tinySA/test/testmtx.c

655 lines
17 KiB
C
Raw Normal View History

/*
ChibiOS/RT - Copyright (C) 2006-2007 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ch.h>
#include "test.h"
/**
* @page test_mtx Mutexes test
*
* <h2>Description</h2>
* This module implements the test sequence for the @ref mutexes and
* @ref condvars subsystems.<br>
* Tests on those subsystems are particularly critical because the system-wide
* implications of the Priority Inheritance mechanism.
*
* <h2>Objective</h2>
* Objective of the test module is to cover 100% of the subsystems code.
*
* <h2>Preconditions</h2>
* The module requires the following kernel options:
* - @p CH_USE_MUTEXES
* - @p CH_USE_CONDVARS
* - @p CH_DBG_THREADS_PROFILING
* .
* In case some of the required options are not enabled then some or all tests
* may be skipped.
*
* <h2>Test Cases</h2>
* - @subpage test_mtx_001
* - @subpage test_mtx_002
* - @subpage test_mtx_003
* - @subpage test_mtx_004
* - @subpage test_mtx_005
* - @subpage test_mtx_006
* - @subpage test_mtx_007
* - @subpage test_mtx_008
* .
* @file testmtx.c
* @brief Mutexes and CondVars test source file
* @file testmtx.h
* @brief Mutexes and CondVars test header file
*/
#if CH_USE_MUTEXES
#define ALLOWED_DELAY 5
/*
* Note, the static initializers are not really required because the
* variables are explicitly initialized in each test case. It is done in order
* to test the macros.
*/
static MUTEX_DECL(m1);
static MUTEX_DECL(m2);
static CONDVAR_DECL(c1);
/**
* @page test_mtx_001 Priority enqueuing test
*
* <h2>Description</h2>
* Five threads, with increasing priority, are enqueued on a locked mutex then
* the mutex is unlocked.<br>
* The test expects the threads to perform their operations in increasing
* priority order regardless of the initial order.
*/
static char *mtx1_gettest(void) {
return "Mutexes, priority enqueuing test";
}
static void mtx1_setup(void) {
chMtxInit(&m1);
}
static msg_t thread1(void *p) {
chMtxLock(&m1);
test_emit_token(*(char *)p);
chMtxUnlock();
return 0;
}
static void mtx1_execute(void) {
tprio_t prio = chThdGetPriority(); // Because priority inheritance.
chMtxLock(&m1);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, prio+1, thread1, "E");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, prio+2, thread1, "D");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, prio+3, thread1, "C");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, prio+4, thread1, "B");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, prio+5, thread1, "A");
chMtxUnlock();
test_wait_threads();
test_assert(1, prio == chThdGetPriority(), "wrong priority level");
test_assert_sequence(2, "ABCDE");
}
const struct testcase testmtx1 = {
mtx1_gettest,
mtx1_setup,
NULL,
mtx1_execute
};
#if CH_DBG_THREADS_PROFILING
/**
* @page test_mtx_002 Priority inheritance, simple case
*
* <h2>Description</h2>
* Three threads are involved in the classic priority inversion scenario, a
* medium priority thread tries to starve an high priority thread by
* blocking a low priority thread into a mutex lock zone.<br>
* The test expects the threads to reach their goal in increasing priority
* order by rearranging their priorities in order to avoid the priority
* inversion trap.
*
* <h2>Scenario</h2>
* This weird looking diagram should explain what happens in the test case:
* @code
* Time ----> 0 10 20 30 40 50 60 70 80 90 100
* 0 ......AL++++++++++............2+++++++++++AU0---------------++++++G...
* 1 ..................++++++++++++------------------++++++++++++G.........
* 2 .............................AL..........++++++AUG...................
* ^ ^
* Legend:
* 0..2 - Priority levels
* +++ - Running
* --- - Ready
* ... - Waiting or Terminated
* xL - Lock operation on mutex 'x'
* xUn - Unlock operation on mutex 'x' with priority returning to level 'n'
* G - Goal
* ^ - Priority transition (boost or return).
* @endcode
*/
static char *mtx2_gettest(void) {
return "Mutexes, priority inheritance, simple case";
}
static void mtx2_setup(void) {
chMtxInit(&m1);
}
/* Low priority thread */
static msg_t thread2L(void *p) {
chMtxLock(&m1);
test_cpu_pulse(40);
chMtxUnlock();
test_cpu_pulse(10);
test_emit_token('C');
return 0;
}
/* Medium priority thread */
static msg_t thread2M(void *p) {
chThdSleepMilliseconds(20);
test_cpu_pulse(40);
test_emit_token('B');
return 0;
}
/* High priority thread */
static msg_t thread2H(void *p) {
chThdSleepMilliseconds(40);
chMtxLock(&m1);
test_cpu_pulse(10);
chMtxUnlock();
test_emit_token('A');
return 0;
}
static void mtx2_execute(void) {
systime_t time;
test_wait_tick();
time = chTimeNow();
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()-1, thread2H, 0);
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()-2, thread2M, 0);
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()-3, thread2L, 0);
test_wait_threads();
test_assert_sequence(1, "ABC");
test_assert_time_window(2, time + MS2ST(100), time + MS2ST(100) + ALLOWED_DELAY);
}
const struct testcase testmtx2 = {
mtx2_gettest,
mtx2_setup,
NULL,
mtx2_execute
};
/**
* @page test_mtx_003 Priority inheritance, complex case
*
* <h2>Description</h2>
* Five threads are involved in the complex priority inversion scenario,
* please refer to the diagram below for the complete scenario.<br>
* The test expects the threads to perform their operations in increasing
* priority order by rearranging their priorities in order to avoid the
* priority inversion trap.
*
* <h2>Scenario</h2>
* This weird looking diagram should explain what happens in the test case:
* @code
* Time ----> 0 10 20 30 40 50 60 70 80 90 100 110
* 0 ......BL++++------------2+++++------4+++++BU0---------------------------G.....
* 1 ............AL++++2+++++BL----------4-----++++++BU4+++AU1---------------G.....
* 2 ..................AL----------------------------------------------++++++AUG...
* 3 ..............................+++++++-----------------------++++++G...........
* 4 ....................................AL................++++++AUG...............
* ^ ^ ^ ^ ^ ^
* Legend:
* 0..4 - Priority levels
* +++ - Running
* --- - Ready
* ... - Waiting or Terminated
* xL - Lock operation on mutex 'x'
* xUn - Unlock operation on mutex 'x' with priority returning to level 'n'
* ^ - Priority transition (boost or return).
* @endcode
*/
static char *mtx3_gettest(void) {
return "Mutexes, priority inheritance, complex case";
}
static void mtx3_setup(void) {
chMtxInit(&m1); // Mutex B
chMtxInit(&m2); // Mutex A
}
/* Lowest priority thread */
static msg_t thread3LL(void *p) {
chMtxLock(&m1);
test_cpu_pulse(30);
chMtxUnlock();
test_emit_token('E');
return 0;
}
/* Low priority thread */
static msg_t thread3L(void *p) {
chThdSleepMilliseconds(10);
chMtxLock(&m2);
test_cpu_pulse(20);
chMtxLock(&m1);
test_cpu_pulse(10);
chMtxUnlock();
test_cpu_pulse(10);
chMtxUnlock();
test_emit_token('D');
return 0;
}
/* Medium priority thread */
static msg_t thread3M(void *p) {
chThdSleepMilliseconds(20);
chMtxLock(&m2);
test_cpu_pulse(10);
chMtxUnlock();
test_emit_token('C');
return 0;
}
/* High priority thread */
static msg_t thread3H(void *p) {
chThdSleepMilliseconds(40);
test_cpu_pulse(20);
test_emit_token('B');
return 0;
}
/* Highest priority thread */
static msg_t thread3HH(void *p) {
chThdSleepMilliseconds(50);
chMtxLock(&m2);
test_cpu_pulse(10);
chMtxUnlock();
test_emit_token('A');
return 0;
}
static void mtx3_execute(void) {
systime_t time;
test_wait_tick();
time = chTimeNow();
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()-5, thread3LL, 0);
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()-4, thread3L, 0);
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()-3, thread3M, 0);
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriority()-2, thread3H, 0);
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriority()-1, thread3HH, 0);
test_wait_threads();
test_assert_sequence(1, "ABCDE");
test_assert_time_window(2, time + MS2ST(110), time + MS2ST(110) + ALLOWED_DELAY);
}
const struct testcase testmtx3 = {
mtx3_gettest,
mtx3_setup,
NULL,
mtx3_execute
};
#endif /* CH_DBG_THREADS_PROFILING */
/**
* @page test_mtx_004 Priority return verification
*
* <h2>Description</h2>
* Two threads are spawned that try to lock the mutexes locked by the tester
* thread with precise timing.<br>
* The test expects that the priority changes caused by the priority
* inheritance algorithm happen at the right moment and with the right values.
*/
static char *mtx4_gettest(void) {
return "Mutexes, priority return";
}
static void mtx4_setup(void) {
chMtxInit(&m1);
chMtxInit(&m2);
}
static msg_t thread4a(void *p) {
chThdSleepMilliseconds(50);
chMtxLock(&m2);
chMtxUnlock();
return 0;
}
static msg_t thread4b(void *p) {
chThdSleepMilliseconds(150);
chMtxLock(&m1);
chMtxUnlock();
return 0;
}
static void mtx4_execute(void) {
tprio_t p, p1, p2;
p = chThdGetPriority();
p1 = p + 1;
p2 = p + 2;
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, p1, thread4a, "B");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, p2, thread4b, "A");
chMtxLock(&m2);
test_assert(1, chThdGetPriority() == p, "wrong priority level");
chThdSleepMilliseconds(100);
test_assert(2, chThdGetPriority() == p1, "wrong priority level");
chMtxLock(&m1);
test_assert(3, chThdGetPriority() == p1, "wrong priority level");
chThdSleepMilliseconds(100);
test_assert(4, chThdGetPriority() == p2, "wrong priority level");
chMtxUnlock();
test_assert(5, chThdGetPriority() == p1, "wrong priority level");
chThdSleepMilliseconds(100);
test_assert(6, chThdGetPriority() == p1, "wrong priority level");
chMtxUnlockAll();
test_assert(7, chThdGetPriority() == p, "wrong priority level");
test_wait_threads();
/* Test repeated in order to cover chMtxUnlockS().*/
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, p1, thread4a, "D");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, p2, thread4b, "C");
chMtxLock(&m2);
test_assert(8, chThdGetPriority() == p, "wrong priority level");
chThdSleepMilliseconds(100);
test_assert(9, chThdGetPriority() == p1, "wrong priority level");
chMtxLock(&m1);
test_assert(10, chThdGetPriority() == p1, "wrong priority level");
chThdSleepMilliseconds(100);
test_assert(11, chThdGetPriority() == p2, "wrong priority level");
chSysLock();
chMtxUnlockS();
chSysUnlock();
test_assert(12, chThdGetPriority() == p1, "wrong priority level");
chThdSleepMilliseconds(100);
test_assert(13, chThdGetPriority() == p1, "wrong priority level");
chMtxUnlockAll();
test_assert(14, chThdGetPriority() == p, "wrong priority level");
test_wait_threads();
}
const struct testcase testmtx4 = {
mtx4_gettest,
mtx4_setup,
NULL,
mtx4_execute
};
/**
* @page test_mtx_005 Mutex status
*
* <h2>Description</h2>
* Various tests on the mutex structure status after performing some lock and
* unlock operations.<br>
* The test expects that the internal mutex status is consistent after each
* operation.
*/
static char *mtx5_gettest(void) {
return "Mutexes, status";
}
static void mtx5_setup(void) {
chMtxInit(&m1);
}
static void mtx5_execute(void) {
bool_t b;
tprio_t prio;
prio = chThdGetPriority();
b = chMtxTryLock(&m1);
test_assert(1, b, "already locked");
b = chMtxTryLock(&m1);
test_assert(2, !b, "not locked");
chSysLock();
chMtxUnlockS();
chSysUnlock();
test_assert(3, isempty(&m1.m_queue), "queue not empty");
test_assert(4, m1.m_owner == NULL, "still owned");
test_assert(5, chThdGetPriority() == prio, "wrong priority level");
}
const struct testcase testmtx5 = {
mtx5_gettest,
mtx5_setup,
NULL,
mtx5_execute
};
#if CH_USE_CONDVARS
/**
* @page test_mtx_006 Condition Variable signal test
*
* <h2>Description</h2>
* Five threads take a mutex and then enter a conditional variable queue, the
* tester thread then proceeds to signal the conditional variable five times
* atomically.<br>
* The test expects the threads to reach their goal in increasing priority
* order regardless of the initial order.
*/
static char *mtx6_gettest(void) {
return "CondVar, signal test";
}
static void mtx6_setup(void) {
chCondInit(&c1);
chMtxInit(&m1);
}
static msg_t thread10(void *p) {
chMtxLock(&m1);
chCondWait(&c1);
test_emit_token(*(char *)p);
chMtxUnlock();
return 0;
}
static void mtx6_execute(void) {
tprio_t prio = chThdGetPriority();
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, prio+1, thread10, "E");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, prio+2, thread10, "D");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, prio+3, thread10, "C");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, prio+4, thread10, "B");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, prio+5, thread10, "A");
chSysLock();
chCondSignalI(&c1);
chCondSignalI(&c1);
chCondSignalI(&c1);
chCondSignalI(&c1);
chCondSignalI(&c1);
chSchRescheduleS();
chSysUnlock();
test_wait_threads();
test_assert_sequence(1, "ABCDE");
}
const struct testcase testmtx6 = {
mtx6_gettest,
mtx6_setup,
NULL,
mtx6_execute
};
/**
* @page test_mtx_007 Condition Variable broadcast test
*
* <h2>Description</h2>
* Five threads take a mutex and then enter a conditional variable queue, the
* tester thread then proceeds to broadcast the conditional variable.<br>
* The test expects the threads to reach their goal in increasing priority
* order regardless of the initial order.
*/
static char *mtx7_gettest(void) {
return "CondVar, broadcast test";
}
static void mtx7_setup(void) {
chCondInit(&c1);
chMtxInit(&m1);
}
static void mtx7_execute(void) {
// Bacause priority inheritance.
tprio_t prio = chThdGetPriority();
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, prio+1, thread10, "E");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, prio+2, thread10, "D");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, prio+3, thread10, "C");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, prio+4, thread10, "B");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, prio+5, thread10, "A");
chCondBroadcast(&c1);
test_wait_threads();
test_assert_sequence(1, "ABCDE");
}
const struct testcase testmtx7 = {
mtx7_gettest,
mtx7_setup,
NULL,
mtx7_execute
};
/**
* @page test_mtx_008 Condition Variable priority boost test
*
* <h2>Description</h2>
* This test case verifies the priority boost of a thread waiting on a
* conditional variable queue. It tests this very specific situation in order
* to complete the code coverage.
*/
static char *mtx8_gettest(void) {
return "CondVar, boost test";
}
static void mtx8_setup(void) {
chCondInit(&c1);
chMtxInit(&m1);
chMtxInit(&m2);
}
static msg_t thread11(void *p) {
chMtxLock(&m2);
chMtxLock(&m1);
#if CH_USE_CONDVARS_TIMEOUT
chCondWaitTimeout(&c1, TIME_INFINITE);
#else
chCondWait(&c1);
#endif
test_emit_token(*(char *)p);
chMtxUnlock();
chMtxUnlock();
return 0;
}
static msg_t thread12(void *p) {
chMtxLock(&m2);
test_emit_token(*(char *)p);
chMtxUnlock();
return 0;
}
static void mtx8_execute(void) {
tprio_t prio = chThdGetPriority();
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, prio+1, thread11, "A");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, prio+2, thread10, "C");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, prio+3, thread12, "B");
chCondSignal(&c1);
chCondSignal(&c1);
test_wait_threads();
test_assert_sequence(1, "ABC");
}
const struct testcase testmtx8 = {
mtx8_gettest,
mtx8_setup,
NULL,
mtx8_execute
};
#endif /* CH_USE_CONDVARS */
#endif /* CH_USE_MUTEXES */
/*
* Test sequence for mutexes pattern.
*/
const struct testcase * const patternmtx[] = {
#if CH_USE_MUTEXES
&testmtx1,
#if CH_DBG_THREADS_PROFILING
&testmtx2,
&testmtx3,
#endif
&testmtx4,
&testmtx5,
#if CH_USE_CONDVARS
&testmtx6,
&testmtx7,
&testmtx8,
#endif
#endif
NULL
};