/*
ChibiOS/RT - Copyright (C) 2006-2007 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/**
* @defgroup ARM7 ARM7TDMI
* @details The ARM7 architecture is quite complex for a microcontroller and
* some explanations are required about the port choices.
*
* @section ARM7_NOTES The ARM7 modes
* The ARM7 port supports three modes:
* - Pure ARM mode, this is the preferred mode for code speed. The code size
* is larger however. This mode is enabled when all the modules are compiled
* in ARM mode, see the Makefiles.
* - Pure THUMB mode, this is the preferred mode for code size. In this mode
* the execution speed is slower than the ARM mode. This mode is enabled
* when all the modules are compiled in THUMB mode, see the Makefiles.
* - Interworking mode, when in the system there are ARM modules mixed with
* THUMB modules then the interworking compiler option is enabled. This is
* usually the slowest mode and the code size is not as good as in pure
* THUMB mode.
* .
* @section ARM7_STATES Mapping of the System States in the ARM7 port
* The ChibiOS/RT logical @ref system_states are mapped as follow in the ARM7
* port:
* - Init. This state is represented by the startup code and the
* initialization code before @p chSysInit() is executed. It has not a
* special hardware state associated, usually the CPU goes through several
* hardware states during the startup phase.
* - Normal. This is the state the system has after executing
* @p chSysInit(). In this state the ARM7TDMI has both the interrupt sources
* (IRQ and FIQ) enabled and is running in ARM System Mode.
* - Suspended. In this state the IRQ sources are disabled but the FIQ
* sources are served, the core is running in ARM System Mode.
* - Disabled. Both the IRQ and FIQ sources are disabled, the core is
* running in ARM System Mode.
* - Sleep. The ARM7 code does not have any built-in low power mode but
* there are clock stop modes implemented in custom ways by the various
* silicon vendors. This state is implemented in each microcontroller support
* code in a different way, the core is running (or freezed...) in ARM
* System Mode.
* - S-Locked. IRQ sources disabled, core running in ARM System Mode.
* - I-Locked. IRQ sources disabled, core running in ARM IRQ Mode. Note
* that this state is not different from the SRI state in this port, the
* @p chSysLockI() and @p chSysUnlockI() APIs do nothing (still use them in
* order to formally change state because this may change).
* - Serving Regular Interrupt. IRQ sources disabled, core running in
* ARM IRQ Mode. See also the I-Locked state.
* - Serving Fast Interrupt. IRQ and FIQ sources disabled, core running
* in ARM FIQ Mode.
* - Serving Non-Maskable Interrupt. There are no asynchronous NMI
* sources in ARM7 architecture but synchronous SVC, ABT and UND exception
* handlers can be seen as belonging to this category.
* - Halted. Implemented as an infinite loop after disabling both IRQ
* and FIQ sources. The ARM state is whatever the processor was running when
* @p chSysHalt() was invoked.
* .
* @section ARM7_NOTES The ARM7 port notes
* The ARM7 port makes some assumptions on the application code organization:
* - The @p main() function is invoked in system mode.
* - Each thread has a private user/system stack, the system has a single
* interrupt stack where all the interrupts are processed.
* - The threads are started in system mode.
* - The threads code can run in system mode or user mode, however the
* code running in user mode cannot invoke the ChibiOS/RT APIs directly
* because privileged instructions are used inside.
* The kernel APIs can be eventually invoked by using a SWI entry point
* that handles the switch in system mode and the return in user mode.
* - Other modes are not preempt-able because the system code assumes the
* threads running in system mode. When running in supervisor or other
* modes make sure that the interrupts are globally disabled.
* - Interrupts nesting is not supported in the ARM7 code because their
* implementation, even if possible, is not really efficient in this
* architecture.
* - FIQ sources can preempt the kernel (by design) so it is not possible to
* invoke the kernel APIs from inside a FIQ handler. FIQ handlers are not
* affected by the kernel activity so there is not added jitter.
* .
* @section ARM7_IH ARM7 Interrupt Handlers
* ARM7 Interrupt handlers do not save function-saved registers so you need to
* make sure your code saves them or does not use them (this happens
* because in the ARM7 port all the OS interrupt handler functions are declared
* naked).
* Function-trashed registers (R0-R3, R12, LR, SR) are saved/restored by the
* system macros @p CH_IRQ_PROLOGUE() and @p CH_IRQ_EPILOGUE().
* The easiest way to ensure this is to just invoke a normal function from
* within the interrupt handler, the function code will save all the required
* registers.
* Example:
* @code
* CH_IRQ_HANDLER(irq_handler) {
* CH_IRQ_PROLOGUE();
*
* serve_interrupt();
*
* VICVectAddr = 0; // This is LPC214x-specific.
* CH_IRQ_EPILOGUE();
* }
* @endcode
* This is not a bug but an implementation choice, this solution allows to
* have interrupt handlers compiled in thumb mode without have to use an
* interworking mode (the mode switch is hidden in the macros), this
* greatly improves code efficiency and size. You can look at the serial
* driver for real examples of interrupt handlers.
*
* @ingroup Ports
*/
/**
* @defgroup ARM7_CONF Configuration Options
* @brief ARM7 specific configuration options.
* @details The ARM7 port allows some architecture-specific configurations
* settings that can be specified externally, as example on the compiler
* command line:
* - @p INT_REQUIRED_STACK, this value represent the amount of stack space used
* by an interrupt handler between the @p extctx and @p intctx
* structures.
* In practice this value is the stack space used by the chSchDoReschedule()
* stack frame.
* This value can be affected by a variety of external things like compiler
* version, compiler options, kernel settings (speed/size) and so on.
* The default for this value is @p 0x10 which should be a safe value, you
* can trim this down by defining the macro externally. This would save
* some valuable RAM space for each thread present in the system.
* The default value is set into ./ports/ARM7/chcore.h.
* .
* @ingroup ARM7
*/
/**
* @defgroup ARM7_CORE Core Port Implementation
* @brief ARM7 specific port code, structures and macros.
*
* @ingroup ARM7
* @file ports/ARM7/chtypes.h Port types.
* @file ports/ARM7/chcore.h Port related structures and macros.
* @file ports/ARM7/chcore.c Port related code.
*/
/**
* @defgroup ARM7_STARTUP Startup Support
* @brief ARM7 startup code support.
* @details ChibiOS/RT provides its own generic startup file for the ARM7 port.
* Of course it is not mandatory to use it but care should be taken about the
* startup phase details.
*
*
Startup Process
* The startup process, as implemented, is the following:
* -# The stacks are initialized by assigning them the sizes defined in the
* linker script (usually named @p ch.ld). Stack areas are allocated from
* the highest RAM location downward.
* -# The ARM state is switched to System with both IRQ and FIQ sources
* disabled.
* -# An early initialization routine @p hwinit0 is invoked, if the symbol is
* not defined then an empty default routine is executed (weak symbol).
* -# DATA and BSS segments are initialized.
* -# A late initialization routine @p hwinit1 is invoked, if the symbol not
* defined then an empty default routine is executed (weak symbol).
* This late initialization function is also the proper place for a
* @a bootloader, if your application requires one.
* -# The @p main() function is invoked with the parameters @p argc and @p argv
* set to zero.
* -# Should the @p main() function return a branch is performed to the weak
* symbol MainExitHandler. The default code is an endless empty loop.
* .
* Expected linker symbols
* The startup code starts at the symbol @p ResetHandler and expects the
* following symbols to be defined in the linker script:
* - @p __ram_end__ RAM end location +1.
* - @p __und_stack_size__ Undefined Instruction stack size.
* - @p __abt_stack_size__ Memory Abort stack size.
* - @p __fiq_stack_size__ FIQ service stack size.
* - @p __irq_stack_size__ IRQ service stack size.
* - @p __svc_stack_size__ SVC service stack size.
* - @p __sys_stack_size__ System/User stack size. This is the stack area used
* by the @p main() function.
* - @p _textdata address of the data segment source read only data.
* - @p _data data segment start location.
* - @p _edata data segment end location +1.
* - @p _bss_start BSS start location.
* - @p _bss_end BSS end location +1.
* .
* @ingroup ARM7
* @file ports/ARM7/crt0.s Startup code.
*/