tinySA/test/testbmk.c

771 lines
18 KiB
C
Raw Normal View History

/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ch.h"
#include "test.h"
/**
* @page test_benchmarks Kernel Benchmarks
*
* <h2>Description</h2>
* This module implements a series of system benchmarks. The benchmarks are
* useful as a stress test and as a reference when comparing ChibiOS/RT
* with similar systems.
*
* <h2>Objective</h2>
* Objective of the test module is to provide a performance index for the
* most critical system subsystems. The performance numbers allow to
* discover performance regressions between successive ChibiOS/RT releases.
*
* <h2>Preconditions</h2>
* None.
*
* <h2>Test Cases</h2>
* - @subpage test_benchmarks_001
* - @subpage test_benchmarks_002
* - @subpage test_benchmarks_003
* - @subpage test_benchmarks_004
* - @subpage test_benchmarks_005
* - @subpage test_benchmarks_006
* - @subpage test_benchmarks_007
* - @subpage test_benchmarks_008
* - @subpage test_benchmarks_009
* - @subpage test_benchmarks_010
* - @subpage test_benchmarks_011
* - @subpage test_benchmarks_012
* - @subpage test_benchmarks_013
* .
* @file testbmk.c Kernel Benchmarks
* @brief Kernel Benchmarks source file
* @file testbmk.h
* @brief Kernel Benchmarks header file
*/
static Semaphore sem1;
#if CH_USE_MUTEXES
static Mutex mtx1;
#endif
static msg_t thread1(void *p) {
msg_t msg;
(void)p;
do {
chMsgRelease(msg = chMsgWait());
} while (msg);
return 0;
}
__attribute__((noinline))
static unsigned int msg_loop_test(Thread *tp) {
uint32_t n = 0;
test_wait_tick();
test_start_timer(1000);
do {
(void)chMsgSend(tp, 1);
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
(void)chMsgSend(tp, 0);
return n;
}
/**
* @page test_benchmarks_001 Messages performance #1
*
* <h2>Description</h2>
* A message server thread is created with a lower priority than the client
* thread, the messages throughput per second is measured and the result
* printed in the output log.
*/
static char *bmk1_gettest(void) {
return "Benchmark, messages #1";
}
static void bmk1_execute(void) {
uint32_t n;
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()-1, thread1, NULL);
n = msg_loop_test(threads[0]);
chThdTerminate(threads[0]);
test_wait_threads();
test_print("--- Score : ");
test_printn(n);
test_print(" msgs/S, ");
test_printn(n << 1);
test_println(" ctxswc/S");
}
const struct testcase testbmk1 = {
bmk1_gettest,
NULL,
NULL,
bmk1_execute
};
/**
* @page test_benchmarks_002 Messages performance #2
*
* <h2>Description</h2>
* A message server thread is created with an higher priority than the client
* thread, the messages throughput per second is measured and the result
* printed in the output log.
*/
static char *bmk2_gettest(void) {
return "Benchmark, messages #2";
}
static void bmk2_execute(void) {
uint32_t n;
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+1, thread1, NULL);
n = msg_loop_test(threads[0]);
chThdTerminate(threads[0]);
test_wait_threads();
test_print("--- Score : ");
test_printn(n);
test_print(" msgs/S, ");
test_printn(n << 1);
test_println(" ctxswc/S");
}
const struct testcase testbmk2 = {
bmk2_gettest,
NULL,
NULL,
bmk2_execute
};
static msg_t thread2(void *p) {
return (msg_t)p;
}
/**
* @page test_benchmarks_003 Messages performance #3
*
* <h2>Description</h2>
* A message server thread is created with an higher priority than the client
* thread, four lower priority threads crowd the ready list, the messages
* throughput per second is measured while the ready list and the result
* printed in the output log.
*/
static char *bmk3_gettest(void) {
return "Benchmark, messages #3";
}
static void bmk3_execute(void) {
uint32_t n;
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+1, thread1, NULL);
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()-2, thread2, NULL);
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()-3, thread2, NULL);
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriority()-4, thread2, NULL);
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriority()-5, thread2, NULL);
n = msg_loop_test(threads[0]);
chThdTerminate(threads[0]);
test_wait_threads();
test_print("--- Score : ");
test_printn(n);
test_print(" msgs/S, ");
test_printn(n << 1);
test_println(" ctxswc/S");
}
const struct testcase testbmk3 = {
bmk3_gettest,
NULL,
NULL,
bmk3_execute
};
/**
* @page test_benchmarks_004 Context Switch performance
*
* <h2>Description</h2>
* A thread is created that just performs a @p chSchGoSleepS() into a loop,
* the thread is awakened as fast is possible by the tester thread.<br>
* The Context Switch performance is calculated by measuring the number of
* iterations after a second of continuous operations.
*/
static char *bmk4_gettest(void) {
return "Benchmark, context switch";
}
msg_t thread4(void *p) {
msg_t msg;
Thread *self = chThdSelf();
(void)p;
chSysLock();
do {
chSchGoSleepS(THD_STATE_SUSPENDED);
msg = self->p_u.rdymsg;
} while (msg == RDY_OK);
chSysUnlock();
return 0;
}
static void bmk4_execute(void) {
Thread *tp;
tp = threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+1, thread4, NULL);
uint32_t n = 0;
test_wait_tick();
test_start_timer(1000);
do {
chSysLock();
chSchWakeupS(tp, RDY_OK);
chSchWakeupS(tp, RDY_OK);
chSchWakeupS(tp, RDY_OK);
chSchWakeupS(tp, RDY_OK);
chSysUnlock();
n += 4;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
chSysLock();
chSchWakeupS(tp, RDY_TIMEOUT);
chSysUnlock();
test_wait_threads();
test_print("--- Score : ");
test_printn(n * 2);
test_println(" ctxswc/S");
}
const struct testcase testbmk4 = {
bmk4_gettest,
NULL,
NULL,
bmk4_execute
};
/**
* @page test_benchmarks_005 Threads performance, full cycle
*
* <h2>Description</h2>
* Threads are continuously created and terminated into a loop. A full
* @p chThdCreateStatic() / @p chThdExit() / @p chThdWait() cycle is performed
* in each iteration.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static char *bmk5_gettest(void) {
return "Benchmark, threads, full cycle";
}
static void bmk5_execute(void) {
uint32_t n = 0;
void *wap = wa[0];
tprio_t prio = chThdGetPriority() - 1;
test_wait_tick();
test_start_timer(1000);
do {
chThdWait(chThdCreateStatic(wap, WA_SIZE, prio, thread2, NULL));
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
test_print("--- Score : ");
test_printn(n);
test_println(" threads/S");
}
const struct testcase testbmk5 = {
bmk5_gettest,
NULL,
NULL,
bmk5_execute
};
/**
* @page test_benchmarks_006 Threads performance, create/exit only
*
* <h2>Description</h2>
* Threads are continuously created and terminated into a loop. A partial
* @p chThdCreateStatic() / @p chThdExit() cycle is performed in each
* iteration, the @p chThdWait() is not necessary because the thread is
* created at an higher priority so there is no need to wait for it to
* terminate.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static char *bmk6_gettest(void) {
return "Benchmark, threads, create only";
}
static void bmk6_execute(void) {
uint32_t n = 0;
void *wap = wa[0];
tprio_t prio = chThdGetPriority() + 1;
test_wait_tick();
test_start_timer(1000);
do {
chThdCreateStatic(wap, WA_SIZE, prio, thread2, NULL);
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
test_print("--- Score : ");
test_printn(n);
test_println(" threads/S");
}
const struct testcase testbmk6 = {
bmk6_gettest,
NULL,
NULL,
bmk6_execute
};
/**
* @page test_benchmarks_007 Mass reschedulation performance
*
* <h2>Description</h2>
* Five threads are created and atomically reschedulated by resetting the
* semaphore where they are waiting on. The operation is performed into a
* continuous loop.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static msg_t thread3(void *p) {
(void)p;
while (!chThdShouldTerminate())
chSemWait(&sem1);
return 0;
}
static char *bmk7_gettest(void) {
return "Benchmark, mass reschedulation, 5 threads";
}
static void bmk7_setup(void) {
chSemInit(&sem1, 0);
}
static void bmk7_execute(void) {
uint32_t n;
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+5, thread3, NULL);
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()+4, thread3, NULL);
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()+3, thread3, NULL);
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriority()+2, thread3, NULL);
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriority()+1, thread3, NULL);
n = 0;
test_wait_tick();
test_start_timer(1000);
do {
chSemReset(&sem1, 0);
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
test_terminate_threads();
chSemReset(&sem1, 0);
test_wait_threads();
test_print("--- Score : ");
test_printn(n);
test_print(" reschedulations/S, ");
test_printn(n * 6);
test_println(" ctxswc/S");
}
const struct testcase testbmk7 = {
bmk7_gettest,
bmk7_setup,
NULL,
bmk7_execute
};
/**
* @page test_benchmarks_008 I/O Round-Robin voluntary reschedulation.
*
* <h2>Description</h2>
* Five threads are created at equal priority, each thread just increases a
* variable and yields.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static msg_t thread8(void *p) {
do {
chThdYield();
chThdYield();
chThdYield();
chThdYield();
(*(uint32_t *)p) += 4;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while(!chThdShouldTerminate());
return 0;
}
static char *bmk8_gettest(void) {
return "Benchmark, round robin context switching";
}
static void bmk8_execute(void) {
uint32_t n;
n = 0;
test_wait_tick();
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n);
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n);
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n);
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n);
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n);
chThdSleepSeconds(1);
test_terminate_threads();
test_wait_threads();
test_print("--- Score : ");
test_printn(n);
test_print(" reschedulations/S, ");
test_printn(n);
test_println(" ctxswc/S");
}
const struct testcase testbmk8 = {
bmk8_gettest,
NULL,
NULL,
bmk8_execute
};
/**
* @page test_benchmarks_009 I/O Queues throughput
*
* <h2>Description</h2>
* Four bytes are written and then read from an @p InputQueue into a continuous
* loop.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static char *bmk9_gettest(void) {
return "Benchmark, I/O Queues throughput";
}
static void bmk9_execute(void) {
static uint8_t ib[16];
static InputQueue iq;
chIQInit(&iq, ib, sizeof(ib), NULL);
uint32_t n = 0;
test_wait_tick();
test_start_timer(1000);
do {
chIQPutI(&iq, 0);
chIQPutI(&iq, 1);
chIQPutI(&iq, 2);
chIQPutI(&iq, 3);
(void)chIQGet(&iq);
(void)chIQGet(&iq);
(void)chIQGet(&iq);
(void)chIQGet(&iq);
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
test_print("--- Score : ");
test_printn(n * 4);
test_println(" bytes/S");
}
const struct testcase testbmk9 = {
bmk9_gettest,
NULL,
NULL,
bmk9_execute
};
/**
* @page test_benchmarks_010 Virtual Timers set/reset performance
*
* <h2>Description</h2>
* A virtual timer is set and immediately reset into a continuous loop.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static char *bmk10_gettest(void) {
return "Benchmark, virtual timers set/reset";
}
static void tmo(void *param) {(void)param;}
static void bmk10_execute(void) {
static VirtualTimer vt1, vt2;
uint32_t n = 0;
test_wait_tick();
test_start_timer(1000);
do {
chSysLock();
chVTSetI(&vt1, 1, tmo, NULL);
chVTSetI(&vt2, 10000, tmo, NULL);
chVTResetI(&vt1);
chVTResetI(&vt2);
chSysUnlock();
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
test_print("--- Score : ");
test_printn(n * 2);
test_println(" timers/S");
}
const struct testcase testbmk10 = {
bmk10_gettest,
NULL,
NULL,
bmk10_execute
};
/**
* @page test_benchmarks_011 Semaphores wait/signal performance
*
* <h2>Description</h2>
* A counting semaphore is taken/released into a continuous loop, no Context
* Switch happens because the counter is always non negative.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static char *bmk11_gettest(void) {
return "Benchmark, semaphores wait/signal";
}
static void bmk11_setup(void) {
chSemInit(&sem1, 1);
}
static void bmk11_execute(void) {
uint32_t n = 0;
test_wait_tick();
test_start_timer(1000);
do {
chSemWait(&sem1);
chSemSignal(&sem1);
chSemWait(&sem1);
chSemSignal(&sem1);
chSemWait(&sem1);
chSemSignal(&sem1);
chSemWait(&sem1);
chSemSignal(&sem1);
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
test_print("--- Score : ");
test_printn(n * 4);
test_println(" wait+signal/S");
}
const struct testcase testbmk11 = {
bmk11_gettest,
bmk11_setup,
NULL,
bmk11_execute
};
#if CH_USE_MUTEXES
/**
* @page test_benchmarks_012 Mutexes lock/unlock performance
*
* <h2>Description</h2>
* A mutex is locked/unlocked into a continuous loop, no Context Switch happens
* because there are no other threads asking for the mutex.<br>
* The performance is calculated by measuring the number of iterations after
* a second of continuous operations.
*/
static char *bmk12_gettest(void) {
return "Benchmark, mutexes lock/unlock";
}
static void bmk12_setup(void) {
chMtxInit(&mtx1);
}
static void bmk12_execute(void) {
uint32_t n = 0;
test_wait_tick();
test_start_timer(1000);
do {
chMtxLock(&mtx1);
chMtxUnlock();
chMtxLock(&mtx1);
chMtxUnlock();
chMtxLock(&mtx1);
chMtxUnlock();
chMtxLock(&mtx1);
chMtxUnlock();
n++;
#if defined(SIMULATOR)
ChkIntSources();
#endif
} while (!test_timer_done);
test_print("--- Score : ");
test_printn(n * 4);
test_println(" lock+unlock/S");
}
const struct testcase testbmk12 = {
bmk12_gettest,
bmk12_setup,
NULL,
bmk12_execute
};
#endif
/**
* @page test_benchmarks_013 RAM Footprint
*
* <h2>Description</h2>
* The memory size of the various kernel objects is printed.
*/
static char *bmk13_gettest(void) {
return "Benchmark, RAM footprint";
}
static void bmk13_execute(void) {
test_print("--- System: ");
test_printn(sizeof(ReadyList) + sizeof(VTList) + IDLE_THREAD_STACK_SIZE +
(sizeof(Thread) + sizeof(struct intctx) + sizeof(struct extctx) +
INT_REQUIRED_STACK) * 2);
test_println(" bytes");
test_print("--- Thread: ");
test_printn(sizeof(Thread));
test_println(" bytes");
test_print("--- Timer : ");
test_printn(sizeof(VirtualTimer));
test_println(" bytes");
test_print("--- Semaph: ");
test_printn(sizeof(Semaphore));
test_println(" bytes");
#if CH_USE_EVENTS
test_print("--- EventS: ");
test_printn(sizeof(EventSource));
test_println(" bytes");
test_print("--- EventL: ");
test_printn(sizeof(EventListener));
test_println(" bytes");
#endif
#if CH_USE_MUTEXES
test_print("--- Mutex : ");
test_printn(sizeof(Mutex));
test_println(" bytes");
#endif
#if CH_USE_CONDVARS
test_print("--- CondV.: ");
test_printn(sizeof(CondVar));
test_println(" bytes");
#endif
#if CH_USE_QUEUES
test_print("--- Queue : ");
test_printn(sizeof(GenericQueue));
test_println(" bytes");
#endif
#if CH_USE_MAILBOXES
test_print("--- MailB.: ");
test_printn(sizeof(Mailbox));
test_println(" bytes");
#endif
}
const struct testcase testbmk13 = {
bmk13_gettest,
NULL,
NULL,
bmk13_execute
};
/*
* Test sequence for benchmarks pattern.
*/
const struct testcase * const patternbmk[] = {
#if !TEST_NO_BENCHMARKS
&testbmk1,
&testbmk2,
&testbmk3,
&testbmk4,
&testbmk5,
&testbmk6,
&testbmk7,
&testbmk8,
&testbmk9,
&testbmk10,
&testbmk11,
#if CH_USE_MUTEXES
&testbmk12,
#endif
&testbmk13,
#endif
NULL
};