tinySA/os/hal/platforms/STM32/uart_lld.c

673 lines
20 KiB
C
Raw Normal View History

/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file STM32/uart_lld.c
* @brief STM32 low level UART driver code.
*
* @addtogroup UART
* @{
*/
#include "ch.h"
#include "hal.h"
#if CH_HAL_USE_UART || defined(__DOXYGEN__)
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/** @brief USART1 UART driver identifier.*/
#if STM32_UART_USE_USART1 || defined(__DOXYGEN__)
UARTDriver UARTD1;
#endif
/** @brief USART2 UART driver identifier.*/
#if STM32_UART_USE_USART2 || defined(__DOXYGEN__)
UARTDriver UARTD2;
#endif
/** @brief USART3 UART driver identifier.*/
#if STM32_UART_USE_USART3 || defined(__DOXYGEN__)
UARTDriver UARTD3;
#endif
/*===========================================================================*/
/* Driver local variables. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
/**
* @brief Status bits translation.
*
* @param[in] sr USART SR register value
*
* @return The error flags.
*/
static uartflags_t translate_errors(uint16_t sr) {
uartflags_t sts = 0;
if (sr & USART_SR_ORE)
sts |= UART_OVERRUN_ERROR;
if (sr & USART_SR_PE)
sts |= UART_PARITY_ERROR;
if (sr & USART_SR_FE)
sts |= UART_FRAMING_ERROR;
if (sr & USART_SR_NE)
sts |= UART_NOISE_ERROR;
if (sr & USART_SR_LBD)
sts |= UART_BREAK_DETECTED;
return sts;
}
/**
* @brief Puts the receiver in the UART_RX_IDLE state.
*
* @param[in] uartp pointer to the @p UARTDriver object
*/
static void set_rx_idle_loop(UARTDriver *uartp) {
uint32_t ccr;
/* RX DMA channel preparation, if the char callback is defined then the
TCIE interrupt is enabled too.*/
if (uartp->ud_config->uc_rxchar == NULL)
ccr = DMA_CCR1_CIRC | DMA_CCR1_TEIE;
else
ccr = DMA_CCR1_CIRC | DMA_CCR1_TEIE | DMA_CCR1_TCIE;
dmaSetupChannel(uartp->ud_dmap, uartp->ud_dmarx, 1,
&uartp->ud_rxbuf, uartp->ud_dmaccr | ccr);
dmaEnableChannel(uartp->ud_dmap, uartp->ud_dmarx);
}
/**
* @brief USART de-initialization.
* @details This function must be invoked with interrupts disabled.
*
* @param[in] uartp pointer to the @p UARTDriver object
*/
static void usart_stop(UARTDriver *uartp) {
/* Stops RX and TX DMA channels.*/
dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmarx);
dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmatx);
dmaClearChannel(uartp->ud_dmap, uartp->ud_dmarx);
dmaClearChannel(uartp->ud_dmap, uartp->ud_dmatx);
/* Stops USART operations.*/
uartp->ud_usart->CR1 = 0;
uartp->ud_usart->CR2 = 0;
uartp->ud_usart->CR3 = 0;
}
/**
* @brief USART initialization.
* @details This function must be invoked with interrupts disabled.
*
* @param[in] uartp pointer to the @p UARTDriver object
*/
static void usart_start(UARTDriver *uartp) {
uint16_t cr1;
USART_TypeDef *u = uartp->ud_usart;
/* Defensive programming, starting from a clean state.*/
usart_stop(uartp);
/* Baud rate setting.*/
if (uartp->ud_usart == USART1)
u->BRR = STM32_PCLK2 / uartp->ud_config->uc_speed;
else
u->BRR = STM32_PCLK1 / uartp->ud_config->uc_speed;
/* Resetting eventual pending status flags.*/
(void)u->SR; /* SR reset step 1.*/
(void)u->DR; /* SR reset step 2.*/
u->SR = 0;
/* Note that some bits are enforced because required for correct driver
operations.*/
if (uartp->ud_config->uc_txend2 == NULL)
cr1 = USART_CR1_UE | USART_CR1_PEIE | USART_CR1_TE | USART_CR1_RE;
else
cr1 = USART_CR1_UE | USART_CR1_PEIE | USART_CR1_TE | USART_CR1_RE |
USART_CR1_TCIE;
u->CR1 = uartp->ud_config->uc_cr1 | cr1;
u->CR2 = uartp->ud_config->uc_cr2 | USART_CR2_LBDIE;
u->CR3 = uartp->ud_config->uc_cr3 | USART_CR3_DMAT | USART_CR3_DMAR |
USART_CR3_EIE;
/* Starting the receiver idle loop.*/
set_rx_idle_loop(uartp);
}
/**
* @brief RX DMA common service routine.
*
* @param[in] uartp pointer to the @p UARTDriver object
*/
static void serve_rx_end_irq(UARTDriver *uartp) {
uartp->ud_rxstate = UART_RX_COMPLETE;
if (uartp->ud_config->uc_rxend != NULL)
uartp->ud_config->uc_rxend(uartp);
/* If the callback didn't explicitly change state then the receiver
automatically returns to the idle state.*/
if (uartp->ud_rxstate == UART_RX_COMPLETE) {
uartp->ud_rxstate = UART_RX_IDLE;
set_rx_idle_loop(uartp);
}
}
/**
* @brief TX DMA common service routine.
*
* @param[in] uartp pointer to the @p UARTDriver object
*/
static void serve_tx_end_irq(UARTDriver *uartp) {
/* A callback is generated, if enabled, after a completed transfer.*/
uartp->ud_txstate = UART_TX_COMPLETE;
if (uartp->ud_config->uc_txend1 != NULL)
uartp->ud_config->uc_txend1(uartp);
/* If the callback didn't explicitly change state then the transmitter
automatically returns to the idle state.*/
if (uartp->ud_txstate == UART_TX_COMPLETE)
uartp->ud_txstate = UART_TX_IDLE;
}
/**
* @brief USART common service routine.
*
* @param[in] uartp pointer to the @p UARTDriver object
*/
static void serve_usart_irq(UARTDriver *uartp) {
uint16_t sr;
USART_TypeDef *u = uartp->ud_usart;
sr = u->SR; /* SR reset step 1.*/
(void)u->DR; /* SR reset step 2.*/
if (sr & (USART_SR_LBD | USART_SR_ORE | USART_SR_NE |
USART_SR_FE | USART_SR_PE)) {
u->SR = ~USART_SR_LBD;
if (uartp->ud_config->uc_rxerr != NULL)
uartp->ud_config->uc_rxerr(uartp, translate_errors(sr));
}
if (sr & USART_SR_TC) {
u->SR = ~USART_SR_TC;
/* End of transmission, a callback is generated.*/
if (uartp->ud_config->uc_txend2 != NULL)
uartp->ud_config->uc_txend2(uartp);
}
}
/*===========================================================================*/
/* Driver interrupt handlers. */
/*===========================================================================*/
#if STM32_UART_USE_USART1 || defined(__DOXYGEN__)
/**
* @brief USART1 RX DMA interrupt handler (channel 5).
*
* @isr
*/
CH_IRQ_HANDLER(DMA1_Ch5_IRQHandler) {
UARTDriver *uartp;
CH_IRQ_PROLOGUE();
uartp = &UARTD1;
if ((STM32_DMA1->ISR & DMA_ISR_TEIF5) != 0) {
STM32_UART_USART1_DMA_ERROR_HOOK();
}
if (uartp->ud_rxstate == UART_RX_IDLE) {
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_5);
/* Fast IRQ path, this is why it is not centralized in serve_rx_end_irq().*/
/* Receiver in idle state, a callback is generated, if enabled, for each
received character and then the driver stays in the same state.*/
if (uartp->ud_config->uc_rxchar != NULL)
uartp->ud_config->uc_rxchar(uartp->ud_rxbuf);
}
else {
/* Receiver in active state, a callback is generated, if enabled, after
a completed transfer.*/
dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_5);
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_5);
serve_rx_end_irq(uartp);
}
CH_IRQ_EPILOGUE();
}
/**
* @brief USART1 TX DMA interrupt handler (channel 4).
*
* @isr
*/
CH_IRQ_HANDLER(DMA1_Ch4_IRQHandler) {
CH_IRQ_PROLOGUE();
if ((STM32_DMA1->ISR & DMA_ISR_TEIF4) != 0) {
STM32_UART_USART1_DMA_ERROR_HOOK();
}
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_4);
dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_4);
serve_tx_end_irq(&UARTD1);
CH_IRQ_EPILOGUE();
}
/**
* @brief USART1 IRQ handler.
*
* @isr
*/
CH_IRQ_HANDLER(USART1_IRQHandler) {
CH_IRQ_PROLOGUE();
serve_usart_irq(&UARTD1);
CH_IRQ_EPILOGUE();
}
#endif /* STM32_UART_USE_USART1 */
#if STM32_UART_USE_USART2 || defined(__DOXYGEN__)
/**
* @brief USART2 RX DMA interrupt handler (channel 6).
*
* @isr
*/
CH_IRQ_HANDLER(DMA1_Ch6_IRQHandler) {
UARTDriver *uartp;
CH_IRQ_PROLOGUE();
uartp = &UARTD2;
if ((STM32_DMA1->ISR & DMA_ISR_TEIF6) != 0) {
STM32_UART_USART2_DMA_ERROR_HOOK();
}
if (uartp->ud_rxstate == UART_RX_IDLE) {
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_6);
/* Fast IRQ path, this is why it is not centralized in serve_rx_end_irq().*/
/* Receiver in idle state, a callback is generated, if enabled, for each
received character and then the driver stays in the same state.*/
if (uartp->ud_config->uc_rxchar != NULL)
uartp->ud_config->uc_rxchar(uartp, uartp->ud_rxbuf);
}
else {
/* Receiver in active state, a callback is generated, if enabled, after
a completed transfer.*/
dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_6);
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_6);
serve_rx_end_irq(uartp);
}
CH_IRQ_EPILOGUE();
}
/**
* @brief USART2 TX DMA interrupt handler (channel 7).
*
* @isr
*/
CH_IRQ_HANDLER(DMA1_Ch7_IRQHandler) {
CH_IRQ_PROLOGUE();
if ((STM32_DMA1->ISR & DMA_ISR_TEIF7) != 0) {
STM32_UART_USART2_DMA_ERROR_HOOK();
}
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_7);
dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_7);
serve_tx_end_irq(&UARTD2);
CH_IRQ_EPILOGUE();
}
/**
* @brief USART2 IRQ handler.
*
* @isr
*/
CH_IRQ_HANDLER(USART2_IRQHandler) {
CH_IRQ_PROLOGUE();
serve_usart_irq(&UARTD2);
CH_IRQ_EPILOGUE();
}
#endif /* STM32_UART_USE_USART2 */
#if STM32_UART_USE_USART3 || defined(__DOXYGEN__)
/**
* @brief USART3 RX DMA interrupt handler (channel 3).
*
* @isr
*/
CH_IRQ_HANDLER(DMA1_Ch3_IRQHandler) {
UARTDriver *uartp;
CH_IRQ_PROLOGUE();
uartp = &UARTD3;
if ((STM32_DMA1->ISR & DMA_ISR_TEIF3) != 0) {
STM32_UART_USART1_DMA_ERROR_HOOK();
}
if (uartp->ud_rxstate == UART_RX_IDLE) {
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_3);
/* Fast IRQ path, this is why it is not centralized in serve_rx_end_irq().*/
/* Receiver in idle state, a callback is generated, if enabled, for each
received character and then the driver stays in the same state.*/
if (uartp->ud_config->uc_rxchar != NULL)
uartp->ud_config->uc_rxchar(uartp->ud_rxbuf);
}
else {
/* Receiver in active state, a callback is generated, if enabled, after
a completed transfer.*/
dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_3);
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_3);
serve_rx_end_irq(uartp);
}
CH_IRQ_EPILOGUE();
}
/**
* @brief USART3 TX DMA interrupt handler (channel 2).
*
* @isr
*/
CH_IRQ_HANDLER(DMA1_Ch2_IRQHandler) {
CH_IRQ_PROLOGUE();
if ((STM32_DMA1->ISR & DMA_ISR_TEIF2) != 0) {
STM32_UART_USART1_DMA_ERROR_HOOK();
}
dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_2);
dmaDisableChannel(STM32_DMA1, STM32_DMA_CHANNEL_2);
serve_tx_end_irq(&UARTD3);
CH_IRQ_EPILOGUE();
}
/**
* @brief USART3 IRQ handler.
*
* @isr
*/
CH_IRQ_HANDLER(USART3_IRQHandler) {
CH_IRQ_PROLOGUE();
serve_usart_irq(&UARTD3);
CH_IRQ_EPILOGUE();
}
#endif /* STM32_UART_USE_USART3 */
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
/**
* @brief Low level UART driver initialization.
*
* @notapi
*/
void uart_lld_init(void) {
#if STM32_UART_USE_USART1
RCC->APB2RSTR = RCC_APB2RSTR_USART1RST;
RCC->APB2RSTR = 0;
uartObjectInit(&UARTD1);
UARTD1.ud_usart = USART1;
UARTD1.ud_dmap = STM32_DMA1;
UARTD1.ud_dmarx = STM32_DMA_CHANNEL_5;
UARTD1.ud_dmatx = STM32_DMA_CHANNEL_4;
UARTD1.ud_dmaccr = 0;
#endif
#if STM32_UART_USE_USART2
RCC->APB1RSTR = RCC_APB1RSTR_USART2RST;
RCC->APB1RSTR = 0;
uartObjectInit(&UARTD2);
UARTD2.ud_usart = USART2;
UARTD2.ud_dmap = STM32_DMA1;
UARTD2.ud_dmarx = STM32_DMA_CHANNEL_6;
UARTD2.ud_dmatx = STM32_DMA_CHANNEL_7;
UARTD2.ud_dmaccr = 0;
#endif
#if STM32_UART_USE_USART3
RCC->APB1RSTR = RCC_APB1RSTR_USART3RST;
RCC->APB1RSTR = 0;
uartObjectInit(&UARTD3);
UARTD2.ud_usart = USART3;
UARTD2.ud_dmap = STM32_DMA1;
UARTD2.ud_dmarx = STM32_DMA_CHANNEL_3;
UARTD2.ud_dmatx = STM32_DMA_CHANNEL_2;
UARTD2.ud_dmaccr = 0;
#endif
}
/**
* @brief Configures and activates the UART peripheral.
*
* @param[in] uartp pointer to the @p UARTDriver object
*
* @notapi
*/
void uart_lld_start(UARTDriver *uartp) {
if (uartp->ud_state == UART_STOP) {
#if STM32_UART_USE_USART1
if (&UARTD1 == uartp) {
dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/
NVICEnableVector(USART1_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART1_IRQ_PRIORITY));
NVICEnableVector(DMA1_Channel4_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART1_IRQ_PRIORITY));
NVICEnableVector(DMA1_Channel5_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART1_IRQ_PRIORITY));
RCC->APB2ENR |= RCC_APB2ENR_USART1EN;
}
#endif
#if STM32_UART_USE_USART2
if (&UARTD2 == uartp) {
dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/
NVICEnableVector(USART2_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART2_IRQ_PRIORITY));
NVICEnableVector(DMA1_Channel6_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART2_IRQ_PRIORITY));
NVICEnableVector(DMA1_Channel7_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART2_IRQ_PRIORITY));
RCC->APB1ENR |= RCC_APB1ENR_USART2EN;
}
#endif
#if STM32_UART_USE_USART3
if (&UARTD3 == uartp) {
dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/
NVICEnableVector(USART3_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART3_IRQ_PRIORITY));
NVICEnableVector(DMA1_Channel2_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART3_IRQ_PRIORITY));
NVICEnableVector(DMA1_Channel3_IRQn,
CORTEX_PRIORITY_MASK(STM32_UART_USART3_IRQ_PRIORITY));
RCC->APB1ENR |= RCC_APB1ENR_USART3EN;
}
#endif
/* Static DMA setup, the transfer size depends on the USART settings,
it is 16 bits if M=1 and PCE=0 else it is 8 bits.*/
uartp->ud_dmaccr = STM32_UART_USART1_DMA_PRIORITY << 12;
if ((uartp->ud_config->uc_cr1 & (USART_CR1_M | USART_CR1_PCE)) == USART_CR1_M)
uartp->ud_dmaccr |= DMA_CCR1_MSIZE_0 | DMA_CCR1_PSIZE_0;
dmaChannelSetPeripheral(&uartp->ud_dmap->channels[uartp->ud_dmarx],
&uartp->ud_usart->DR);
dmaChannelSetPeripheral(&uartp->ud_dmap->channels[uartp->ud_dmatx],
&uartp->ud_usart->DR);
uartp->ud_rxbuf = 0;
}
uartp->ud_rxstate = UART_RX_IDLE;
uartp->ud_txstate = UART_TX_IDLE;
usart_start(uartp);
}
/**
* @brief Deactivates the UART peripheral.
*
* @param[in] uartp pointer to the @p UARTDriver object
*
* @notapi
*/
void uart_lld_stop(UARTDriver *uartp) {
if (uartp->ud_state == UART_READY) {
usart_stop(uartp);
#if STM32_UART_USE_USART1
if (&UARTD1 == uartp) {
NVICDisableVector(USART1_IRQn);
NVICDisableVector(DMA1_Channel4_IRQn);
NVICDisableVector(DMA1_Channel5_IRQn);
dmaDisable(DMA1_ID);
RCC->APB2ENR &= ~RCC_APB2ENR_USART1EN;
return;
}
#endif
#if STM32_UART_USE_USART2
if (&UARTD2 == uartp) {
NVICDisableVector(USART2_IRQn);
NVICDisableVector(DMA1_Channel6_IRQn);
NVICDisableVector(DMA1_Channel7_IRQn);
dmaDisable(DMA1_ID);
RCC->APB1ENR &= ~RCC_APB1ENR_USART2EN;
return;
}
#endif
#if STM32_UART_USE_USART3
if (&UARTD3 == uartp) {
NVICDisableVector(USART3_IRQn);
NVICDisableVector(DMA1_Channel2_IRQn);
NVICDisableVector(DMA1_Channel3_IRQn);
dmaDisable(DMA1_ID);
RCC->APB1ENR &= ~RCC_APB1ENR_USART3EN;
return;
}
#endif
}
}
/**
* @brief Starts a transmission on the UART peripheral.
* @note The buffers are organized as uint8_t arrays for data sizes below
* or equal to 8 bits else it is organized as uint16_t arrays.
*
* @param[in] uartp pointer to the @p UARTDriver object
* @param[in] n number of data frames to send
* @param[in] txbuf the pointer to the transmit buffer
*
* @notapi
*/
void uart_lld_start_send(UARTDriver *uartp, size_t n, const void *txbuf) {
/* TX DMA channel preparation and start.*/
dmaSetupChannel(uartp->ud_dmap, uartp->ud_dmatx, n, txbuf,
uartp->ud_dmaccr | DMA_CCR1_DIR | DMA_CCR1_MINC |
DMA_CCR1_TEIE | DMA_CCR1_TCIE);
dmaEnableChannel(uartp->ud_dmap, uartp->ud_dmatx);
}
/**
* @brief Stops any ongoing transmission.
* @note Stopping a transmission also suppresses the transmission callbacks.
*
* @param[in] uartp pointer to the @p UARTDriver object
*
* @return The number of data frames not transmitted by the
* stopped transmit operation.
*
* @notapi
*/
size_t uart_lld_stop_send(UARTDriver *uartp) {
dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmatx);
dmaClearChannel(uartp->ud_dmap, uartp->ud_dmatx);
return (size_t)uartp->ud_dmap->channels[uartp->ud_dmatx].CNDTR;
}
/**
* @brief Starts a receive operation on the UART peripheral.
* @note The buffers are organized as uint8_t arrays for data sizes below
* or equal to 8 bits else it is organized as uint16_t arrays.
*
* @param[in] uartp pointer to the @p UARTDriver object
* @param[in] n number of data frames to send
* @param[in] rxbuf the pointer to the receive buffer
*
* @notapi
*/
void uart_lld_start_receive(UARTDriver *uartp, size_t n, void *rxbuf) {
/* Stopping previous activity (idle state).*/
dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmarx);
dmaClearChannel(uartp->ud_dmap, uartp->ud_dmarx);
/* RX DMA channel preparation and start.*/
dmaSetupChannel(uartp->ud_dmap, uartp->ud_dmarx, n, rxbuf,
uartp->ud_dmaccr | DMA_CCR1_MINC |
DMA_CCR1_TEIE | DMA_CCR1_TCIE);
dmaEnableChannel(uartp->ud_dmap, uartp->ud_dmarx);
}
/**
* @brief Stops any ongoing receive operation.
* @note Stopping a receive operation also suppresses the receive callbacks.
*
* @param[in] uartp pointer to the @p UARTDriver object
*
* @return The number of data frames not received by the
* stopped receive operation.
*
* @notapi
*/
size_t uart_lld_stop_receive(UARTDriver *uartp) {
size_t n;
dmaDisableChannel(uartp->ud_dmap, uartp->ud_dmarx);
dmaClearChannel(uartp->ud_dmap, uartp->ud_dmarx);
n = (size_t)uartp->ud_dmap->channels[uartp->ud_dmarx].CNDTR;
set_rx_idle_loop(uartp);
return n;
}
#endif /* CH_HAL_USE_UART */
/** @} */