uartp->dmarx); } /** * @brief Stops any ongoing receive operation. * @note Stopping a receive operation also suppresses the receive callbacks. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not received by the * stopped receive operation. * * @notapi */ size_t uart_lld_stop_receive(UARTDriver *uartp) { size_t n; dmaStreamDisable(uartp->dmarx); n = dmaStreamGetTransactionSize(uartp->dmarx); set_rx_idle_loop(uartp); return n; } #endif /* HAL_USE_UART */ /** @} */