297 lines
10 KiB
Python
297 lines
10 KiB
Python
"""This submodule contains the path_parse() function used to convert SVG path
|
|
element d-strings into svgpathtools Path objects.
|
|
Note: This file was taken (nearly) as is from the svg.path module (v 2.0)."""
|
|
|
|
# External dependencies
|
|
from __future__ import division, absolute_import, print_function
|
|
import re
|
|
import numpy as np
|
|
import warnings
|
|
|
|
# Internal dependencies
|
|
from .path import Path, Line, QuadraticBezier, CubicBezier, Arc
|
|
|
|
|
|
COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
|
|
UPPERCASE = set('MZLHVCSQTA')
|
|
|
|
COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
|
|
FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
|
|
|
|
|
|
def _tokenize_path(pathdef):
|
|
for x in COMMAND_RE.split(pathdef):
|
|
if x in COMMANDS:
|
|
yield x
|
|
for token in FLOAT_RE.findall(x):
|
|
yield token
|
|
|
|
|
|
def parse_path(pathdef, current_pos=0j, tree_element=None):
|
|
# In the SVG specs, initial movetos are absolute, even if
|
|
# specified as 'm'. This is the default behavior here as well.
|
|
# But if you pass in a current_pos variable, the initial moveto
|
|
# will be relative to that current_pos. This is useful.
|
|
elements = list(_tokenize_path(pathdef))
|
|
# Reverse for easy use of .pop()
|
|
elements.reverse()
|
|
|
|
if tree_element is None:
|
|
segments = Path()
|
|
else:
|
|
segments = Path(tree_element=tree_element)
|
|
|
|
start_pos = None
|
|
command = None
|
|
|
|
while elements:
|
|
|
|
if elements[-1] in COMMANDS:
|
|
# New command.
|
|
last_command = command # Used by S and T
|
|
command = elements.pop()
|
|
absolute = command in UPPERCASE
|
|
command = command.upper()
|
|
else:
|
|
# If this element starts with numbers, it is an implicit command
|
|
# and we don't change the command. Check that it's allowed:
|
|
if command is None:
|
|
raise ValueError("Unallowed implicit command in %s, position %s" % (
|
|
pathdef, len(pathdef.split()) - len(elements)))
|
|
|
|
if command == 'M':
|
|
# Moveto command.
|
|
x = elements.pop()
|
|
y = elements.pop()
|
|
pos = float(x) + float(y) * 1j
|
|
if absolute:
|
|
current_pos = pos
|
|
else:
|
|
current_pos += pos
|
|
|
|
# when M is called, reset start_pos
|
|
# This behavior of Z is defined in svg spec:
|
|
# http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand
|
|
start_pos = current_pos
|
|
|
|
# Implicit moveto commands are treated as lineto commands.
|
|
# So we set command to lineto here, in case there are
|
|
# further implicit commands after this moveto.
|
|
command = 'L'
|
|
|
|
elif command == 'Z':
|
|
# Close path
|
|
if not (current_pos == start_pos):
|
|
segments.append(Line(current_pos, start_pos))
|
|
segments.closed = True
|
|
current_pos = start_pos
|
|
start_pos = None
|
|
command = None # You can't have implicit commands after closing.
|
|
|
|
elif command == 'L':
|
|
x = elements.pop()
|
|
y = elements.pop()
|
|
pos = float(x) + float(y) * 1j
|
|
if not absolute:
|
|
pos += current_pos
|
|
segments.append(Line(current_pos, pos))
|
|
current_pos = pos
|
|
|
|
elif command == 'H':
|
|
x = elements.pop()
|
|
pos = float(x) + current_pos.imag * 1j
|
|
if not absolute:
|
|
pos += current_pos.real
|
|
segments.append(Line(current_pos, pos))
|
|
current_pos = pos
|
|
|
|
elif command == 'V':
|
|
y = elements.pop()
|
|
pos = current_pos.real + float(y) * 1j
|
|
if not absolute:
|
|
pos += current_pos.imag * 1j
|
|
segments.append(Line(current_pos, pos))
|
|
current_pos = pos
|
|
|
|
elif command == 'C':
|
|
control1 = float(elements.pop()) + float(elements.pop()) * 1j
|
|
control2 = float(elements.pop()) + float(elements.pop()) * 1j
|
|
end = float(elements.pop()) + float(elements.pop()) * 1j
|
|
|
|
if not absolute:
|
|
control1 += current_pos
|
|
control2 += current_pos
|
|
end += current_pos
|
|
|
|
segments.append(CubicBezier(current_pos, control1, control2, end))
|
|
current_pos = end
|
|
|
|
elif command == 'S':
|
|
# Smooth curve. First control point is the "reflection" of
|
|
# the second control point in the previous path.
|
|
|
|
if last_command not in 'CS':
|
|
# If there is no previous command or if the previous command
|
|
# was not an C, c, S or s, assume the first control point is
|
|
# coincident with the current point.
|
|
control1 = current_pos
|
|
else:
|
|
# The first control point is assumed to be the reflection of
|
|
# the second control point on the previous command relative
|
|
# to the current point.
|
|
control1 = current_pos + current_pos - segments[-1].control2
|
|
|
|
control2 = float(elements.pop()) + float(elements.pop()) * 1j
|
|
end = float(elements.pop()) + float(elements.pop()) * 1j
|
|
|
|
if not absolute:
|
|
control2 += current_pos
|
|
end += current_pos
|
|
|
|
segments.append(CubicBezier(current_pos, control1, control2, end))
|
|
current_pos = end
|
|
|
|
elif command == 'Q':
|
|
control = float(elements.pop()) + float(elements.pop()) * 1j
|
|
end = float(elements.pop()) + float(elements.pop()) * 1j
|
|
|
|
if not absolute:
|
|
control += current_pos
|
|
end += current_pos
|
|
|
|
segments.append(QuadraticBezier(current_pos, control, end))
|
|
current_pos = end
|
|
|
|
elif command == 'T':
|
|
# Smooth curve. Control point is the "reflection" of
|
|
# the second control point in the previous path.
|
|
|
|
if last_command not in 'QT':
|
|
# If there is no previous command or if the previous command
|
|
# was not an Q, q, T or t, assume the first control point is
|
|
# coincident with the current point.
|
|
control = current_pos
|
|
else:
|
|
# The control point is assumed to be the reflection of
|
|
# the control point on the previous command relative
|
|
# to the current point.
|
|
control = current_pos + current_pos - segments[-1].control
|
|
|
|
end = float(elements.pop()) + float(elements.pop()) * 1j
|
|
|
|
if not absolute:
|
|
end += current_pos
|
|
|
|
segments.append(QuadraticBezier(current_pos, control, end))
|
|
current_pos = end
|
|
|
|
elif command == 'A':
|
|
radius = float(elements.pop()) + float(elements.pop()) * 1j
|
|
rotation = float(elements.pop())
|
|
arc = float(elements.pop())
|
|
sweep = float(elements.pop())
|
|
end = float(elements.pop()) + float(elements.pop()) * 1j
|
|
|
|
if not absolute:
|
|
end += current_pos
|
|
|
|
segments.append(Arc(current_pos, radius, rotation, arc, sweep, end))
|
|
current_pos = end
|
|
|
|
return segments
|
|
|
|
|
|
def _check_num_parsed_values(values, allowed):
|
|
if not any(num == len(values) for num in allowed):
|
|
if len(allowed) > 1:
|
|
warnings.warn('Expected one of the following number of values {0}, found {1}: {2}'
|
|
.format(allowed, len(values), values))
|
|
elif allowed[0] != 1:
|
|
warnings.warn('Expected {0} values, found {1}: {2}'.format(allowed[0], len(values), values))
|
|
else:
|
|
warnings.warn('Expected 1 value, found {0}: {1}'.format(len(values), values))
|
|
return False
|
|
return True
|
|
|
|
|
|
def _parse_transform_substr(transform_substr):
|
|
|
|
type_str, value_str = transform_substr.split('(')
|
|
value_str = value_str.replace(',', ' ')
|
|
values = list(map(float, filter(None, value_str.split(' '))))
|
|
|
|
transform = np.identity(3)
|
|
if 'matrix' in type_str:
|
|
if not _check_num_parsed_values(values, [6]):
|
|
return transform
|
|
|
|
transform[0:2, 0:3] = np.matrix([values[0:6:2], values[1:6:2]])
|
|
|
|
elif 'translate' in transform_substr:
|
|
if not _check_num_parsed_values(values, [1, 2]):
|
|
return transform
|
|
|
|
transform[0, 2] = values[0]
|
|
if len(values) > 1:
|
|
transform[1, 2] = values[1]
|
|
|
|
elif 'scale' in transform_substr:
|
|
if not _check_num_parsed_values(values, [1, 2]):
|
|
return transform
|
|
|
|
x_scale = values[0]
|
|
y_scale = values[1] if (len(values) > 1) else x_scale
|
|
transform[0, 0] = x_scale
|
|
transform[1, 1] = y_scale
|
|
|
|
elif 'rotate' in transform_substr:
|
|
if not _check_num_parsed_values(values, [1, 3]):
|
|
return transform
|
|
|
|
angle = values[0] * np.pi / 180.0
|
|
if len(values) == 3:
|
|
offset = values[1:3]
|
|
else:
|
|
offset = (0, 0)
|
|
tf_offset = np.identity(3)
|
|
tf_offset[0:2, 2:3] = np.matrix([[offset[0]], [offset[1]]])
|
|
tf_rotate = np.identity(3)
|
|
tf_rotate[0:2, 0:2] = np.matrix([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
|
|
tf_offset_neg = np.identity(3)
|
|
tf_offset_neg[0:2, 2:3] = np.matrix([[-offset[0]], [-offset[1]]])
|
|
|
|
transform = tf_offset.dot(tf_rotate).dot(tf_offset_neg)
|
|
|
|
elif 'skewX' in transform_substr:
|
|
if not _check_num_parsed_values(values, [1]):
|
|
return transform
|
|
|
|
transform[0, 1] = np.tan(values[0] * np.pi / 180.0)
|
|
|
|
elif 'skewY' in transform_substr:
|
|
if not _check_num_parsed_values(values, [1]):
|
|
return transform
|
|
|
|
transform[1, 0] = np.tan(values[0] * np.pi / 180.0)
|
|
else:
|
|
# Return an identity matrix if the type of transform is unknown, and warn the user
|
|
warnings.warn('Unknown SVG transform type: {0}'.format(type_str))
|
|
|
|
return transform
|
|
|
|
|
|
def parse_transform(transform_str):
|
|
"""Converts a valid SVG transformation string into a 3x3 matrix.
|
|
If the string is empty or null, this returns a 3x3 identity matrix"""
|
|
if not transform_str:
|
|
return np.identity(3)
|
|
elif not isinstance(transform_str, basestring):
|
|
raise TypeError('Must provide a string to parse')
|
|
|
|
total_transform = np.identity(3)
|
|
transform_substrs = transform_str.split(')')[:-1] # Skip the last element, because it should be empty
|
|
for substr in transform_substrs:
|
|
total_transform = total_transform.dot(_parse_transform_substr(substr))
|
|
|
|
return total_transform
|