tinySA/demos/ARMCM4-STM32F407-DISCOVERY/main.c

281 lines
8.5 KiB
C
Raw Normal View History

/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
2011,2012 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ch.h"
#include "hal.h"
#include "test.h"
#include "lis302dl.h"
#include "chprintf.h"
static void pwmpcb(PWMDriver *pwmp);
static void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n);
static void spicb(SPIDriver *spip);
/* Total number of channels to be sampled by a single ADC operation.*/
#define ADC_GRP1_NUM_CHANNELS 2
/* Depth of the conversion buffer, channels are sampled four times each.*/
#define ADC_GRP1_BUF_DEPTH 4
/*
* ADC samples buffer.
*/
static adcsample_t samples[ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH];
/*
* ADC conversion group.
* Mode: Linear buffer, 4 samples of 2 channels, SW triggered.
* Channels: IN11 (48 cycles sample time)
* Sensor (192 cycles sample time)
*/
static const ADCConversionGroup adcgrpcfg = {
FALSE,
ADC_GRP1_NUM_CHANNELS,
adccb,
NULL,
/* HW dependent part.*/
0,
ADC_CR2_SWSTART,
ADC_SMPR1_SMP_AN11(ADC_SAMPLE_56) | ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_144),
0,
ADC_SQR1_NUM_CH(ADC_GRP1_NUM_CHANNELS),
0,
ADC_SQR3_SQ2_N(ADC_CHANNEL_IN11) | ADC_SQR3_SQ1_N(ADC_CHANNEL_SENSOR)
};
/*
* PWM configuration structure.
* Cyclic callback enabled, channels 1 and 4 enabled without callbacks,
* the active state is a logic one.
*/
static PWMConfig pwmcfg = {
10000, /* 10KHz PWM clock frequency. */
10000, /* PWM period 1S (in ticks). */
pwmpcb,
{
{PWM_OUTPUT_ACTIVE_HIGH, NULL},
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_ACTIVE_HIGH, NULL}
},
/* HW dependent part.*/
0
};
/*
* SPI1 configuration structure.
* Speed 5.25MHz, CPHA=1, CPOL=1, 8bits frames, MSb transmitted first.
* The slave select line is the pin GPIOE_CS_SPI on the port GPIOE.
*/
static const SPIConfig spi1cfg = {
NULL,
/* HW dependent part.*/
GPIOE,
GPIOE_CS_SPI,
SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_CPOL | SPI_CR1_CPHA
};
/*
* SPI2 configuration structure.
* Speed 21MHz, CPHA=0, CPOL=0, 16bits frames, MSb transmitted first.
* The slave select line is the pin 12 on the port GPIOA.
*/
static const SPIConfig spi2cfg = {
spicb,
/* HW dependent part.*/
GPIOB,
12,
SPI_CR1_DFF
};
/*
* PWM cyclic callback.
* A new ADC conversion is started.
*/
static void pwmpcb(PWMDriver *pwmp) {
(void)pwmp;
/* Starts an asynchronous ADC conversion operation, the conversion
will be executed in parallel to the current PWM cycle and will
terminate before the next PWM cycle.*/
chSysLockFromIsr();
adcStartConversionI(&ADCD1, &adcgrpcfg, samples, ADC_GRP1_BUF_DEPTH);
chSysUnlockFromIsr();
}
/*
* ADC end conversion callback.
* The PWM channels are reprogrammed using the latest ADC samples.
* The latest samples are transmitted into a single SPI transaction.
*/
void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n) {
(void) buffer; (void) n;
/* Note, only in the ADC_COMPLETE state because the ADC driver fires an
intermediate callback when the buffer is half full.*/
if (adcp->state == ADC_COMPLETE) {
adcsample_t avg_ch1, avg_ch2;
/* Calculates the average values from the ADC samples.*/
avg_ch1 = (samples[0] + samples[2] + samples[4] + samples[6]) / 4;
avg_ch2 = (samples[1] + samples[3] + samples[5] + samples[7]) / 4;
chSysLockFromIsr();
/* Changes the channels pulse width, the change will be effective
starting from the next cycle.*/
pwmEnableChannelI(&PWMD4, 0, PWM_FRACTION_TO_WIDTH(&PWMD4, 4096, avg_ch1));
pwmEnableChannelI(&PWMD4, 3, PWM_FRACTION_TO_WIDTH(&PWMD4, 4096, avg_ch2));
/* SPI slave selection and transmission start.*/
spiSelectI(&SPID2);
spiStartSendI(&SPID2, ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH, samples);
chSysUnlockFromIsr();
}
}
/*
* SPI end transfer callback.
*/
static void spicb(SPIDriver *spip) {
/* On transfer end just releases the slave select line.*/
chSysLockFromIsr();
spiUnselectI(spip);
chSysUnlockFromIsr();
}
/*
* This is a periodic thread that does absolutely nothing except flashing
* a LED.
*/
static WORKING_AREA(waThread1, 128);
static msg_t Thread1(void *arg) {
(void)arg;
chRegSetThreadName("blinker");
while (TRUE) {
palSetPad(GPIOD, GPIOD_LED3); /* Orange. */
chThdSleepMilliseconds(500);
palClearPad(GPIOD, GPIOD_LED3); /* Orange. */
chThdSleepMilliseconds(500);
}
}
/*
* Application entry point.
*/
int main(void) {
/*
* System initializations.
* - HAL initialization, this also initializes the configured device drivers
* and performs the board-specific initializations.
* - Kernel initialization, the main() function becomes a thread and the
* RTOS is active.
*/
halInit();
chSysInit();
/*
* Activates the serial driver 2 using the driver default configuration.
* PA2(TX) and PA3(RX) are routed to USART2.
*/
sdStart(&SD2, NULL);
palSetPadMode(GPIOA, 2, PAL_MODE_ALTERNATE(7));
palSetPadMode(GPIOA, 3, PAL_MODE_ALTERNATE(7));
/*
* If the user button is pressed after the reset then the test suite is
* executed immediately before activating the various device drivers in
* order to not alter the benchmark scores.
*/
if (palReadPad(GPIOA, GPIOA_BUTTON))
TestThread(&SD2);
/*
* Initializes the SPI driver 2. The SPI2 signals are routed as follow:
* PB12 - NSS.
* PB13 - SCK.
* PB14 - MISO.
* PB15 - MOSI.
*/
spiStart(&SPID2, &spi2cfg);
palSetPad(GPIOB, 12);
palSetPadMode(GPIOB, 12, PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST); /* NSS. */
palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(5) |
PAL_STM32_OSPEED_HIGHEST); /* SCK. */
palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(5)); /* MISO. */
palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(5) |
PAL_STM32_OSPEED_HIGHEST); /* MOSI. */
/*
* Initializes the ADC driver 1 and enable the thermal sensor.
* The pin PC0 on the port GPIOC is programmed as analog input.
*/
adcStart(&ADCD1, NULL);
adcSTM32EnableTSVREFE();
palSetPadMode(GPIOC, 1, PAL_MODE_INPUT_ANALOG);
/*
* Initializes the PWM driver 4, routes the TIM4 outputs to the board LEDs.
*/
pwmStart(&PWMD4, &pwmcfg);
palSetPadMode(GPIOD, GPIOD_LED4, PAL_MODE_ALTERNATE(2)); /* Green. */
palSetPadMode(GPIOD, GPIOD_LED6, PAL_MODE_ALTERNATE(2)); /* Blue. */
/*
* Creates the example thread.
*/
chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);
/*
* Initializes the SPI driver 1 in order to access the MEMS. The signals
* are initialized in the board file.
* Several LIS302DL registers are then initialized.
*/
spiStart(&SPID1, &spi1cfg);
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG1, 0x43);
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG2, 0x00);
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG3, 0x00);
/*
* Normal main() thread activity, in this demo it does nothing except
* sleeping in a loop and check the button state, when the button is
* pressed the test procedure is launched with output on the serial
* driver 2.
*/
while (TRUE) {
int8_t x, y, z;
if (palReadPad(GPIOA, GPIOA_BUTTON))
TestThread(&SD2);
x = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTX);
y = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTY);
z = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTZ);
chprintf((BaseChannel *)&SD2, "%d, %d, %d\r\n", x, y, z);
chThdSleepMilliseconds(500);
}
}