I/O queues improvements, removed half duplex queues.

git-svn-id: svn://svn.code.sf.net/p/chibios/svn/trunk@926 35acf78f-673a-0410-8e92-d51de3d6d3f4
master
gdisirio 2009-05-01 12:58:05 +00:00
parent e0073441fe
commit 46e56d7349
6 changed files with 267 additions and 590 deletions

View File

@ -82,6 +82,13 @@ Win32-MinGW - ChibiOS/RT simulator and demo into a WIN32 process,
real context switch time, previous benchmarks introduced too much overhead
to the measurement. The STM32 performs the context switch in under 1.48uS.
- NEW: Added architecture name strings to the port code.
- NEW: The I/O queues code was improved, now there are 2 separate structures:
InputQueue and Output queues. There are some changes int the queue APIs
in order to make them more symmetrical and functional. Improved the queues
documentation.
- CHANGE: Removed the half duplex queues and half duplex serial drivers because
it was never extensively tested. The code is still available but not as part
of the kernel.
- CHANGE: Removed the chMsgSendWithEvent() function. It is rarely used and
the functionality can be re-created with a compound atomic operation. Also
removed the CH_USE_MESSAGES_EVENT configuration option.

View File

@ -33,250 +33,259 @@
* @details A Semaphore is internally initialized and works as a counter of
* the bytes contained in the queue.
*
* @param[out] qp pointer to a @p Queue structure
* @param[out] iqp pointer to an @p InputQueue structure
* @param[in] buffer pointer to a memory area allocated as queue buffer
* @param[in] size size of the queue buffer
* @param[in] inotify pointer to a callback function that is invoked when
* some data is read from the Queue. The value can be
* @p NULL.
* some data is read from the queue. The value can be
* @p NULL.
*
* @note The callback is invoked from within the S-Locked system state,
* see @ref system_states.
*/
void chIQInit(Queue *qp, uint8_t *buffer, size_t size, qnotify_t inotify) {
void chIQInit(InputQueue *iqp, uint8_t *buffer,
size_t size, qnotify_t inotify) {
qp->q_buffer = qp->q_rdptr = qp->q_wrptr = buffer;
qp->q_top = buffer + size;
chSemInit(&qp->q_sem, 0);
qp->q_notify = inotify;
iqp->q_buffer = iqp->q_rdptr = iqp->q_wrptr = buffer;
iqp->q_top = buffer + size;
chSemInit(&iqp->q_sem, 0);
iqp->q_notify = inotify;
}
/**
* @brief Resets an input queue.
* @details All the data is lost and the waiting threads resumed.
* @details All the data in the input queue is erased and lost, any waiting
* thread is resumed with status @p Q_RESET.
*
* @param[in] qp pointer to a @p Queue structure
* @param[in] iqp pointer to an @p InputQueue structure
*
* @note A reset operation can be used by a low level driver in order to obtain
* immediate attention from the high level layers.
*/
void chIQReset(Queue *qp) {
void chIQResetI(InputQueue *iqp) {
chSysLock();
qp->q_rdptr = qp->q_wrptr = qp->q_buffer;
chSemResetI(&qp->q_sem, 0);
chSysUnlock();
iqp->q_rdptr = iqp->q_wrptr = iqp->q_buffer;
chSemResetI(&iqp->q_sem, 0);
}
/**
* @brief Inserts a byte into an input queue.
* @brief Input queue write.
* @details A byte value is written into the low end of an input queue.
*
* @param[in] qp pointer to a @p Queue structure
* @param[in] b the byte value to be written
* @retval Q_OK if the operation is successful.
* @retval Q_FULL if the queue is full.
* @note This function is the lower side endpoint of the Input Queue.
* @note This function must be called with interrupts disabled or from an
* interrupt handler.
* @param[in] iqp pointer to an @p InputQueue structure
* @param[in] b the byte value to be written in the queue
* @return The operation status, it can be one of:
* @retval Q_OK if the operation has been completed with success.
* @retval Q_FULL if the queue is full and the operation cannot be completed.
*/
msg_t chIQPutI(Queue *qp, uint8_t b) {
msg_t chIQPutI(InputQueue *iqp, uint8_t b) {
if (chIQIsFull(qp))
if (chIQIsFull(iqp))
return Q_FULL;
*qp->q_wrptr++ = b;
if (qp->q_wrptr >= qp->q_top)
qp->q_wrptr = qp->q_buffer;
chSemSignalI(&qp->q_sem);
*iqp->q_wrptr++ = b;
if (iqp->q_wrptr >= iqp->q_top)
iqp->q_wrptr = iqp->q_buffer;
chSemSignalI(&iqp->q_sem);
return Q_OK;
}
/**
* @brief Gets a byte from the input queue.
* @details If the queue is empty then the calling thread is suspended until
* a byte arrives in the queue.
* @brief Input queue read.
* @details This function reads a byte value from an input queue. If the queue
* is empty then the calling thread is suspended until a byte arrives
* in the queue or a timeout occurs.
*
* @param[in] qp pointer to a @p Queue structure
* @return A byte value from the queue.
* @retval Q_RESET if the queue was reset.
*/
msg_t chIQGet(Queue *qp) {
uint8_t b;
chSysLock();
if (chSemWaitS(&qp->q_sem) < RDY_OK) {
chSysUnlock();
return Q_RESET;
}
b = *qp->q_rdptr++;
if (qp->q_rdptr >= qp->q_top)
qp->q_rdptr = qp->q_buffer;
if (qp->q_notify)
qp->q_notify();
chSysUnlock();
return b;
}
#if CH_USE_QUEUES_TIMEOUT && CH_USE_SEMAPHORES_TIMEOUT
/**
* @brief Gets a byte from the input queue.
* @details If the queue is empty then the calling thread is suspended until
* a byte arrives in the queue or the specified time expires.
*
* @param[in] qp pointer to a @p Queue structure
* @param[in] time the number of ticks before the operation timeouts
* @return A byte value from the queue.
* @param[in] iqp pointer to an @p InputQueue structure
* @param[in] timeout the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return A byte value from the queue or:
* @retval Q_TIMEOUT if the specified time expired.
* @retval Q_RESET if the queue was reset.
* @note The function is available only if the @p CH_USE_QUEUES_TIMEOUT and
* @p CH_USE_SEMAPHORES_TIMEOUT options are enabled in @p chconf.h.
*
* @note The @p time parameter is only meaningful if the
* @p CH_USE_SEMAPHORES_TIMEOUT kernel option is activated,
* otherwise only the @p TIME_INFINITE value is accepted.
*/
msg_t chIQGetTimeout(Queue *qp, systime_t time) {
msg_t chIQGetTimeout(InputQueue *iqp, systime_t timeout) {
uint8_t b;
msg_t msg;
#if CH_USE_SEMAPHORES_TIMEOUT
chSysLock();
if ((msg = chSemWaitTimeoutS(&qp->q_sem, time)) < RDY_OK) {
if ((msg = chSemWaitTimeoutS(&iqp->q_sem, timeout)) < RDY_OK) {
chSysUnlock();
return msg;
}
b = *qp->q_rdptr++;
if (qp->q_rdptr >= qp->q_top)
qp->q_rdptr = qp->q_buffer;
#else
chDbgCheck(timeout == TIME_INFINITE, "chIQGetTimeout");
if (qp->q_notify)
qp->q_notify();
chSysLock();
if ((msg = chSemWaitS(&iqp->q_sem)) < RDY_OK) {
chSysUnlock();
return msg;
}
#endif
b = *iqp->q_rdptr++;
if (iqp->q_rdptr >= iqp->q_top)
iqp->q_rdptr = iqp->q_buffer;
if (iqp->q_notify)
iqp->q_notify();
chSysUnlock();
return b;
}
#endif /* (CH_USE_QUEUES_TIMEOUT && CH_USE_SEMAPHORES_TIMEOUT */
/**
* @brief Reads some data from the input queue into the specified buffer.
* @details The function is non-blocking and can return zero if the queue is
* @brief Non-blocking read.
* @details The function reads data from an input queue into a buffer. The
* transfer is non-blocking and can return zero if the queue is
* empty.
*
* @param[in] qp pointer to a @p Queue structure
* @param[out] buffer the data buffer
* @param[in] n the maximum amount of data to be read
* @return The number of bytes read.
* @note This function is the upper side endpoint of the input queue.
* @param[in] iqp pointer to an @p InputQueue structure
* @param[out] buffer pointer to the buffer where the input data is copied
* @param[in] n the maximum amount of data to be transferred
* @return The number of bytes transferred.
*
* @note The function is not atomic, if you need atomicity it is suggested
* to use a semaphore for mutual exclusion.
* to use a semaphore or a mutex for mutual exclusion.
*/
size_t chIQRead(Queue *qp, uint8_t *buffer, size_t n) {
size_t chIQRead(InputQueue *iqp, uint8_t *buffer, size_t n) {
size_t r = 0;
while (n--) {
chSysLock();
if (chIQIsEmpty(qp)) {
if (chIQIsEmpty(iqp)) {
chSysUnlock();
break;
}
chSemFastWaitI(&qp->q_sem);
*buffer++ = *qp->q_rdptr++;
if (qp->q_rdptr >= qp->q_top)
qp->q_rdptr = qp->q_buffer;
chSemFastWaitI(&iqp->q_sem);
*buffer++ = *iqp->q_rdptr++;
if (iqp->q_rdptr >= iqp->q_top)
iqp->q_rdptr = iqp->q_buffer;
chSysUnlock();
r++;
}
if (r && qp->q_notify) {
if (r && iqp->q_notify) {
chSysLock();
qp->q_notify();
iqp->q_notify();
chSysUnlock();
}
return r;
}
/**
* @brief Initializes an output queue.
* @details A Semaphore is internally initialized and works as a counter of the
* free bytes in the queue.
* @details A Semaphore is internally initialized and works as a counter of
* the free bytes in the queue.
*
* @param[out] qp pointer to a @p Queue structure
* @param[out] oqp pointer to an @p OutputQueue structure
* @param[in] buffer pointer to a memory area allocated as queue buffer
* @param[in] size size of the queue buffer
* @param[in] onotify pointer to a callback function that is invoked when
* some data is written in the Queue. The value can be
* some data is written to the queue. The value can be
* @p NULL.
*
* @note The callback is invoked from within the S-Locked system state,
* see @ref system_states.
*/
void chOQInit(Queue *qp, uint8_t *buffer, size_t size, qnotify_t onotify) {
void chOQInit(OutputQueue *oqp, uint8_t *buffer,
size_t size, qnotify_t onotify) {
qp->q_buffer = qp->q_rdptr = qp->q_wrptr = buffer;
qp->q_top = buffer + size;
chSemInit(&qp->q_sem, size);
qp->q_notify = onotify;
oqp->q_buffer = oqp->q_rdptr = oqp->q_wrptr = buffer;
oqp->q_top = buffer + size;
chSemInit(&oqp->q_sem, size);
oqp->q_notify = onotify;
}
/**
* @brief Resets an Output Queue.
* @details All the data is lost and the waiting threads resumed.
* @brief Resets an output queue.
* @details All the data in the output queue is erased and lost, any waiting
* thread is resumed with status @p Q_RESET.
*
* @param[in] qp pointer to a @p Queue structure
* @param[in] oqp pointer to an @p OutputQueue structure
*
* @note A reset operation can be used by a low level driver in order to obtain
* immediate attention from the high level layers.
*/
void chOQReset(Queue *qp) {
void chOQResetI(OutputQueue *oqp) {
oqp->q_rdptr = oqp->q_wrptr = oqp->q_buffer;
chSemResetI(&oqp->q_sem, (cnt_t)(oqp->q_top - oqp->q_buffer));
}
/**
* @brief Output queue write.
* @details This function writes a byte value to an output queue. If the queue
* is full then the calling thread is suspended until there is space
* in the queue or a timeout occurs.
*
* @param[in] oqp pointer to an @p OutputQueue structure
* @param[in] timeout the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The operation status:
* @retval Q_OK if the operation succeeded.
* @retval Q_TIMEOUT if the specified time expired.
* @retval Q_RESET if the queue was reset.
*
* @note The @p time parameter is only meaningful if the
* @p CH_USE_SEMAPHORES_TIMEOUT kernel option is activated,
* otherwise only the @p TIME_INFINITE value is accepted.
*/
msg_t chOQPutTimeout(OutputQueue *oqp, uint8_t b, systime_t timeout) {
msg_t msg;
#if CH_USE_SEMAPHORES_TIMEOUT
chSysLock();
if ((msg = chSemWaitTimeoutS(&oqp->q_sem, timeout)) < RDY_OK) {
chSysUnlock();
return msg;
}
#else
chDbgCheck(timeout == TIME_INFINITE, "chOQPutTimeout");
chSysLock();
if ((msg = chSemWaitS(&oqp->q_sem)) < RDY_OK) {
chSysUnlock();
return msg;
}
#endif
*oqp->q_wrptr++ = b;
if (oqp->q_wrptr >= oqp->q_top)
oqp->q_wrptr = oqp->q_buffer;
qp->q_rdptr = qp->q_wrptr = qp->q_buffer;
chSemResetI(&qp->q_sem, (cnt_t)(qp->q_top - qp->q_buffer));
if (oqp->q_notify)
oqp->q_notify();
chSysUnlock();
return Q_OK;
}
/**
* @brief Inserts a byte in the output queue.
* @details If the queue is full then the thread is suspended until the queue
* has free space available.
* @brief Output queue read.
* @details A byte value is read from the low end of an output queue.
*
* @param[in] qp pointer to a @p Queue structure
* @param[in] b the byte value to be written
*/
void chOQPut(Queue *qp, uint8_t b) {
chSysLock();
chSemWaitS(&qp->q_sem);
*qp->q_wrptr++ = b;
if (qp->q_wrptr >= qp->q_top)
qp->q_wrptr = qp->q_buffer;
if (qp->q_notify)
qp->q_notify();
chSysUnlock();
}
/**
* @brief Gets a byte from an output queue.
*
* @param[in] qp pointer to a @p Queue structure
* @return The byte value from the queue.
* @param[in] oqp pointer to an @p OutputQueue structure
* @return The byte value from the queue or:
* @retval Q_EMPTY if the queue is empty.
* @note This function is the lower side endpoint of the output queue.
* @note This function must be called with interrupts disabled or from an
* interrupt handler.
*/
msg_t chOQGetI(Queue *qp) {
msg_t chOQGetI(OutputQueue *oqp) {
uint8_t b;
if (chOQIsEmpty(qp))
if (chOQIsEmpty(oqp))
return Q_EMPTY;
b = *qp->q_rdptr++;
if (qp->q_rdptr >= qp->q_top)
qp->q_rdptr = qp->q_buffer;
chSemSignalI(&qp->q_sem);
b = *oqp->q_rdptr++;
if (oqp->q_rdptr >= oqp->q_top)
oqp->q_rdptr = oqp->q_buffer;
chSemSignalI(&oqp->q_sem);
return b;
}
@ -293,218 +302,43 @@ msg_t chOQGetI(Queue *qp) {
* @note The function is not atomic, if you need atomicity it is suggested
* to use a semaphore for mutual exclusion.
*/
size_t chOQWrite(Queue *qp, uint8_t *buffer, size_t n) {
/**
* @brief Non-blocking write.
* @details The function writes data from a buffer to an output queue. The
* transfer is non-blocking and can return zero if the queue is
* already full.
*
* @param[in] oqp pointer to an @p OutputQueue structure
* @param[out] buffer pointer to the buffer where the output data is stored
* @param[in] n the maximum amount of data to be transferred
* @return The number of bytes transferred.
*
* @note The function is not atomic, if you need atomicity it is suggested
* to use a semaphore or a mutex for mutual exclusion.
*/
size_t chOQWrite(OutputQueue *oqp, uint8_t *buffer, size_t n) {
size_t w = 0;
while (n--) {
chSysLock();
if (chOQIsFull(qp)) {
if (chOQIsFull(oqp)) {
chSysUnlock();
break;
}
chSemFastWaitI(&qp->q_sem);
*qp->q_wrptr++ = *buffer++;
if (qp->q_wrptr >= qp->q_top)
qp->q_wrptr = qp->q_buffer;
chSemFastWaitI(&oqp->q_sem);
*oqp->q_wrptr++ = *buffer++;
if (oqp->q_wrptr >= oqp->q_top)
oqp->q_wrptr = oqp->q_buffer;
chSysUnlock();
w++;
}
if (w && qp->q_notify) {
if (w && oqp->q_notify) {
chSysLock();
qp->q_notify();
oqp->q_notify();
chSysUnlock();
}
return w;
}
#endif /* CH_USE_QUEUES */
#if CH_USE_QUEUES_HALFDUPLEX
/**
* @brief Initializes an half duplex queue.
*
* @param[out] qp pointer to the @p HalfDuplexQueue structure
* @param[in] buffer pointer to a memory area allocated as buffer for the queue
* @param[in] size the size of the queue buffer
* @param[in] inotify pointer to a callback function that is invoked when
* some data is read from the queue. The value can be
* @p NULL.
* @param[in] onotify pointer to a callback function that is invoked when
* some data is written to the queue. The value can be
* @p NULL.
*/
void chHDQInit(HalfDuplexQueue *qp, uint8_t *buffer, size_t size,
qnotify_t inotify, qnotify_t onotify) {
qp->hdq_buffer = qp->hdq_rdptr = qp->hdq_wrptr = buffer;
qp->hdq_top = buffer + size;
chSemInit(&qp->hdq_isem, 0);
chSemInit(&qp->hdq_osem, size);
qp->hdq_inotify = inotify;
qp->hdq_onotify = onotify;
}
/**
* @brief Reads a byte from the receive queue.
* @details If the queue is empty or is in transmission mode then the invoking
* thread is suspended.
*
* @param[in] qp pointer to a @p HalfDuplexQueue structure
* @return The byte value.
* @retval Q_RESET if the queue was reset.
*/
msg_t chHDQGetReceive(HalfDuplexQueue *qp) {
uint8_t b;
chSysLock();
if (chSemWaitS(&qp->hdq_isem) < RDY_OK) {
chSysUnlock();
return Q_RESET;
}
/*
* NOTE: The semaphore can be signaled only if the queue is in
* receive mode.
*/
b = *qp->hdq_rdptr++;
if (qp->hdq_rdptr >= qp->hdq_top)
qp->hdq_rdptr = qp->hdq_buffer;
if (qp->hdq_inotify)
qp->hdq_inotify();
chSysUnlock();
return b;
}
#if CH_USE_QUEUES_TIMEOUT && CH_USE_SEMAPHORES_TIMEOUT
/**
* @brief Reads a byte from the receive queue.
* @details If the queue is empty or is in transmission mode then the invoking
* thread is suspended.
*
* @param[in] qp pointer to a @p HalfDuplexQueue structure
* @param[in] time the number of ticks before the operation timouts
* @return The byte value.
* @retval Q_TIMEOUT if a timeout occurs.
* @note The function is available only if the @p CH_USE_QUEUES_TIMEOUT and
* @p CH_USE_SEMAPHORES_TIMEOUT options are enabled in @p chconf.h.
*/
msg_t chHDQGetReceiveTimeout(HalfDuplexQueue *qp, systime_t time) {
uint8_t b;
msg_t msg;
chSysLock();
if ((msg = chSemWaitTimeoutS(&qp->hdq_isem, time)) < RDY_OK) {
chSysUnlock();
return msg;
}
/*
* NOTE: The semaphore can be signaled only if the queue is in
* receive mode.
*/
b = *qp->hdq_rdptr++;
if (qp->hdq_rdptr >= qp->hdq_top)
qp->hdq_rdptr = qp->hdq_buffer;
if (qp->hdq_inotify)
qp->hdq_inotify();
chSysUnlock();
return b;
}
#endif /* CH_USE_QUEUES_TIMEOUT && CH_USE_SEMAPHORES_TIMEOUT */
/**
* @brief Writes a byte into the transmit queue.
* @details If the buffer contains unread input data then the the buffer is
* cleared and the queue goes in transmission mode.
*
* @param[in] qp pointer to a @p HalfDuplexQueue structure
* @param[in] b the byte value to be written
*/
void chHDQPutTransmit(HalfDuplexQueue *qp, uint8_t b) {
chSysLock();
/*
* Transmission mode requires that all the unread data must be destroyed.
*/
if (qp->hdq_isem.s_cnt > 0) {
qp->hdq_isem.s_cnt = 0;
qp->hdq_rdptr = qp->hdq_wrptr = qp->hdq_buffer;
}
/*
* Goes in transmission mode.
*/
chSemWaitS(&qp->hdq_osem);
*qp->hdq_wrptr++ = b;
if (qp->hdq_wrptr >= qp->hdq_top)
qp->hdq_wrptr = qp->hdq_buffer;
if (qp->hdq_onotify)
qp->hdq_onotify();
chSysUnlock();
}
/**
* @brief Gets a byte from the transmit queue.
*
* @param[in] qp pointer to a @p HalfDuplexQueue structure
* @return The byte value.
* @retval Q_EMPTY if the transmit queue is empty (not in transmission mode).
* @note This function must be called with interrupts disabled or from an
* interrupt handler.
*/
msg_t chHDQGetTransmitI(HalfDuplexQueue *qp) {
uint8_t b;
if (!chHDQIsTransmitting(qp))
return Q_EMPTY;
b = *qp->hdq_rdptr++;
if (qp->hdq_rdptr >= qp->hdq_top)
qp->hdq_rdptr = qp->hdq_buffer;
chSemSignalI(&qp->hdq_osem);
return b;
}
/**
* @brief Writes a byte into the receive queue.
* @details If the queue is in transmission mode then the byte is lost.
*
* @param[in] qp pointer to a @p HalfDuplexQueue structure
* @param[in] b the byte value to be written
* @retval Q_OK if the operation is successful.
* @retval Q_FULL if the driver is in transmit mode or the receive queue is full.
* @note This function must be called with interrupts disabled or from an
* interrupt handler.
*/
msg_t chHDQPutReceiveI(HalfDuplexQueue *qp, uint8_t b) {
if (chHDQIsTransmitting(qp))
return Q_FULL;
if (chHDQIsFullReceive(qp))
return Q_FULL;
*qp->hdq_wrptr++ = b;
if (qp->hdq_wrptr >= qp->hdq_top)
qp->hdq_wrptr = qp->hdq_buffer;
chSemSignalI(&qp->hdq_isem);
return Q_OK;
}
#endif /* CH_USE_QUEUES_HALFDUPLEX */
/** @} */

View File

@ -123,96 +123,4 @@ dflags_t chFDDGetAndClearFlags(FullDuplexDriver *sd) {
}
#endif /* CH_USE_SERIAL_FULLDUPLEX */
#if CH_USE_SERIAL_HALFDUPLEX
/**
* @brief Initializes a generic half duplex driver.
* @details The HW dependent part of the initialization has to be performed
* outside, usually in the hardware initialization code.
*
* @param[out] sd pointer to a @p HalfDuplexDriver structure
* @param[in] b pointer to a memory area allocated for the queue buffer
* @param[in] size the buffer size
* @param[in] inotify pointer to a callback function that is invoked when
* some data is read from the queue. The value can be
* @p NULL.
* @param[in] onotify pointer to a callback function that is invoked when
* some data is written in the queue. The value can be
* @p NULL.
*/
void chHDDInit(HalfDuplexDriver *sd, uint8_t *b, size_t size,
qnotify_t inotify, qnotify_t onotify) {
chDbgCheck((sd != NULL) && (b != NULL) && (size > 0), "chHDDInit");
chHDQInit(&sd->sd_queue, b, size, inotify, onotify);
chEvtInit(&sd->sd_ievent);
chEvtInit(&sd->sd_oevent);
chEvtInit(&sd->sd_sevent);
sd->sd_flags = SD_NO_ERROR;
}
/**
* @brief Handles incoming data.
* @details This function must be called from the input interrupt service
* routine in order to enqueue incoming data and generate the
* related events.
* @param[in] sd pointer to a @p FullDuplexDriver structure
* @param[in] b the byte to be written in the driver's input queue
*/
void chHDDIncomingDataI(HalfDuplexDriver *sd, uint8_t b) {
if (chHDQPutReceiveI(&sd->sd_queue, b) < Q_OK)
chHDDAddFlagsI(sd, SD_OVERRUN_ERROR);
else
chEvtBroadcastI(&sd->sd_ievent);
}
/**
* @brief Handles outgoing data.
* @details Must be called from the output interrupt service routine in order
* to get the next byte to be transmitted.
*
* @param[in] sd pointer to a @p HalfDuplexDriver structure
* @return The byte value read from the driver's output queue.
* @retval Q_EMPTY if the queue is empty (the lower driver usually disables
* the interrupt source when this happens).
*/
msg_t chHDDRequestDataI(HalfDuplexDriver *sd) {
msg_t b = chHDQGetTransmitI(&sd->sd_queue);
if (b < Q_OK)
chEvtBroadcastI(&sd->sd_oevent);
return b;
}
/**
* @brief Handles communication events/errors.
* @details Must be called from the I/O interrupt service routine in order to
* notify I/O conditions as errors, signals change etc.
*
* @param[in] sd pointer to a @p HalfDuplexDriver structure
* @param[in] mask condition flags to be added to the mask
*/
void chHDDAddFlagsI(HalfDuplexDriver *sd, dflags_t mask) {
sd->sd_flags |= mask;
chEvtBroadcastI(&sd->sd_sevent);
}
/**
* @brief Returns and clears the errors mask associated to the driver.
*
* @param[in] sd pointer to a @p HalfDuplexDriver structure
* @return The condition flags modified since last time this function was
* invoked.
*/
dflags_t chHDDGetAndClearFlags(HalfDuplexDriver *sd) {
dflags_t mask;
mask = sd->sd_flags;
sd->sd_flags = SD_NO_ERROR;
return mask;
}
#endif /* CH_USE_SERIAL_HALFDUPLEX */
/** @} */

View File

@ -43,9 +43,13 @@ typedef void (*qnotify_t)(void);
#if CH_USE_QUEUES
/**
* @brief I/O queue structure.
* @details This structure is used by both Input and Output Queues,
* the difference is on how the semaphore is initialized.
* @brief Generic I/O queue structure.
* @details This structure represents a generic Input or Output asymmetrical
* queue. The queue is asymmetrical because one end is meant to be
* accessed from a thread context, and thus can be blocking, the other
* end is accessible from interrupt handlers or from within a kernel
* lock zone (see <b>I-Locked</b> and <b>S-Locked</b> states in
* @ref system_states) and is non-blocking.
*/
typedef struct {
uint8_t *q_buffer; /**< Pointer to the queue buffer.*/
@ -55,7 +59,7 @@ typedef struct {
uint8_t *q_rdptr; /**< Read pointer.*/
Semaphore q_sem; /**< Counter @p Semaphore.*/
qnotify_t q_notify; /**< Data notification callback.*/
} Queue;
} GenericQueue;
/** Returns the queue's buffer size. */
#define chQSize(q) ((q)->q_top - (q)->q_buffer)
@ -68,110 +72,86 @@ typedef struct {
*/
#define chQSpace(q) chSemGetCounterI(&(q)->q_sem)
/** Evaluates to TRUE if the specified Input Queue is empty. */
/**
* @brief Input queue structure.
* @details This structure represents a generic asymmetrical input queue.
* Writing in the queue is non-blocking and can be performed from
* interrupt handlers or from within a kernel lock zone (see
* <b>I-Locked</b> and <b>S-Locked</b> states in @ref system_states).
* Reading the queue can be a blocking operation and is supposed to
* be performed by a system thread.
* @extends GenericQueue
*/
typedef GenericQueue InputQueue;
/** Evaluates to @p TRUE if the specified Input Queue is empty. */
#define chIQIsEmpty(q) (chQSpace(q) <= 0)
/** Evaluates to TRUE if the specified Input Queue is full. */
/** Evaluates to @p TRUE if the specified Input Queue is full. */
#define chIQIsFull(q) (chQSpace(q) >= chQSize(q))
/** Evaluates to TRUE if the specified Output Queue is empty. */
/**
* @brief Input queue read.
* @details This function reads a byte value from an input queue. If the queue
* is empty then the calling thread is suspended until a byte arrives
* in the queue.
*
* @param[in] iqp pointer to an @p InputQueue structure
* @return A byte value from the queue or:
* @retval Q_RESET if the queue was reset.
*/
#define chIQGet(iqp) chIQGetTimeout(iqp, TIME_INFINITE)
/**
* @brief Output queue structure.
* @details This structure represents a generic asymmetrical output queue.
* Reading from the queue is non-blocking and can be performed from
* interrupt handlers or from within a kernel lock zone (see
* <b>I-Locked</b> and <b>S-Locked</b> states in @ref system_states).
* Writing the queue can be a blocking operation and is supposed to
* be performed by a system thread.
* @extends GenericQueue
*/
typedef GenericQueue OutputQueue;
/** Evaluates to @p TRUE if the specified Output Queue is empty. */
#define chOQIsEmpty(q) (chQSpace(q) >= chQSize(q))
/** Evaluates to TRUE if the specified Output Queue is full. */
/** Evaluates to @p TRUE if the specified Output Queue is full. */
#define chOQIsFull(q) (chQSpace(q) <= 0)
/**
* @brief Output queue write.
* @details This function writes a byte value to an output queue. If the queue
* is full then the calling thread is suspended until there is space
* in the queue.
*
* @param[in] oqp pointer to an @p OutputQueue structure
* @param[in] b the byte value to be written in the queue
* @return The operation status:
* @retval Q_OK if the operation succeeded.
* @retval Q_RESET if the queue was reset.
*/
#define chOQPut(oqp, b) chOQPutTimeout(oqp, b, TIME_INFINITE)
#ifdef __cplusplus
extern "C" {
#endif
/*
* Input Queues functions. An Input Queue is usually written into by an
* interrupt handler and read from a thread.
*/
void chIQInit(Queue *qp, uint8_t *buffer, size_t size, qnotify_t inotify);
void chIQReset(Queue *qp);
msg_t chIQPutI(Queue *qp, uint8_t b);
msg_t chIQGet(Queue *qp);
size_t chIQRead(Queue *qp, uint8_t *buffer, size_t n);
#if CH_USE_QUEUES_TIMEOUT
msg_t chIQGetTimeout(Queue *qp, systime_t time);
#endif
/*
* Output Queues functions. An Output Queue is usually written into by a
* thread and read from an interrupt handler.
*/
void chOQInit(Queue *queue, uint8_t *buffer, size_t size, qnotify_t onotify);
void chOQReset(Queue *queue);
void chOQPut(Queue *queue, uint8_t b);
msg_t chOQGetI(Queue *queue);
size_t chOQWrite(Queue *queue, uint8_t *buffer, size_t n);
void chIQInit(InputQueue *qp, uint8_t *buffer, size_t size, qnotify_t inotify);
void chIQResetI(InputQueue *qp);
msg_t chIQPutI(InputQueue *qp, uint8_t b);
msg_t chIQGetTimeout(InputQueue *qp, systime_t timeout);
size_t chIQRead(InputQueue *qp, uint8_t *buffer, size_t n);
void chOQInit(OutputQueue *queue, uint8_t *buffer, size_t size, qnotify_t onotify);
void chOQResetI(OutputQueue *queue);
msg_t chOQPutTimeout(OutputQueue *queue, uint8_t b, systime_t timeout);
msg_t chOQGetI(OutputQueue *queue);
size_t chOQWrite(OutputQueue *queue, uint8_t *buffer, size_t n);
#ifdef __cplusplus
}
#endif
#endif /* CH_USE_QUEUES */
#if CH_USE_QUEUES_HALFDUPLEX
/**
* @brief Half duplex queue structure.
*/
typedef struct {
uint8_t *hdq_buffer; /**< Pointer to the queue buffer.*/
uint8_t *hdq_top; /**< Pointer to the first location
after the buffer. */
uint8_t *hdq_wrptr; /**< Write pointer.*/
uint8_t *hdq_rdptr; /**< Read pointer.*/
Semaphore hdq_isem; /**< Input counter @p Semaphore.*/
Semaphore hdq_osem; /**< Output counter @p Semaphore.*/
qnotify_t hdq_inotify; /**< Input data notification
callback.*/
qnotify_t hdq_onotify; /**< Output data notification
callback.*/
} HalfDuplexQueue;
/** Returns the queue's buffer size. */
#define chHDQSize(q) ((q)->hdq_top - (q)->hdq_buffer)
/**
* Returns the queue space when in transmission mode.
* @note The returned value can be less than zero when there are waiting
* threads on the internal semaphore.
*/
#define chHDQEmptySpace(q) chSemGetCounterI(&(q)->hdq_osem)
/**
* Returns the number of the bytes in the queue when in receive mode.
* @note The returned value can be less than zero when there are waiting
* threads on the internal semaphore.
*/
#define chHDQFilledSpace(q) chSemGetCounterI(&(q)->hdq_isem)
/** Evaluates to TRUE if the queue is in transmit mode. */
#define chHDQIsTransmitting(q) (chHDQEmptySpace(q) < chHDQSize(q))
/** Evaluates to TRUE if the queue is in receive mode. */
#define chHDQIsReceiving(q) (chHDQEmptySpaceQ(q) >= chHDQSize(q))
/** Evaluates to TRUE if the receive queue is full. */
#define chHDQIsFullReceive(q) (chHDQFilledSpace(q) >= chHDQSize(q))
#ifdef __cplusplus
extern "C" {
#endif
void chHDQInit(HalfDuplexQueue *qp, uint8_t *buffer, size_t size,
qnotify_t inotify, qnotify_t onotify);
msg_t chHDQGetReceive(HalfDuplexQueue *qp);
void chHDQPutTransmit(HalfDuplexQueue *qp, uint8_t b);
msg_t chHDQGetTransmitI(HalfDuplexQueue *qp);
msg_t chHDQPutReceiveI(HalfDuplexQueue *qp, uint8_t b);
#if CH_USE_QUEUES_TIMEOUT
msg_t chHDQGetReceiveTimeout(HalfDuplexQueue *qp, systime_t time);
#endif
#ifdef __cplusplus
}
#endif
#endif /* CH_USE_QUEUES_HALFDUPLEX */
#endif /* _QUEUES_H_ */
/** @} */

View File

@ -54,14 +54,14 @@ typedef struct {
/** Input queue. Incoming data can be read from this queue by using the
* queues APIs.*/
Queue sd_iqueue;
InputQueue sd_iqueue;
/** Data Available @p EventSource. This event is generated when some incoming
* data is inserted in the Input @p Queue.*/
EventSource sd_ievent;
/** Output queue. Outgoing data can be written to this Output @p Queue by
* using the queues APIs.*/
Queue sd_oqueue;
OutputQueue sd_oqueue;
/** Data Transmitted @p EventSource. This event is generated when the
* Output @p Queue is empty.*/
EventSource sd_oevent;
@ -110,58 +110,6 @@ extern "C" {
#endif /* CH_USE_SERIAL_FULLDUPLEX */
#if CH_USE_SERIAL_HALFDUPLEX
/**
* @brief Full Duplex Serial Driver main structure.
*/
typedef struct {
/** Data queue. Transmit/receive @p HalfDuplexQueue.*/
HalfDuplexQueue sd_queue;
/** Data Available @p EventSource. This event is generated when some
* incoming data is inserted in the receive queue.*/
EventSource sd_ievent;
/** Data Transmitted @p EventSource. This event is generated when the
* transmission queue is empty and the driver can either transmit more
* data or enter receive mode.*/
EventSource sd_oevent;
/** I/O driver status flags. This field should not be read directly but
* the @p chHDDGetAndClearFlags() funtion should be used
* instead.*/
dflags_t sd_flags;
/** Status Change Event Source. This event is generated when a condition
* flag was changed.*/
EventSource sd_sevent;
} HalfDuplexDriver;
#ifdef __cplusplus
extern "C" {
#endif
void chHDDInit(HalfDuplexDriver *sd, uint8_t *b, size_t size,
qnotify_t inotify, qnotify_t onotify);
void chHDDIncomingDataI(HalfDuplexDriver *sd, uint8_t b);
msg_t chHDDRequestDataI(HalfDuplexDriver *sd);
void chHDDAddFlagsI(HalfDuplexDriver *sd, dflags_t mask);
dflags_t chHDDGetAndClearFlags(HalfDuplexDriver *sd);
#ifdef __cplusplus
}
#endif
/** @see chHDQGetReceive()*/
#define chHDDGetReceive(sd) \
chHDQGetReceive(&(sd)->sd_queue)
/** @see chHDQGetReceiveTimeout()*/
#define chHDDGetReceiveTimeout(sd, t) \
chHDQGetReceiveTimeout(&(sd)->sd_queue, t)
/** @see chHDQPutTransmit()*/
#define chHDDPutTransmit(sd, b) \
chHDQPutTransmit(&(sd)->sd_queue, b)
#endif /* CH_USE_SERIAL_HALFDUPLEX */
#endif /* _SERIAL_H_ */
/** @} */

View File

@ -318,7 +318,7 @@ static char *bmk8_gettest(void) {
static void bmk8_execute(void) {
static uint8_t ib[16];
static Queue iq;
static InputQueue iq;
chIQInit(&iq, ib, sizeof(ib), NULL);
uint32_t n = 0;