svgpathtoolss/svgpathtools/path.py

3084 lines
122 KiB
Python

"""This submodule contains the class definitions of the the main five classes
svgpathtools is built around: Path, Line, QuadraticBezier, CubicBezier, and
Arc."""
# External dependencies
from __future__ import division, absolute_import, print_function
from math import sqrt, cos, sin, acos, asin, degrees, radians, log, pi, ceil
from cmath import exp, sqrt as csqrt, phase
import re
try:
from collections.abc import MutableSequence # noqa
except ImportError:
from collections import MutableSequence # noqa
from warnings import warn
from operator import itemgetter
import numpy as np
try:
from scipy.integrate import quad
_quad_available = True
except:
_quad_available = False
# Internal dependencies
from .bezier import (bezier_intersections, bezier_bounding_box, split_bezier,
bezier_by_line_intersections, polynomial2bezier,
bezier2polynomial)
from .misctools import BugException
from .polytools import rational_limit, polyroots, polyroots01, imag, real
# To maintain forward/backward compatibility
try:
str = basestring
except NameError:
pass
COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
UPPERCASE = set('MZLHVCSQTA')
COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
# Default Parameters ##########################################################
# path segment .length() parameters for arc length computation
LENGTH_MIN_DEPTH = 5
LENGTH_ERROR = 1e-12
USE_SCIPY_QUAD = True # for elliptic Arc segment arc length computation
# path segment .ilength() parameters for inverse arc length computation
ILENGTH_MIN_DEPTH = 5
ILENGTH_ERROR = 1e-12
ILENGTH_S_TOL = 1e-12
ILENGTH_MAXITS = 10000
# compatibility/implementation related warnings and parameters
CLOSED_WARNING_ON = True
_NotImplemented4ArcException = \
Exception("This method has not yet been implemented for Arc objects.")
# _NotImplemented4QuadraticException = \
# Exception("This method has not yet been implemented for QuadraticBezier "
# "objects.")
_is_smooth_from_warning = \
("The name of this method is somewhat misleading (yet kept for "
"compatibility with scripts created using svg.path 2.0). This method "
"is meant only for d-string creation and should NOT be used to check "
"for kinks. To check a segment for differentiability, use the "
"joins_smoothly_with() method instead or the kinks() function (in "
"smoothing.py).\nTo turn off this warning, set "
"warning_on=False.")
# Miscellaneous ###############################################################
def bezier_segment(*bpoints):
if len(bpoints) == 2:
return Line(*bpoints)
elif len(bpoints) == 4:
return CubicBezier(*bpoints)
elif len(bpoints) == 3:
return QuadraticBezier(*bpoints)
else:
assert len(bpoints) in (2, 3, 4)
def is_bezier_segment(seg):
return (isinstance(seg, Line) or
isinstance(seg, QuadraticBezier) or
isinstance(seg, CubicBezier))
def is_path_segment(seg):
return is_bezier_segment(seg) or isinstance(seg, Arc)
def is_bezier_path(path):
"""Checks that all segments in path are a Line, QuadraticBezier, or
CubicBezier object."""
return isinstance(path, Path) and all(map(is_bezier_segment, path))
def concatpaths(list_of_paths):
"""Takes in a sequence of paths and returns their concatenations into a
single path (following the order of the input sequence)."""
return Path(*[seg for path in list_of_paths for seg in path])
def bbox2path(xmin, xmax, ymin, ymax):
"""Converts a bounding box 4-tuple to a Path object."""
b = Line(xmin + 1j*ymin, xmax + 1j*ymin)
t = Line(xmin + 1j*ymax, xmax + 1j*ymax)
r = Line(xmax + 1j*ymin, xmax + 1j*ymax)
l = Line(xmin + 1j*ymin, xmin + 1j*ymax)
return Path(b, r, t.reversed(), l.reversed())
def polyline(*points):
"""Converts a list of points to a Path composed of lines connecting those
points (i.e. a linear spline or polyline). See also `polygon()`."""
return Path(*[Line(points[i], points[i+1])
for i in range(len(points) - 1)])
def polygon(*points):
"""Converts a list of points to a Path composed of lines connecting those
points, then closes the path by connecting the last point to the first.
See also `polyline()`."""
return Path(*[Line(points[i], points[(i + 1) % len(points)])
for i in range(len(points))])
# Conversion###################################################################
def bpoints2bezier(bpoints):
"""Converts a list of length 2, 3, or 4 to a CubicBezier, QuadraticBezier,
or Line object, respectively.
See also: poly2bez."""
order = len(bpoints) - 1
if order == 3:
return CubicBezier(*bpoints)
elif order == 2:
return QuadraticBezier(*bpoints)
elif order == 1:
return Line(*bpoints)
else:
assert len(bpoints) in {2, 3, 4}
def poly2bez(poly, return_bpoints=False):
"""Converts a cubic or lower order Polynomial object (or a sequence of
coefficients) to a CubicBezier, QuadraticBezier, or Line object as
appropriate. If return_bpoints=True then this will instead only return
the control points of the corresponding Bezier curve.
Note: The inverse operation is available as a method of CubicBezier,
QuadraticBezier and Line objects."""
bpoints = polynomial2bezier(poly)
if return_bpoints:
return bpoints
else:
return bpoints2bezier(bpoints)
def bez2poly(bez, numpy_ordering=True, return_poly1d=False):
"""Converts a Bezier object or tuple of Bezier control points to a tuple
of coefficients of the expanded polynomial.
return_poly1d : returns a numpy.poly1d object. This makes computations
of derivatives/anti-derivatives and many other operations quite quick.
numpy_ordering : By default (to accommodate numpy) the coefficients will
be output in reverse standard order.
Note: This function is redundant thanks to the .poly() method included
with all bezier segment classes."""
if is_bezier_segment(bez):
bez = bez.bpoints()
return bezier2polynomial(bez,
numpy_ordering=numpy_ordering,
return_poly1d=return_poly1d)
# Geometric####################################################################
def rotate(curve, degs, origin=None):
"""Returns curve rotated by `degs` degrees (CCW) around the point `origin`
(a complex number). By default origin is either `curve.point(0.5)`, or in
the case that curve is an Arc object, `origin` defaults to `curve.center`.
"""
def transform(z):
return exp(1j*radians(degs))*(z - origin) + origin
if origin is None:
if isinstance(curve, Arc):
origin = curve.center
else:
origin = curve.point(0.5)
if isinstance(curve, Path):
return Path(*[rotate(seg, degs, origin=origin) for seg in curve])
elif is_bezier_segment(curve):
return bpoints2bezier([transform(bpt) for bpt in curve.bpoints()])
elif isinstance(curve, Arc):
new_start = transform(curve.start)
new_end = transform(curve.end)
new_rotation = curve.rotation + degs
return Arc(new_start, radius=curve.radius, rotation=new_rotation,
large_arc=curve.large_arc, sweep=curve.sweep, end=new_end)
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def translate(curve, z0):
"""Shifts the curve by the complex quantity z such that
translate(curve, z0).point(t) = curve.point(t) + z0"""
if isinstance(curve, Path):
return Path(*[translate(seg, z0) for seg in curve])
elif is_bezier_segment(curve):
return bpoints2bezier([bpt + z0 for bpt in curve.bpoints()])
elif isinstance(curve, Arc):
new_start = curve.start + z0
new_end = curve.end + z0
return Arc(new_start, radius=curve.radius, rotation=curve.rotation,
large_arc=curve.large_arc, sweep=curve.sweep, end=new_end)
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def scale(curve, sx, sy=None, origin=0j):
"""Scales `curve`, about `origin`, by diagonal matrix `[[sx,0],[0,sy]]`.
Notes:
------
* If `sy` is not specified, it is assumed to be equal to `sx` and
a scalar transformation of `curve` about `origin` will be returned.
I.e.
scale(curve, sx, origin).point(t) ==
((curve.point(t) - origin) * sx) + origin
"""
if sy is None:
isy = 1j*sx
else:
isy = 1j*sy
def _scale(z):
if sy is None:
return sx*z
return sx*z.real + isy*z.imag
def scale_bezier(bez):
p = [_scale(c) for c in bez2poly(bez)]
p[-1] += origin - _scale(origin)
return poly2bez(p)
if isinstance(curve, Path):
return Path(*[scale(seg, sx, sy, origin) for seg in curve])
elif is_bezier_segment(curve):
return scale_bezier(curve)
elif isinstance(curve, Arc):
if sy is None or sy == sx:
return Arc(start=sx*(curve.start - origin) + origin,
radius=sx*curve.radius,
rotation=curve.rotation,
large_arc=curve.large_arc,
sweep=curve.sweep,
end=sx*(curve.end - origin) + origin)
else:
raise Exception("\nFor `Arc` objects, only scale transforms "
"with sx==sy are implemented.\n")
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def transform(curve, tf):
"""Transforms the curve by the homogeneous transformation matrix tf"""
def to_point(p):
return np.array([[p.real], [p.imag], [1.0]])
def to_vector(z):
return np.array([[z.real], [z.imag], [0.0]])
def to_complex(v):
return v.item(0) + 1j * v.item(1)
if isinstance(curve, Path):
return Path(*[transform(segment, tf) for segment in curve])
elif is_bezier_segment(curve):
return bpoints2bezier([to_complex(tf.dot(to_point(p)))
for p in curve.bpoints()])
elif isinstance(curve, Arc):
new_start = to_complex(tf.dot(to_point(curve.start)))
new_end = to_complex(tf.dot(to_point(curve.end)))
new_radius = to_complex(tf.dot(to_vector(curve.radius)))
if tf[0][0] * tf[1][1] >= 0.0:
new_sweep = curve.sweep
else:
new_sweep = not curve.sweep
return Arc(new_start, radius=new_radius, rotation=curve.rotation,
large_arc=curve.large_arc, sweep=new_sweep, end=new_end)
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def bezier_unit_tangent(seg, t):
"""Returns the unit tangent of the segment at t.
Notes
-----
If you receive a RuntimeWarning, try the following:
>>> import numpy
>>> old_numpy_error_settings = numpy.seterr(invalid='raise')
This can be undone with:
>>> numpy.seterr(**old_numpy_error_settings)
"""
assert 0 <= t <= 1
dseg = seg.derivative(t)
# Note: dseg might be numpy value, use np.seterr(invalid='raise')
try:
unit_tangent = dseg/abs(dseg)
except (ZeroDivisionError, FloatingPointError):
# This may be a removable singularity, if so we just need to compute
# the limit.
# Note: limit{{dseg / abs(dseg)} = sqrt(limit{dseg**2 / abs(dseg)**2})
dseg_poly = seg.poly().deriv()
dseg_abs_squared_poly = (real(dseg_poly) ** 2 +
imag(dseg_poly) ** 2)
try:
unit_tangent = csqrt(rational_limit(dseg_poly**2,
dseg_abs_squared_poly, t))
except ValueError:
bef = seg.poly().deriv()(t - 1e-4)
aft = seg.poly().deriv()(t + 1e-4)
mes = ("Unit tangent appears to not be well-defined at "
"t = {}, \n".format(t) +
"seg.poly().deriv()(t - 1e-4) = {}\n".format(bef) +
"seg.poly().deriv()(t + 1e-4) = {}".format(aft))
raise ValueError(mes)
return unit_tangent
def segment_curvature(self, t, use_inf=False):
"""returns the curvature of the segment at t.
Notes
-----
If you receive a RuntimeWarning, run command
>>> old = np.seterr(invalid='raise')
This can be undone with
>>> np.seterr(**old)
"""
dz = self.derivative(t)
ddz = self.derivative(t, n=2)
dx, dy = dz.real, dz.imag
ddx, ddy = ddz.real, ddz.imag
old_np_seterr = np.seterr(invalid='raise')
try:
kappa = abs(dx*ddy - dy*ddx)/sqrt(dx*dx + dy*dy)**3
except (ZeroDivisionError, FloatingPointError):
# tangent vector is zero at t, use polytools to find limit
p = self.poly()
dp = p.deriv()
ddp = dp.deriv()
dx, dy = real(dp), imag(dp)
ddx, ddy = real(ddp), imag(ddp)
f2 = (dx*ddy - dy*ddx)**2
g2 = (dx*dx + dy*dy)**3
lim2 = rational_limit(f2, g2, t)
if lim2 < 0: # impossible, must be numerical error
return 0
kappa = sqrt(lim2)
finally:
np.seterr(**old_np_seterr)
return kappa
def bezier_radialrange(seg, origin, return_all_global_extrema=False):
"""returns the tuples (d_min, t_min) and (d_max, t_max) which minimize and
maximize, respectively, the distance d = |self.point(t)-origin|.
return_all_global_extrema: Multiple such t_min or t_max values can exist.
By default, this will only return one. Set return_all_global_extrema=True
to return all such global extrema."""
def _radius(tau):
return abs(seg.point(tau) - origin)
shifted_seg_poly = seg.poly() - origin
r_squared = real(shifted_seg_poly) ** 2 + \
imag(shifted_seg_poly) ** 2
extremizers = [0, 1] + polyroots01(r_squared.deriv())
extrema = [(_radius(t), t) for t in extremizers]
if return_all_global_extrema:
raise NotImplementedError
else:
seg_global_min = min(extrema, key=itemgetter(0))
seg_global_max = max(extrema, key=itemgetter(0))
return seg_global_min, seg_global_max
def closest_point_in_path(pt, path):
"""returns (|path.seg.point(t)-pt|, t, seg_idx) where t and seg_idx
minimize the distance between pt and curve path[idx].point(t) for 0<=t<=1
and any seg_idx.
Warning: Multiple such global minima can exist. This will only return
one."""
return path.radialrange(pt)[0]
def farthest_point_in_path(pt, path):
"""returns (|path.seg.point(t)-pt|, t, seg_idx) where t and seg_idx
maximize the distance between pt and curve path[idx].point(t) for 0<=t<=1
and any seg_idx.
:rtype : object
:param pt:
:param path:
Warning: Multiple such global maxima can exist. This will only return
one."""
return path.radialrange(pt)[1]
def path_encloses_pt(pt, opt, path):
"""returns true if pt is a point enclosed by path (which must be a Path
object satisfying path.isclosed==True). opt is a point you know is
NOT enclosed by path."""
assert path.isclosed()
intersections = Path(Line(pt, opt)).intersect(path)
if len(intersections) % 2:
return True
else:
return False
def segment_length(curve, start, end, start_point, end_point,
error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH, depth=0):
"""Recursively approximates the length by straight lines"""
mid = (start + end)/2
mid_point = curve.point(mid)
length = abs(end_point - start_point)
first_half = abs(mid_point - start_point)
second_half = abs(end_point - mid_point)
length2 = first_half + second_half
if (length2 - length > error) or (depth < min_depth):
# Calculate the length of each segment:
depth += 1
return (segment_length(curve, start, mid, start_point, mid_point,
error, min_depth, depth) +
segment_length(curve, mid, end, mid_point, end_point,
error, min_depth, depth))
# This is accurate enough.
return length2
def inv_arclength(curve, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
"""INPUT: curve should be a CubicBezier, Line, of Path of CubicBezier
and/or Line objects.
OUTPUT: Returns a float, t, such that the arc length of curve from 0 to
t is approximately s.
s_tol - exit when |s(t) - s| < s_tol where
s(t) = seg.length(0, t, error, min_depth) and seg is either curve or,
if curve is a Path object, then seg is a segment in curve.
error - used to compute lengths of cubics and arcs
min_depth - used to compute lengths of cubics and arcs
Note: This function is not designed to be efficient, but if it's slower
than you need, make sure you have scipy installed."""
curve_length = curve.length(error=error, min_depth=min_depth)
assert curve_length > 0
if not 0 <= s <= curve_length:
raise ValueError("s is not in interval [0, curve.length()].")
if s == 0:
return 0
if s == curve_length:
return 1
if isinstance(curve, Path):
seg_lengths = [seg.length(error=error, min_depth=min_depth)
for seg in curve]
lsum = 0
# Find which segment the point we search for is located on
for k, len_k in enumerate(seg_lengths):
if lsum <= s <= lsum + len_k:
t = inv_arclength(curve[k], s - lsum, s_tol=s_tol,
maxits=maxits, error=error,
min_depth=min_depth)
return curve.t2T(k, t)
lsum += len_k
return 1
elif isinstance(curve, Line):
return s / curve.length(error=error, min_depth=min_depth)
elif (isinstance(curve, QuadraticBezier) or
isinstance(curve, CubicBezier) or
isinstance(curve, Arc)):
t_upper = 1
t_lower = 0
iteration = 0
while iteration < maxits:
iteration += 1
t = (t_lower + t_upper)/2
s_t = curve.length(t1=t, error=error, min_depth=min_depth)
if abs(s_t - s) < s_tol:
return t
elif s_t < s: # t too small
t_lower = t
else: # s < s_t, t too big
t_upper = t
if t_upper == t_lower:
warn("t is as close as a float can be to the correct value, "
"but |s(t) - s| = {} > s_tol".format(abs(s_t-s)))
return t
raise Exception("Maximum iterations reached with s(t) - s = {}."
"".format(s_t - s))
else:
raise TypeError("First argument must be a Line, QuadraticBezier, "
"CubicBezier, Arc, or Path object.")
# Operations###################################################################
def crop_bezier(seg, t0, t1):
"""returns a cropped copy of this segment which starts at self.point(t0)
and ends at self.point(t1)."""
assert t0 < t1
if t0 == 0:
cropped_seg = seg.split(t1)[0]
elif t1 == 1:
cropped_seg = seg.split(t0)[1]
else:
pt1 = seg.point(t1)
# trim off the 0 <= t < t0 part
trimmed_seg = crop_bezier(seg, t0, 1)
# find the adjusted t1 (i.e. the t1 such that
# trimmed_seg.point(t1) ~= pt))and trim off the t1 < t <= 1 part
t1_adj = trimmed_seg.radialrange(pt1)[0][1]
cropped_seg = crop_bezier(trimmed_seg, 0, t1_adj)
return cropped_seg
# Main Classes ################################################################
class Line(object):
def __init__(self, start, end):
self.start = start
self.end = end
def __repr__(self):
return 'Line(start=%s, end=%s)' % (self.start, self.end)
def __eq__(self, other):
if not isinstance(other, Line):
return NotImplemented
return self.start == other.start and self.end == other.end
def __ne__(self, other):
if not isinstance(other, Line):
return NotImplemented
return not self == other
def __getitem__(self, item):
return self.bpoints()[item]
def __len__(self):
return 2
def joins_smoothly_with(self, previous, wrt_parameterization=False):
"""Checks if this segment joins smoothly with previous segment. By
default, this only checks that this segment starts moving (at t=0) in
the same direction (and from the same positive) as previous stopped
moving (at t=1). To check if the tangent magnitudes also match, set
wrt_parameterization=True."""
if wrt_parameterization:
return self.start == previous.end and np.isclose(
self.derivative(0), previous.derivative(1))
else:
return self.start == previous.end and np.isclose(
self.unit_tangent(0), previous.unit_tangent(1))
def point(self, t):
"""returns the coordinates of the Bezier curve evaluated at t."""
distance = self.end - self.start
return self.start + distance*t
def points(self, ts):
"""Faster than running Path.point many times."""
return self.poly(ts)
def length(self, t0=0, t1=1, error=None, min_depth=None):
"""returns the length of the line segment between t0 and t1."""
return abs(self.end - self.start)*(t1-t0)
def ilength(self, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
"""Returns a float, t, such that self.length(0, t) is approximately s.
See the inv_arclength() docstring for more details."""
return inv_arclength(self, s, s_tol=s_tol, maxits=maxits, error=error,
min_depth=min_depth)
def bpoints(self):
"""returns the Bezier control points of the segment."""
return self.start, self.end
def poly(self, return_coeffs=False):
"""returns the line as a Polynomial object."""
p = self.bpoints()
coeffs = ([p[1] - p[0], p[0]])
if return_coeffs:
return coeffs
else:
return np.poly1d(coeffs)
def derivative(self, t=None, n=1):
"""returns the nth derivative of the segment at t."""
assert self.end != self.start
if n == 1:
return self.end - self.start
elif n > 1:
return 0
else:
raise ValueError("n should be a positive integer.")
def unit_tangent(self, t=None):
"""returns the unit tangent of the segment at t."""
assert self.end != self.start
dseg = self.end - self.start
return dseg/abs(dseg)
def normal(self, t=None):
"""returns the (right hand rule) unit normal vector to self at t."""
return -1j*self.unit_tangent(t)
def curvature(self, t):
"""returns the curvature of the line, which is always zero."""
return 0
# def icurvature(self, kappa):
# """returns a list of t-values such that 0 <= t<= 1 and
# seg.curvature(t) = kappa."""
# if kappa:
# raise ValueError("The .icurvature() method for Line elements will "
# "return an empty list if kappa is nonzero and "
# "will raise this exception when kappa is zero as "
# "this is true at every point on the line.")
# return []
def reversed(self):
"""returns a copy of the Line object with its orientation reversed."""
return Line(self.end, self.start)
def intersect(self, other_seg, tol=None):
"""Finds the intersections of two segments.
returns a list of tuples (t1, t2) such that
self.point(t1) == other_seg.point(t2).
Note: This will fail if the two segments coincide for more than a
finite collection of points.
tol is not used."""
if isinstance(other_seg, Line):
assert other_seg.end != other_seg.start and self.end != self.start
assert self != other_seg
# Solve the system [p1-p0, q1-q0]*[t1, t2]^T = q0 - p0
# where self == Line(p0, p1) and other_seg == Line(q0, q1)
a = (self.start.real, self.end.real)
b = (self.start.imag, self.end.imag)
c = (other_seg.start.real, other_seg.end.real)
d = (other_seg.start.imag, other_seg.end.imag)
denom = ((a[1] - a[0])*(d[0] - d[1]) -
(b[1] - b[0])*(c[0] - c[1]))
if np.isclose(denom, 0):
return []
t1 = (c[0]*(b[0] - d[1]) -
c[1]*(b[0] - d[0]) -
a[0]*(d[0] - d[1]))/denom
t2 = -(a[1]*(b[0] - d[0]) -
a[0]*(b[1] - d[0]) -
c[0]*(b[0] - b[1]))/denom
if 0 <= t1 <= 1 and 0 <= t2 <= 1:
return [(t1, t2)]
return []
elif isinstance(other_seg, QuadraticBezier):
t2t1s = bezier_by_line_intersections(other_seg, self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, CubicBezier):
t2t1s = bezier_by_line_intersections(other_seg, self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, Arc):
t2t1s = other_seg.intersect(self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, Path):
raise TypeError(
"other_seg must be a path segment, not a Path object, use "
"Path.intersect().")
else:
raise TypeError("other_seg must be a path segment.")
def bbox(self):
"""returns the bounding box for the segment in the form
(xmin, xmax, ymin, ymax)."""
xmin = min(self.start.real, self.end.real)
xmax = max(self.start.real, self.end.real)
ymin = min(self.start.imag, self.end.imag)
ymax = max(self.start.imag, self.end.imag)
return xmin, xmax, ymin, ymax
def point_to_t(self, point):
"""If the point lies on the Line, returns its `t` parameter.
If the point does not lie on the Line, returns None."""
# Single-precision floats have only 7 significant figures of
# resolution, so test that we're within 6 sig figs.
if np.isclose(point, self.start, rtol=0, atol=1e-6):
return 0.0
elif np.isclose(point, self.end, rtol=0, atol=1e-6):
return 1.0
# Finding the point "by hand" here is much faster than calling
# radialrange(), see the discussion on PR #40:
# https://github.com/mathandy/svgpathtools/pull/40#issuecomment-358134261
p = self.poly()
# p(t) = (p_1 * t) + p_0 = point
# t = (point - p_0) / p_1
t = (point - p[0]) / p[1]
if np.isclose(t.imag, 0) and (t.real >= 0.0) and (t.real <= 1.0):
return t.real
return None
def cropped(self, t0, t1):
"""returns a cropped copy of this segment which starts at
self.point(t0) and ends at self.point(t1)."""
return Line(self.point(t0), self.point(t1))
def split(self, t):
"""returns two segments, whose union is this segment and which join at
self.point(t)."""
pt = self.point(t)
return Line(self.start, pt), Line(pt, self.end)
def radialrange(self, origin, **kwargs):
"""compute points in self that are min and max distance to origin.
Args:
origin (complex): the point extremize distance to
Returns:
tuples (d_min, t_min) and (d_max, t_max) which minimize and
maximize, respectively, the distance d = |self.point(t)-origin|.
"""
x, y = origin.real, origin.imag
p0, p1 = self.start, self.end
x0, y0, x1, y1 = p0.real, p0.imag, p1.real, p1.imag
dx, dy = x1 - x0, y1 - y0
numerator, denominator = dx * (x - x0) + dy * (y - y0), dx * dx + dy * dy
t = numerator / denominator
if 0 < t < 1:
# get distance to origin at 0, 1, and t
d0, d1, dt = (
abs(p0 - origin),
abs(p1 - origin),
abs(self.point(t) - origin)
)
if d0 < d1:
return (dt, t), (d1, 1)
return (dt, t), (d0, 0)
else:
# get distance to origin at t = 0 and t = 1
d0, d1 = abs(p0 - origin), abs(p1 - origin)
if d0 < d1:
return (d0, 0), (d1, 1)
return (d1, 1), (d0, 0)
def rotated(self, degs, origin=None):
"""Returns a copy of self rotated by `degs` degrees (CCW) around the
point `origin` (a complex number). By default `origin` is either
`self.point(0.5)`, or in the case that self is an Arc object,
`origin` defaults to `self.center`."""
return rotate(self, degs, origin=origin)
def translated(self, z0):
"""Returns a copy of self shifted by the complex quantity `z0` such
that self.translated(z0).point(t) = self.point(t) + z0 for any t."""
return translate(self, z0)
def scaled(self, sx, sy=None, origin=0j):
"""Scale transform. See `scale` function for further explanation."""
return scale(self, sx=sx, sy=sy, origin=origin)
class QuadraticBezier(object):
# For compatibility with old pickle files.
_length_info = {'length': None, 'bpoints': None}
def __init__(self, start, control, end):
self.start = start
self.end = end
self.control = control
# used to know if self._length needs to be updated
self._length_info = {'length': None, 'bpoints': None}
def __repr__(self):
return 'QuadraticBezier(start=%s, control=%s, end=%s)' % (
self.start, self.control, self.end)
def __eq__(self, other):
if not isinstance(other, QuadraticBezier):
return NotImplemented
return self.start == other.start and self.end == other.end \
and self.control == other.control
def __ne__(self, other):
if not isinstance(other, QuadraticBezier):
return NotImplemented
return not self == other
def __getitem__(self, item):
return self.bpoints()[item]
def __len__(self):
return 3
def is_smooth_from(self, previous, warning_on=True):
"""[Warning: The name of this method is somewhat misleading (yet kept
for compatibility with scripts created using svg.path 2.0). This
method is meant only for d string creation and should not be used to
check for kinks. To check a segment for differentiability, use the
joins_smoothly_with() method instead.]"""
if warning_on:
warn(_is_smooth_from_warning)
if isinstance(previous, QuadraticBezier):
return (self.start == previous.end and
(self.control - self.start) == (
previous.end - previous.control))
else:
return self.control == self.start
def joins_smoothly_with(self, previous, wrt_parameterization=False,
error=0):
"""Checks if this segment joins smoothly with previous segment. By
default, this only checks that this segment starts moving (at t=0) in
the same direction (and from the same positive) as previous stopped
moving (at t=1). To check if the tangent magnitudes also match, set
wrt_parameterization=True."""
if wrt_parameterization:
return self.start == previous.end and abs(
self.derivative(0) - previous.derivative(1)) <= error
else:
return self.start == previous.end and abs(
self.unit_tangent(0) - previous.unit_tangent(1)) <= error
def point(self, t):
"""returns the coordinates of the Bezier curve evaluated at t."""
return (1 - t)**2*self.start + 2*(1 - t)*t*self.control + t**2*self.end
def points(self, ts):
"""Faster than running Path.point many times."""
return self.poly(ts)
def length(self, t0=0, t1=1, error=None, min_depth=None):
if t0 == 1 and t1 == 0:
if self._length_info['bpoints'] == self.bpoints():
return self._length_info['length']
a = self.start - 2*self.control + self.end
b = 2*(self.control - self.start)
a_dot_b = a.real*b.real + a.imag*b.imag
if abs(a) < 1e-12:
s = abs(b)*(t1 - t0)
elif abs(a_dot_b + abs(a)*abs(b)) < 1e-12:
tstar = abs(b)/(2*abs(a))
if t1 < tstar:
return abs(a)*(t0**2 - t1**2) - abs(b)*(t0 - t1)
elif tstar < t0:
return abs(a)*(t1**2 - t0**2) - abs(b)*(t1 - t0)
else:
return abs(a)*(t1**2 + t0**2) - abs(b)*(t1 + t0) + \
abs(b)**2/(2*abs(a))
else:
c2 = 4*(a.real**2 + a.imag**2)
c1 = 4*a_dot_b
c0 = b.real**2 + b.imag**2
beta = c1/(2*c2)
gamma = c0/c2 - beta**2
dq1_mag = sqrt(c2*t1**2 + c1*t1 + c0)
dq0_mag = sqrt(c2*t0**2 + c1*t0 + c0)
logarand = (sqrt(c2)*(t1 + beta) + dq1_mag) / \
(sqrt(c2)*(t0 + beta) + dq0_mag)
s = (t1 + beta)*dq1_mag - (t0 + beta)*dq0_mag + \
gamma*sqrt(c2)*log(logarand)
s /= 2
if t0 == 1 and t1 == 0:
self._length_info['length'] = s
self._length_info['bpoints'] = self.bpoints()
return self._length_info['length']
else:
return s
def ilength(self, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
"""Returns a float, t, such that self.length(0, t) is approximately s.
See the inv_arclength() docstring for more details."""
return inv_arclength(self, s, s_tol=s_tol, maxits=maxits, error=error,
min_depth=min_depth)
def bpoints(self):
"""returns the Bezier control points of the segment."""
return self.start, self.control, self.end
def poly(self, return_coeffs=False):
"""returns the quadratic as a Polynomial object."""
p = self.bpoints()
coeffs = (p[0] - 2*p[1] + p[2], 2*(p[1] - p[0]), p[0])
if return_coeffs:
return coeffs
else:
return np.poly1d(coeffs)
def derivative(self, t, n=1):
"""returns the nth derivative of the segment at t.
Note: Bezier curves can have points where their derivative vanishes.
If you are interested in the tangent direction, use the unit_tangent()
method instead."""
p = self.bpoints()
if n == 1:
return 2*((p[1] - p[0])*(1 - t) + (p[2] - p[1])*t)
elif n == 2:
return 2*(p[2] - 2*p[1] + p[0])
elif n > 2:
return 0
else:
raise ValueError("n should be a positive integer.")
def unit_tangent(self, t):
"""returns the unit tangent vector of the segment at t (centered at
the origin and expressed as a complex number). If the tangent
vector's magnitude is zero, this method will find the limit of
self.derivative(tau)/abs(self.derivative(tau)) as tau approaches t."""
return bezier_unit_tangent(self, t)
def normal(self, t):
"""returns the (right hand rule) unit normal vector to self at t."""
return -1j*self.unit_tangent(t)
def curvature(self, t):
"""returns the curvature of the segment at t."""
return segment_curvature(self, t)
# def icurvature(self, kappa):
# """returns a list of t-values such that 0 <= t<= 1 and
# seg.curvature(t) = kappa."""
# z = self.poly()
# x, y = real(z), imag(z)
# dx, dy = x.deriv(), y.deriv()
# ddx, ddy = dx.deriv(), dy.deriv()
#
# p = kappa**2*(dx**2 + dy**2)**3 - (dx*ddy - ddx*dy)**2
# return polyroots01(p)
def reversed(self):
"""returns a copy of the QuadraticBezier object with its orientation
reversed."""
new_quad = QuadraticBezier(self.end, self.control, self.start)
if self._length_info['length']:
new_quad._length_info = self._length_info
new_quad._length_info['bpoints'] = (
self.end, self.control, self.start)
return new_quad
def intersect(self, other_seg, tol=1e-12):
"""Finds the intersections of two segments.
returns a list of tuples (t1, t2) such that
self.point(t1) == other_seg.point(t2).
Note: This will fail if the two segments coincide for more than a
finite collection of points."""
if isinstance(other_seg, Line):
return bezier_by_line_intersections(self, other_seg)
elif isinstance(other_seg, QuadraticBezier):
assert self != other_seg
longer_length = max(self.length(), other_seg.length())
return bezier_intersections(self, other_seg,
longer_length=longer_length,
tol=tol, tol_deC=tol)
elif isinstance(other_seg, CubicBezier):
longer_length = max(self.length(), other_seg.length())
return bezier_intersections(self, other_seg,
longer_length=longer_length,
tol=tol, tol_deC=tol)
elif isinstance(other_seg, Arc):
t2t1s = other_seg.intersect(self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, Path):
raise TypeError(
"other_seg must be a path segment, not a Path object, use "
"Path.intersect().")
else:
raise TypeError("other_seg must be a path segment.")
def bbox(self):
"""returns the bounding box for the segment in the form
(xmin, xmax, ymin, ymax)."""
return bezier_bounding_box(self)
def split(self, t):
"""returns two segments, whose union is this segment and which join at
self.point(t)."""
bpoints1, bpoints2 = split_bezier(self.bpoints(), t)
return QuadraticBezier(*bpoints1), QuadraticBezier(*bpoints2)
def cropped(self, t0, t1):
"""returns a cropped copy of this segment which starts at
self.point(t0) and ends at self.point(t1)."""
return QuadraticBezier(*crop_bezier(self, t0, t1))
def radialrange(self, origin, return_all_global_extrema=False):
"""returns the tuples (d_min, t_min) and (d_max, t_max) which minimize
and maximize, respectively, the distance d = |self.point(t)-origin|."""
return bezier_radialrange(self, origin,
return_all_global_extrema=return_all_global_extrema)
def rotated(self, degs, origin=None):
"""Returns a copy of self rotated by `degs` degrees (CCW) around the
point `origin` (a complex number). By default `origin` is either
`self.point(0.5)`, or in the case that self is an Arc object,
`origin` defaults to `self.center`."""
return rotate(self, degs, origin=origin)
def translated(self, z0):
"""Returns a copy of self shifted by the complex quantity `z0` such
that self.translated(z0).point(t) = self.point(t) + z0 for any t."""
return translate(self, z0)
def scaled(self, sx, sy=None, origin=0j):
"""Scale transform. See `scale` function for further explanation."""
return scale(self, sx=sx, sy=sy, origin=origin)
class CubicBezier(object):
# For compatibility with old pickle files.
_length_info = {'length': None, 'bpoints': None, 'error': None,
'min_depth': None}
def __init__(self, start, control1, control2, end):
self.start = start
self.control1 = control1
self.control2 = control2
self.end = end
# used to know if self._length needs to be updated
self._length_info = {'length': None, 'bpoints': None, 'error': None,
'min_depth': None}
def __repr__(self):
return 'CubicBezier(start=%s, control1=%s, control2=%s, end=%s)' % (
self.start, self.control1, self.control2, self.end)
def __eq__(self, other):
if not isinstance(other, CubicBezier):
return NotImplemented
return self.start == other.start and self.end == other.end \
and self.control1 == other.control1 \
and self.control2 == other.control2
def __ne__(self, other):
if not isinstance(other, CubicBezier):
return NotImplemented
return not self == other
def __getitem__(self, item):
return self.bpoints()[item]
def __len__(self):
return 4
def is_smooth_from(self, previous, warning_on=True):
"""[Warning: The name of this method is somewhat misleading (yet kept
for compatibility with scripts created using svg.path 2.0). This
method is meant only for d string creation and should not be used to
check for kinks. To check a segment for differentiability, use the
joins_smoothly_with() method instead.]"""
if warning_on:
warn(_is_smooth_from_warning)
if isinstance(previous, CubicBezier):
return (self.start == previous.end and
(self.control1 - self.start) == (
previous.end - previous.control2))
else:
return self.control1 == self.start
def joins_smoothly_with(self, previous, wrt_parameterization=False):
"""Checks if this segment joins smoothly with previous segment. By
default, this only checks that this segment starts moving (at t=0) in
the same direction (and from the same positive) as previous stopped
moving (at t=1). To check if the tangent magnitudes also match, set
wrt_parameterization=True."""
if wrt_parameterization:
return self.start == previous.end and np.isclose(
self.derivative(0), previous.derivative(1))
else:
return self.start == previous.end and np.isclose(
self.unit_tangent(0), previous.unit_tangent(1))
def point(self, t):
"""Evaluate the cubic Bezier curve at t using Horner's rule."""
# algebraically equivalent to
# P0*(1-t)**3 + 3*P1*t*(1-t)**2 + 3*P2*(1-t)*t**2 + P3*t**3
# for (P0, P1, P2, P3) = self.bpoints()
return self.start + t*(
3*(self.control1 - self.start) + t*(
3*(self.start + self.control2) - 6*self.control1 + t*(
-self.start + 3*(self.control1 - self.control2) + self.end
)))
def points(self, ts):
"""Faster than running Path.point many times."""
return self.poly(ts)
def length(self, t0=0, t1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
"""Calculate the length of the path up to a certain position"""
if t0 == 0 and t1 == 1:
if self._length_info['bpoints'] == self.bpoints() \
and self._length_info['error'] >= error \
and self._length_info['min_depth'] >= min_depth:
return self._length_info['length']
# using scipy.integrate.quad is quick
if _quad_available:
s = quad(lambda tau: abs(self.derivative(tau)), t0, t1,
epsabs=error, limit=1000)[0]
else:
s = segment_length(self, t0, t1, self.point(t0), self.point(t1),
error, min_depth, 0)
if t0 == 0 and t1 == 1:
self._length_info['length'] = s
self._length_info['bpoints'] = self.bpoints()
self._length_info['error'] = error
self._length_info['min_depth'] = min_depth
return self._length_info['length']
else:
return s
def ilength(self, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
"""Returns a float, t, such that self.length(0, t) is approximately s.
See the inv_arclength() docstring for more details."""
return inv_arclength(self, s, s_tol=s_tol, maxits=maxits, error=error,
min_depth=min_depth)
def bpoints(self):
"""returns the Bezier control points of the segment."""
return self.start, self.control1, self.control2, self.end
def poly(self, return_coeffs=False):
"""Returns a the cubic as a Polynomial object."""
p = self.bpoints()
coeffs = (-p[0] + 3*(p[1] - p[2]) + p[3],
3*(p[0] - 2*p[1] + p[2]),
3*(-p[0] + p[1]),
p[0])
if return_coeffs:
return coeffs
else:
return np.poly1d(coeffs)
def derivative(self, t, n=1):
"""returns the nth derivative of the segment at t.
Note: Bezier curves can have points where their derivative vanishes.
If you are interested in the tangent direction, use the unit_tangent()
method instead."""
p = self.bpoints()
if n == 1:
return 3*(p[1] - p[0])*(1 - t)**2 + 6*(p[2] - p[1])*(1 - t)*t + 3*(
p[3] - p[2])*t**2
elif n == 2:
return 6*(
(1 - t)*(p[2] - 2*p[1] + p[0]) + t*(p[3] - 2*p[2] + p[1]))
elif n == 3:
return 6*(p[3] - 3*(p[2] - p[1]) - p[0])
elif n > 3:
return 0
else:
raise ValueError("n should be a positive integer.")
def unit_tangent(self, t):
"""returns the unit tangent vector of the segment at t (centered at
the origin and expressed as a complex number). If the tangent
vector's magnitude is zero, this method will find the limit of
self.derivative(tau)/abs(self.derivative(tau)) as tau approaches t."""
return bezier_unit_tangent(self, t)
def normal(self, t):
"""returns the (right hand rule) unit normal vector to self at t."""
return -1j * self.unit_tangent(t)
def curvature(self, t):
"""returns the curvature of the segment at t."""
return segment_curvature(self, t)
# def icurvature(self, kappa):
# """returns a list of t-values such that 0 <= t<= 1 and
# seg.curvature(t) = kappa."""
# z = self.poly()
# x, y = real(z), imag(z)
# dx, dy = x.deriv(), y.deriv()
# ddx, ddy = dx.deriv(), dy.deriv()
#
# p = kappa**2*(dx**2 + dy**2)**3 - (dx*ddy - ddx*dy)**2
# return polyroots01(p)
def reversed(self):
"""returns a copy of the CubicBezier object with its orientation
reversed."""
new_cub = CubicBezier(self.end, self.control2, self.control1,
self.start)
if self._length_info['length']:
new_cub._length_info = self._length_info
new_cub._length_info['bpoints'] = (
self.end, self.control2, self.control1, self.start)
return new_cub
def intersect(self, other_seg, tol=1e-12):
"""Finds the intersections of two segments.
returns a list of tuples (t1, t2) such that
self.point(t1) == other_seg.point(t2).
Note: This will fail if the two segments coincide for more than a
finite collection of points."""
if isinstance(other_seg, Line):
return bezier_by_line_intersections(self, other_seg)
elif (isinstance(other_seg, QuadraticBezier) or
isinstance(other_seg, CubicBezier)):
assert self != other_seg
longer_length = max(self.length(), other_seg.length())
return bezier_intersections(self, other_seg,
longer_length=longer_length,
tol=tol, tol_deC=tol)
elif isinstance(other_seg, Arc):
t2t1s = other_seg.intersect(self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, Path):
raise TypeError(
"other_seg must be a path segment, not a Path object, use "
"Path.intersect().")
else:
raise TypeError("other_seg must be a path segment.")
def bbox(self):
"""returns the bounding box for the segment in the form
(xmin, xmax, ymin, ymax)."""
return bezier_bounding_box(self)
def split(self, t):
"""returns two segments, whose union is this segment and which join at
self.point(t)."""
bpoints1, bpoints2 = split_bezier(self.bpoints(), t)
return CubicBezier(*bpoints1), CubicBezier(*bpoints2)
def cropped(self, t0, t1):
"""returns a cropped copy of this segment which starts at
self.point(t0) and ends at self.point(t1)."""
return CubicBezier(*crop_bezier(self, t0, t1))
def radialrange(self, origin, return_all_global_extrema=False):
"""returns the tuples (d_min, t_min) and (d_max, t_max) which minimize
and maximize, respectively, the distance d = |self.point(t)-origin|."""
return bezier_radialrange(self, origin,
return_all_global_extrema=return_all_global_extrema)
def rotated(self, degs, origin=None):
"""Returns a copy of self rotated by `degs` degrees (CCW) around the
point `origin` (a complex number). By default `origin` is either
`self.point(0.5)`, or in the case that self is an Arc object,
`origin` defaults to `self.center`."""
return rotate(self, degs, origin=origin)
def translated(self, z0):
"""Returns a copy of self shifted by the complex quantity `z0` such
that self.translated(z0).point(t) = self.point(t) + z0 for any t."""
return translate(self, z0)
def scaled(self, sx, sy=None, origin=0j):
"""Scale transform. See `scale` function for further explanation."""
return scale(self, sx=sx, sy=sy, origin=origin)
class Arc(object):
def __init__(self, start, radius, rotation, large_arc, sweep, end,
autoscale_radius=True):
"""
This should be thought of as a part of an ellipse connecting two
points on that ellipse, start and end.
Parameters
----------
start : complex
The start point of the curve. Note: `start` and `end` cannot be the
same. To make a full ellipse or circle, use two `Arc` objects.
radius : complex
rx + 1j*ry, where rx and ry are the radii of the ellipse (also
known as its semi-major and semi-minor axes, or vice-versa or if
rx < ry).
Note: If rx = 0 or ry = 0 then this arc is treated as a
straight line segment joining the endpoints.
Note: If rx or ry has a negative sign, the sign is dropped; the
absolute value is used instead.
Note: If no such ellipse exists, the radius will be scaled so
that one does (unless autoscale_radius is set to False).
rotation : float
This is the CCW angle (in degrees) from the positive x-axis of the
current coordinate system to the x-axis of the ellipse.
large_arc : bool
Given two points on an ellipse, there are two elliptical arcs
connecting those points, the first going the short way around the
ellipse, and the second going the long way around the ellipse. If
`large_arc == False`, the shorter elliptical arc will be used. If
`large_arc == True`, then longer elliptical will be used.
In other words, `large_arc` should be 0 for arcs spanning less than
or equal to 180 degrees and 1 for arcs spanning greater than 180
degrees.
sweep : bool
For any acceptable parameters `start`, `end`, `rotation`, and
`radius`, there are two ellipses with the given major and minor
axes (radii) which connect `start` and `end`. One which connects
them in a CCW fashion and one which connected them in a CW
fashion. If `sweep == True`, the CCW ellipse will be used. If
`sweep == False`, the CW ellipse will be used. See note on curve
orientation below.
end : complex
The end point of the curve. Note: `start` and `end` cannot be the
same. To make a full ellipse or circle, use two `Arc` objects.
autoscale_radius : bool
If `autoscale_radius == True`, then will also scale `self.radius`
in the case that no ellipse exists with the input parameters
(see inline comments for further explanation).
Derived Parameters/Attributes
-----------------------------
self.theta : float
This is the phase (in degrees) of self.u1transform(self.start).
It is $\theta_1$ in the official documentation and ranges from
-180 to 180.
self.delta : float
This is the angular distance (in degrees) between the start and
end of the arc after the arc has been sent to the unit circle
through self.u1transform().
It is $\Delta\theta$ in the official documentation and ranges from
-360 to 360; being positive when the arc travels CCW and negative
otherwise (i.e. is positive/negative when sweep == True/False).
self.center : complex
This is the center of the arc's ellipse.
self.phi : float
The arc's rotation in radians, i.e. `radians(self.rotation)`.
self.rot_matrix : complex
Equal to `exp(1j * self.phi)` which is also equal to
`cos(self.phi) + 1j*sin(self.phi)`.
Note on curve orientation (CW vs CCW)
-------------------------------------
The notions of clockwise (CW) and counter-clockwise (CCW) are reversed
in some sense when viewing SVGs (as the y coordinate starts at the top
of the image and increases towards the bottom).
"""
assert start != end
assert radius.real != 0 and radius.imag != 0
self.start = start
self.radius = abs(radius.real) + 1j*abs(radius.imag)
self.rotation = rotation
self.large_arc = bool(large_arc)
self.sweep = bool(sweep)
self.end = end
self.autoscale_radius = autoscale_radius
self.segment_length_hash = None
self.segment_length = None
# Convenience parameters
self.phi = radians(self.rotation)
self.rot_matrix = exp(1j*self.phi)
# Derive derived parameters
self._parameterize()
def __hash__(self):
return hash((self.start, self.radius, self.rotation, self.large_arc, self.sweep, self.end))
def __repr__(self):
params = (self.start, self.radius, self.rotation,
self.large_arc, self.sweep, self.end)
return ("Arc(start={}, radius={}, rotation={}, "
"large_arc={}, sweep={}, end={})".format(*params))
def __eq__(self, other):
if not isinstance(other, Arc):
return NotImplemented
return self.start == other.start and self.end == other.end \
and self.radius == other.radius \
and self.rotation == other.rotation \
and self.large_arc == other.large_arc and self.sweep == other.sweep
def __ne__(self, other):
if not isinstance(other, Arc):
return NotImplemented
return not self == other
def _parameterize(self):
# See http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
# my notation roughly follows theirs
rx = self.radius.real
ry = self.radius.imag
rx_sqd = rx*rx
ry_sqd = ry*ry
# Transform z-> z' = x' + 1j*y'
# = self.rot_matrix**(-1)*(z - (end+start)/2)
# coordinates. This translates the ellipse so that the midpoint
# between self.end and self.start lies on the origin and rotates
# the ellipse so that the its axes align with the xy-coordinate axes.
# Note: This sends self.end to -self.start
zp1 = (1/self.rot_matrix)*(self.start - self.end)/2
x1p, y1p = zp1.real, zp1.imag
x1p_sqd = x1p*x1p
y1p_sqd = y1p*y1p
# Correct out of range radii
# Note: an ellipse going through start and end with radius and phi
# exists if and only if radius_check is true
radius_check = (x1p_sqd/rx_sqd) + (y1p_sqd/ry_sqd)
if radius_check > 1:
if self.autoscale_radius:
rx *= sqrt(radius_check)
ry *= sqrt(radius_check)
self.radius = rx + 1j*ry
rx_sqd = rx*rx
ry_sqd = ry*ry
else:
raise ValueError("No such elliptic arc exists.")
# Compute c'=(c_x', c_y'), the center of the ellipse in (x', y') coords
# Noting that, in our new coord system, (x_2', y_2') = (-x_1', -x_2')
# and our ellipse is cut out by of the plane by the algebraic equation
# (x'-c_x')**2 / r_x**2 + (y'-c_y')**2 / r_y**2 = 1,
# we can find c' by solving the system of two quadratics given by
# plugging our transformed endpoints (x_1', y_1') and (x_2', y_2')
tmp = rx_sqd*y1p_sqd + ry_sqd*x1p_sqd
radicand = (rx_sqd*ry_sqd - tmp) / tmp
try:
radical = sqrt(radicand)
except ValueError:
radical = 0
if self.large_arc == self.sweep:
cp = -radical*(rx*y1p/ry - 1j*ry*x1p/rx)
else:
cp = radical*(rx*y1p/ry - 1j*ry*x1p/rx)
# The center in (x,y) coordinates is easy to find knowing c'
self.center = exp(1j*self.phi)*cp + (self.start + self.end)/2
# Now we do a second transformation, from (x', y') to (u_x, u_y)
# coordinates, which is a translation moving the center of the
# ellipse to the origin and a dilation stretching the ellipse to be
# the unit circle
u1 = (x1p - cp.real)/rx + 1j*(y1p - cp.imag)/ry # transformed start
u2 = (-x1p - cp.real)/rx + 1j*(-y1p - cp.imag)/ry # transformed end
# clip in case of floating point error
u1 = np.clip(u1.real, -1, 1) + 1j*np.clip(u1.imag, -1, 1)
u2 = np.clip(u2.real, -1, 1) + 1j * np.clip(u2.imag, -1, 1)
# Now compute theta and delta (we'll define them as we go)
# delta is the angular distance of the arc (w.r.t the circle)
# theta is the angle between the positive x'-axis and the start point
# on the circle
if u1.imag > 0:
self.theta = degrees(acos(u1.real))
elif u1.imag < 0:
self.theta = -degrees(acos(u1.real))
else:
if u1.real > 0: # start is on pos u_x axis
self.theta = 0
else: # start is on neg u_x axis
# Note: This behavior disagrees with behavior documented in
# http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
# where theta is set to 0 in this case.
self.theta = 180
det_uv = u1.real*u2.imag - u1.imag*u2.real
acosand = u1.real*u2.real + u1.imag*u2.imag
acosand = np.clip(acosand.real, -1, 1) + np.clip(acosand.imag, -1, 1)
if det_uv > 0:
self.delta = degrees(acos(acosand))
elif det_uv < 0:
self.delta = -degrees(acos(acosand))
else:
if u1.real*u2.real + u1.imag*u2.imag > 0:
# u1 == u2
self.delta = 0
else:
# u1 == -u2
# Note: This behavior disagrees with behavior documented in
# http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
# where delta is set to 0 in this case.
self.delta = 180
if not self.sweep and self.delta >= 0:
self.delta -= 360
elif self.large_arc and self.delta <= 0:
self.delta += 360
def point(self, t):
if t == 0:
return self.start
if t == 1:
return self.end
angle = radians(self.theta + t*self.delta)
cosphi = self.rot_matrix.real
sinphi = self.rot_matrix.imag
rx = self.radius.real
ry = self.radius.imag
# z = self.rot_matrix*(rx*cos(angle) + 1j*ry*sin(angle)) + self.center
x = rx*cosphi*cos(angle) - ry*sinphi*sin(angle) + self.center.real
y = rx*sinphi*cos(angle) + ry*cosphi*sin(angle) + self.center.imag
return complex(x, y)
def point_to_t(self, point):
"""If the point lies on the Arc, returns its `t` parameter.
If the point does not lie on the Arc, returns None.
This function only works on Arcs with rotation == 0.0"""
def in_range(min, max, val):
return (min <= val) and (max >= val)
# Single-precision floats have only 7 significant figures of
# resolution, so test that we're within 6 sig figs.
if np.isclose(point, self.start, rtol=0.0, atol=1e-6):
return 0.0
elif np.isclose(point, self.end, rtol=0.0, atol=1e-6):
return 1.0
if self.rotation != 0.0:
raise ValueError("Arc.point_to_t() only works on non-rotated Arcs.")
v = point - self.center
distance_from_center = sqrt((v.real * v.real) + (v.imag * v.imag))
min_radius = min(self.radius.real, self.radius.imag)
max_radius = max(self.radius.real, self.radius.imag)
if (distance_from_center < min_radius) and not np.isclose(distance_from_center, min_radius):
return None
if (distance_from_center > max_radius) and not np.isclose(distance_from_center, max_radius):
return None
# x = center_x + radius_x cos(radians(theta + t delta))
# y = center_y + radius_y sin(radians(theta + t delta))
#
# For x:
# cos(radians(theta + t delta)) = (x - center_x) / radius_x
# radians(theta + t delta) = acos((x - center_x) / radius_x)
# theta + t delta = degrees(acos((x - center_x) / radius_x))
# t_x = (degrees(acos((x - center_x) / radius_x)) - theta) / delta
#
# Similarly for y:
# t_y = (degrees(asin((y - center_y) / radius_y)) - theta) / delta
x = point.real
y = point.imag
#
# +Y points down!
#
# sweep mean clocwise
# sweep && (delta > 0)
# !sweep && (delta < 0)
#
# -180 <= theta_1 <= 180
#
# large_arc && (-360 <= delta <= 360)
# !large_arc && (-180 < delta < 180)
#
end_angle = self.theta + self.delta
min_angle = min(self.theta, end_angle)
max_angle = max(self.theta, end_angle)
acos_arg = (x - self.center.real) / self.radius.real
if acos_arg > 1.0:
acos_arg = 1.0
elif acos_arg < -1.0:
acos_arg = -1.0
x_angle_0 = degrees(acos(acos_arg))
while x_angle_0 < min_angle:
x_angle_0 += 360.0
while x_angle_0 > max_angle:
x_angle_0 -= 360.0
x_angle_1 = -1.0 * x_angle_0
while x_angle_1 < min_angle:
x_angle_1 += 360.0
while x_angle_1 > max_angle:
x_angle_1 -= 360.0
t_x_0 = (x_angle_0 - self.theta) / self.delta
t_x_1 = (x_angle_1 - self.theta) / self.delta
asin_arg = (y - self.center.imag) / self.radius.imag
if asin_arg > 1.0:
asin_arg = 1.0
elif asin_arg < -1.0:
asin_arg = -1.0
y_angle_0 = degrees(asin(asin_arg))
while y_angle_0 < min_angle:
y_angle_0 += 360.0
while y_angle_0 > max_angle:
y_angle_0 -= 360.0
y_angle_1 = 180 - y_angle_0
while y_angle_1 < min_angle:
y_angle_1 += 360.0
while y_angle_1 > max_angle:
y_angle_1 -= 360.0
t_y_0 = (y_angle_0 - self.theta) / self.delta
t_y_1 = (y_angle_1 - self.theta) / self.delta
t = None
if np.isclose(t_x_0, t_y_0):
t = (t_x_0 + t_y_0) / 2.0
elif np.isclose(t_x_0, t_y_1):
t= (t_x_0 + t_y_1) / 2.0
elif np.isclose(t_x_1, t_y_0):
t = (t_x_1 + t_y_0) / 2.0
elif np.isclose(t_x_1, t_y_1):
t = (t_x_1 + t_y_1) / 2.0
else:
# Comparing None and float yields a result in python2,
# but throws TypeError in python3. This fix (suggested by
# @CatherineH) explicitly handles and avoids the case where
# the None-vs-float comparison would have happened below.
return None
if (t >= 0.0) and (t <= 1.0):
return t
return None
def centeriso(self, z):
"""This is an isometry that translates and rotates self so that it
is centered on the origin and has its axes aligned with the xy axes."""
return (1/self.rot_matrix)*(z - self.center)
def icenteriso(self, zeta):
"""This is an isometry, the inverse of standardiso()."""
return self.rot_matrix*zeta + self.center
def u1transform(self, z):
"""This is an affine transformation (same as used in
self._parameterize()) that sends self to the unit circle."""
zeta = (1/self.rot_matrix)*(z - self.center) # same as centeriso(z)
x, y = real(zeta), imag(zeta)
return x/self.radius.real + 1j*y/self.radius.imag
def iu1transform(self, zeta):
"""This is an affine transformation, the inverse of
self.u1transform()."""
x = real(zeta)
y = imag(zeta)
z = x*self.radius.real + y*self.radius.imag
return self.rot_matrix*z + self.center
def length(self, t0=0, t1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
"""The length of an elliptical large_arc segment requires numerical
integration, and in that case it's simpler to just do a geometric
approximation, as for cubic bezier curves."""
assert 0 <= t0 <= 1 and 0 <= t1 <= 1
if t0 == 0 and t1 == 1:
h = hash(self)
if self.segment_length_hash is None or self.segment_length_hash != h:
self.segment_length_hash = h
if _quad_available:
self.segment_length = quad(lambda tau: abs(self.derivative(tau)),
t0, t1, epsabs=error, limit=1000)[0]
else:
self.segment_length = segment_length(self, t0, t1, self.point(t0),
self.point(t1), error, min_depth, 0)
return self.segment_length
if _quad_available:
return quad(lambda tau: abs(self.derivative(tau)), t0, t1,
epsabs=error, limit=1000)[0]
else:
return segment_length(self, t0, t1, self.point(t0), self.point(t1),
error, min_depth, 0)
def ilength(self, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
"""Returns a float, t, such that self.length(0, t) is approximately s.
See the inv_arclength() docstring for more details."""
return inv_arclength(self, s, s_tol=s_tol, maxits=maxits, error=error,
min_depth=min_depth)
def joins_smoothly_with(self, previous, wrt_parameterization=False,
error=0):
"""Checks if this segment joins smoothly with previous segment. By
default, this only checks that this segment starts moving (at t=0) in
the same direction (and from the same positive) as previous stopped
moving (at t=1). To check if the tangent magnitudes also match, set
wrt_parameterization=True."""
if wrt_parameterization:
return self.start == previous.end and abs(
self.derivative(0) - previous.derivative(1)) <= error
else:
return self.start == previous.end and abs(
self.unit_tangent(0) - previous.unit_tangent(1)) <= error
def derivative(self, t, n=1):
"""returns the nth derivative of the segment at t."""
angle = radians(self.theta + t*self.delta)
phi = radians(self.rotation)
rx = self.radius.real
ry = self.radius.imag
k = (self.delta*2*pi/360)**n # ((d/dt)angle)**n
if n % 4 == 0 and n > 0:
return rx*cos(phi)*cos(angle) - ry*sin(phi)*sin(angle) + 1j*(
rx*sin(phi)*cos(angle) + ry*cos(phi)*sin(angle))
elif n % 4 == 1:
return k*(-rx*cos(phi)*sin(angle) - ry*sin(phi)*cos(angle) + 1j*(
-rx*sin(phi)*sin(angle) + ry*cos(phi)*cos(angle)))
elif n % 4 == 2:
return k*(-rx*cos(phi)*cos(angle) + ry*sin(phi)*sin(angle) + 1j*(
-rx*sin(phi)*cos(angle) - ry*cos(phi)*sin(angle)))
elif n % 4 == 3:
return k*(rx*cos(phi)*sin(angle) + ry*sin(phi)*cos(angle) + 1j*(
rx*sin(phi)*sin(angle) - ry*cos(phi)*cos(angle)))
else:
raise ValueError("n should be a positive integer.")
def unit_tangent(self, t):
"""returns the unit tangent vector of the segment at t (centered at
the origin and expressed as a complex number)."""
dseg = self.derivative(t)
return dseg/abs(dseg)
def normal(self, t):
"""returns the (right hand rule) unit normal vector to self at t."""
return -1j*self.unit_tangent(t)
def curvature(self, t):
"""returns the curvature of the segment at t."""
return segment_curvature(self, t)
# def icurvature(self, kappa):
# """returns a list of t-values such that 0 <= t<= 1 and
# seg.curvature(t) = kappa."""
#
# a, b = self.radius.real, self.radius.imag
# if kappa > min(a, b)/max(a, b)**2 or kappa <= 0:
# return []
# if a==b:
# if kappa != 1/a:
# return []
# else:
# raise ValueError(
# "The .icurvature() method for Arc elements with "
# "radius.real == radius.imag (i.e. circle segments) "
# "will raise this exception when kappa is 1/radius.real as "
# "this is true at every point on the circle segment.")
#
# # kappa = a*b / (a^2sin^2(tau) + b^2cos^2(tau))^(3/2), tau=2*pi*phase
# sin2 = np.poly1d([1, 0])
# p = kappa**2*(a*sin2 + b*(1 - sin2))**3 - a*b
# sin2s = polyroots01(p)
# taus = []
#
# for sin2 in sin2s:
# taus += [np.arcsin(sqrt(sin2)), np.arcsin(-sqrt(sin2))]
#
# # account for the other branch of arcsin
# sgn = lambda x: x/abs(x) if x else 0
# other_taus = [sgn(tau)*np.pi - tau for tau in taus if abs(tau) != np.pi/2]
# taus = taus + other_taus
#
# # get rid of points not included in segment
# ts = [phase2t(tau) for tau in taus]
#
# return [t for t in ts if 0<=t<=1]
def reversed(self):
"""returns a copy of the Arc object with its orientation reversed."""
return Arc(self.end, self.radius, self.rotation, self.large_arc,
not self.sweep, self.start)
def phase2t(self, psi):
"""Given phase -pi < psi <= pi,
returns the t value such that
exp(1j*psi) = self.u1transform(self.point(t)).
"""
def _deg(rads, domain_lower_limit):
# Convert rads to degrees in [0, 360) domain
degs = degrees(rads % (2*pi))
# Convert to [domain_lower_limit, domain_lower_limit + 360) domain
k = domain_lower_limit // 360
degs += k * 360
if degs < domain_lower_limit:
degs += 360
return degs
if self.delta > 0:
degs = _deg(psi, domain_lower_limit=self.theta)
else:
degs = _deg(psi, domain_lower_limit=self.theta)
return (degs - self.theta)/self.delta
def intersect(self, other_seg, tol=1e-12):
"""NOT FULLY IMPLEMENTED. Finds the intersections of two segments.
returns a list of tuples (t1, t2) such that
self.point(t1) == other_seg.point(t2).
Note: This will fail if the two segments coincide for more than a
finite collection of points.
Note: Arc related intersections are only partially supported, i.e. are
only half-heartedly implemented and not well tested. Please feel free
to let me know if you're interested in such a feature -- or even better
please submit an implementation if you want to code one."""
# This special case can be easily solved algebraically.
if (self.rotation == 0) and isinstance(other_seg, Line):
a = self.radius.real
b = self.radius.imag
# Ignore the ellipse's center point (to pretend that it's
# centered at the origin), and translate the Line to match.
l = Line(start=(other_seg.start-self.center), end=(other_seg.end-self.center))
# This gives us the translated Line as a parametric equation.
# s = p1 t + p0
p = l.poly()
if p[1].real == 0.0:
# The `x` value doesn't depend on `t`, the line is vertical.
c = p[0].real
x_values = [c]
# Substitute the line `x = c` into the equation for the
# (origin-centered) ellipse.
#
# x^2/a^2 + y^2/b^2 = 1
# c^2/a^2 + y^2/b^2 = 1
# y^2/b^2 = 1 - c^2/a^2
# y^2 = b^2(1 - c^2/a^2)
# y = +-b sqrt(1 - c^2/a^2)
discriminant = 1 - (c * c)/(a * a)
if discriminant < 0:
return []
elif discriminant == 0:
y_values = [0]
else:
val = b * sqrt(discriminant)
y_values = [val, -val]
else:
# This is a non-vertical line.
#
# Convert the Line's parametric equation to the "y = mx + c" format.
# x = p1.real t + p0.real
# y = p1.imag t + p0.imag
#
# t = (x - p0.real) / p1.real
# t = (y - p0.imag) / p1.imag
#
# (y - p0.imag) / p1.imag = (x - p0.real) / p1.real
# (y - p0.imag) = ((x - p0.real) * p1.imag) / p1.real
# y = ((x - p0.real) * p1.imag) / p1.real + p0.imag
# y = (x p1.imag - p0.real * p1.imag) / p1.real + p0.imag
# y = x p1.imag/p1.real - p0.real p1.imag / p1.real + p0.imag
# m = p1.imag/p1.real
# c = -m p0.real + p0.imag
m = p[1].imag / p[1].real
c = (-m * p[0].real) + p[0].imag
# Substitute the line's y(x) equation into the equation for
# the ellipse. We can pretend the ellipse is centered at the
# origin, since we shifted the Line by the ellipse's center.
#
# x^2/a^2 + y^2/b^2 = 1
# x^2/a^2 + (mx+c)^2/b^2 = 1
# (b^2 x^2 + a^2 (mx+c)^2)/(a^2 b^2) = 1
# b^2 x^2 + a^2 (mx+c)^2 = a^2 b^2
# b^2 x^2 + a^2(m^2 x^2 + 2mcx + c^2) = a^2 b^2
# b^2 x^2 + a^2 m^2 x^2 + 2a^2 mcx + a^2 c^2 - a^2 b^2 = 0
# (a^2 m^2 + b^2)x^2 + 2a^2 mcx + a^2(c^2 - b^2) = 0
#
# The quadratic forumla tells us: x = (-B +- sqrt(B^2 - 4AC)) / 2A
# Where:
# A = a^2 m^2 + b^2
# B = 2 a^2 mc
# C = a^2(c^2 - b^2)
#
# The determinant is: B^2 - 4AC
#
# The solution simplifies to:
# x = (-a^2 mc +- a b sqrt(a^2 m^2 + b^2 - c^2)) / (a^2 m^2 + b^2)
#
# Solving the line for x(y) and substituting *that* into
# the equation for the ellipse gives this solution for y:
# y = (b^2 c +- abm sqrt(a^2 m^2 + b^2 - c^2)) / (a^2 m^2 + b^2)
denominator = (a * a * m * m) + (b * b)
discriminant = denominator - (c * c)
if discriminant < 0:
return []
x_sqrt = a * b * sqrt(discriminant)
x1 = (-(a * a * m * c) + x_sqrt) / denominator
x2 = (-(a * a * m * c) - x_sqrt) / denominator
x_values = [x1]
if x1 != x2:
x_values.append(x2)
y_sqrt = x_sqrt * m
y1 = ((b * b * c) + y_sqrt) / denominator
y2 = ((b * b * c) - y_sqrt) / denominator
y_values = [y1]
if y1 != y2:
y_values.append(y2)
intersections = []
for x in x_values:
for y in y_values:
p = complex(x, y) + self.center
my_t = self.point_to_t(p)
if my_t == None:
continue
other_t = other_seg.point_to_t(p)
if other_t == None:
continue
intersections.append([my_t, other_t])
return intersections
elif is_bezier_segment(other_seg):
u1poly = self.u1transform(other_seg.poly())
u1poly_mag2 = real(u1poly)**2 + imag(u1poly)**2
t2s = polyroots01(u1poly_mag2 - 1)
t1s = [self.phase2t(phase(u1poly(t2))) for t2 in t2s]
return list(zip(t1s, t2s))
elif isinstance(other_seg, Arc):
assert other_seg != self
import sys
# From "Intersection of two circles", at
# http://paulbourke.net/geometry/circlesphere/
# It's easy to find the intersections of two circles, so
# compute that and see if any of those
# intersection points are on the arcs.
if (self.rotation == 0) and (self.radius.real == self.radius.imag) and (other_seg.rotation == 0) and (other_seg.radius.real == other_seg.radius.imag):
r0 = self.radius.real
r1 = other_seg.radius.real
p0 = self.center
p1 = other_seg.center
d = abs(p0 - p1)
possible_inters = []
if d > (r0 + r1):
# The circles are farther apart than the sum of
# their radii: no intersections possible.
pass
elif d < abs(r0 - r1):
# The small circle is wholly contained within the
# large circle: no intersections possible.
pass
elif (np.isclose(d, 0, rtol=0.0, atol=1e-6)) and (np.isclose(r0, r1, rtol=0.0, atol=1e-6)):
# The Arcs lie on the same circle: they have the
# same center and are of equal radius.
def point_in_seg_interior(point, seg):
t = seg.point_to_t(point)
if t is None: return False
if np.isclose(t, 0.0, rtol=0.0, atol=1e-6): return False
if np.isclose(t, 1.0, rtol=0.0, atol=1e-6): return False
return True
# If either end of either segment is in the interior
# of the other segment, then the Arcs overlap
# in an infinite number of points, and we return
# "no intersections".
if point_in_seg_interior(self.start, other_seg): return []
if point_in_seg_interior(self.end, other_seg): return []
if point_in_seg_interior(other_seg.start, self): return []
if point_in_seg_interior(other_seg.end, self): return []
# If they touch at their endpoint(s) and don't go
# in "overlapping directions", then we accept that
# as intersections.
if (self.start == other_seg.start) and (self.sweep != other_seg.sweep):
possible_inters.append((0.0, 0.0))
if (self.start == other_seg.end) and (self.sweep == other_seg.sweep):
possible_inters.append((0.0, 1.0))
if (self.end == other_seg.start) and (self.sweep == other_seg.sweep):
possible_inters.append((1.0, 0.0))
if (self.end == other_seg.end) and (self.sweep != other_seg.sweep):
possible_inters.append((1.0, 1.0))
elif np.isclose(d, r0 + r1, rtol=0.0, atol=1e-6):
# The circles are tangent, so the Arcs may touch
# at exactly one point. The circles lie outside
# each other.
l = Line(start=p0, end=p1)
p = l.point(r0/d)
possible_inters.append((self.point_to_t(p), other_seg.point_to_t(p)))
elif np.isclose(d, abs(r0 - r1), rtol=0.0, atol=1e-6):
# The circles are tangent, so the Arcs may touch
# at exactly one point. One circle lies inside
# the other.
# Make a line from the center of the inside circle
# to the center of the outside circle, and walk
# along it the negative of the small radius.
l = Line(start=p0, end=p1)
little_r = r0
if r0 > r1:
l = Line(start=p1, end=p0)
little_r = r1
p = l.point(-little_r/d)
possible_inters.append((self.point_to_t(p), other_seg.point_to_t(p)))
else:
a = (pow(r0, 2.0) - pow(r1, 2.0) + pow(d, 2.0)) / (2.0 * d)
h = sqrt(pow(r0, 2.0) - pow(a, 2.0))
p2 = p0 + (a * (p1 - p0) / d)
x30 = p2.real + (h * (p1.imag - p0.imag) / d)
x31 = p2.real - (h * (p1.imag - p0.imag) / d)
y30 = p2.imag - (h * (p1.real - p0.real) / d)
y31 = p2.imag + (h * (p1.real - p0.real) / d)
p30 = complex(x30, y30)
p31 = complex(x31, y31)
possible_inters.append((self.point_to_t(p30), other_seg.point_to_t(p30)))
possible_inters.append((self.point_to_t(p31), other_seg.point_to_t(p31)))
inters = []
for p in possible_inters:
self_t = p[0]
if (self_t is None) or (self_t < 0.0) or (self_t > 1.0): continue
other_t = p[1]
if (other_t is None) or (other_t < 0.0) or (other_t > 1.0): continue
assert(np.isclose(self.point(self_t), other_seg.point(other_t), rtol=0.0, atol=1e-6))
i = (self_t, other_t)
inters.append(i)
return inters
# This could be made explicit to increase efficiency
longer_length = max(self.length(), other_seg.length())
inters = bezier_intersections(self, other_seg,
longer_length=longer_length,
tol=tol, tol_deC=tol)
# ad hoc fix for redundant solutions
if len(inters) > 2:
def keyfcn(tpair):
t1, t2 = tpair
return abs(self.point(t1) - other_seg.point(t2))
inters.sort(key=keyfcn)
for idx in range(1, len(inters)-1):
if (abs(inters[idx][0] - inters[idx + 1][0])
< abs(inters[idx][0] - inters[0][0])):
return [inters[0], inters[idx]]
else:
return [inters[0], inters[-1]]
return inters
else:
raise TypeError("other_seg should be a Arc, Line, "
"QuadraticBezier, or CubicBezier object.")
def bbox(self):
"""returns a bounding box for the segment in the form
(xmin, xmax, ymin, ymax)."""
# a(t) = radians(self.theta + self.delta*t)
# = (2*pi/360)*(self.theta + self.delta*t)
# x'=0: ~~~~~~~~~
# -rx*cos(phi)*sin(a(t)) = ry*sin(phi)*cos(a(t))
# -(rx/ry)*cot(phi)*tan(a(t)) = 1
# a(t) = arctan(-(ry/rx)tan(phi)) + pi*k === atan_x
# y'=0: ~~~~~~~~~~
# rx*sin(phi)*sin(a(t)) = ry*cos(phi)*cos(a(t))
# (rx/ry)*tan(phi)*tan(a(t)) = 1
# a(t) = arctan((ry/rx)*cot(phi))
# atanres = arctan((ry/rx)*cot(phi)) === atan_y
# ~~~~~~~~
# (2*pi/360)*(self.theta + self.delta*t) = atanres + pi*k
# Therfore, for both x' and y', we have...
# t = ((atan_{x/y} + pi*k)*(360/(2*pi)) - self.theta)/self.delta
# for all k s.t. 0 < t < 1
from math import atan, tan
if cos(self.phi) == 0:
atan_x = pi/2
atan_y = 0
elif sin(self.phi) == 0:
atan_x = 0
atan_y = pi/2
else:
rx, ry = self.radius.real, self.radius.imag
atan_x = atan(-(ry/rx)*tan(self.phi))
atan_y = atan((ry/rx)/tan(self.phi))
def angle_inv(ang, k): # inverse of angle from Arc.derivative()
return ((ang + pi*k)*(360/(2*pi)) - self.theta)/self.delta
xtrema = [self.start.real, self.end.real]
ytrema = [self.start.imag, self.end.imag]
for k in range(-4, 5):
tx = angle_inv(atan_x, k)
ty = angle_inv(atan_y, k)
if 0 <= tx <= 1:
xtrema.append(self.point(tx).real)
if 0 <= ty <= 1:
ytrema.append(self.point(ty).imag)
xmin = max(xtrema)
return min(xtrema), max(xtrema), min(ytrema), max(ytrema)
def split(self, t):
"""returns two segments, whose union is this segment and which join
at self.point(t)."""
return self.cropped(0, t), self.cropped(t, 1)
def cropped(self, t0, t1):
"""returns a cropped copy of this segment which starts at
self.point(t0) and ends at self.point(t1)."""
if abs(self.delta*(t1 - t0)) <= 180:
new_large_arc = 0
else:
new_large_arc = 1
return Arc(self.point(t0), radius=self.radius, rotation=self.rotation,
large_arc=new_large_arc, sweep=self.sweep,
end=self.point(t1), autoscale_radius=self.autoscale_radius)
def radialrange(self, origin, return_all_global_extrema=False):
"""returns the tuples (d_min, t_min) and (d_max, t_max) which minimize
and maximize, respectively, the distance,
d = |self.point(t)-origin|."""
# u1orig = self.u1transform(origin)
# if abs(u1orig) == 1: # origin lies on ellipse
# t = self.phase2t(phase(u1orig))
# d_min = 0
#
# # Transform to a coordinate system where the ellipse is centered
# # at the origin and its axes are horizontal/vertical
# zeta0 = self.centeriso(origin)
# a, b = self.radius.real, self.radius.imag
# x0, y0 = zeta0.real, zeta0.imag
#
# # Find t s.t. z'(t)
# a2mb2 = (a**2 - b**2)
# if u1orig.imag: # x != x0
#
# coeffs = [a2mb2**2,
# 2*a2mb2*b**2*y0,
# (-a**4 + (2*a**2 - b**2 + y0**2)*b**2 + x0**2)*b**2,
# -2*a2mb2*b**4*y0,
# -b**6*y0**2]
# ys = polyroots(coeffs, realroots=True,
# condition=lambda r: -b <= r <= b)
# xs = (a*sqrt(1 - y**2/b**2) for y in ys)
#
# ts = [self.phase2t(phase(self.u1transform(self.icenteriso(
# complex(x, y))))) for x, y in zip(xs, ys)]
#
# else: # This case is very similar, see notes and assume instead y0!=y
# b2ma2 = (b**2 - a**2)
# coeffs = [b2ma2**2,
# 2*b2ma2*a**2*x0,
# (-b**4 + (2*b**2 - a**2 + x0**2)*a**2 + y0**2)*a**2,
# -2*b2ma2*a**4*x0,
# -a**6*x0**2]
# xs = polyroots(coeffs, realroots=True,
# condition=lambda r: -a <= r <= a)
# ys = (b*sqrt(1 - x**2/a**2) for x in xs)
#
# ts = [self.phase2t(phase(self.u1transform(self.icenteriso(
# complex(x, y))))) for x, y in zip(xs, ys)]
raise _NotImplemented4ArcException
def rotated(self, degs, origin=None):
"""Returns a copy of self rotated by `degs` degrees (CCW) around the
point `origin` (a complex number). By default `origin` is either
`self.point(0.5)`, or in the case that self is an Arc object,
`origin` defaults to `self.center`."""
return rotate(self, degs, origin=origin)
def translated(self, z0):
"""Returns a copy of self shifted by the complex quantity `z0` such
that self.translated(z0).point(t) = self.point(t) + z0 for any t."""
return translate(self, z0)
def scaled(self, sx, sy=None, origin=0j):
"""Scale transform. See `scale` function for further explanation."""
return scale(self, sx=sx, sy=sy, origin=origin)
def is_bezier_segment(x):
return (isinstance(x, Line) or
isinstance(x, QuadraticBezier) or
isinstance(x, CubicBezier))
def is_path_segment(x):
return is_bezier_segment(x) or isinstance(x, Arc)
class Path(MutableSequence):
"""A Path is a sequence of path segments"""
# Put it here, so there is a default if unpickled.
_closed = False
_start = None
_end = None
element = None
transform = None
meta = None # meant as container for storage of arbitrary meta data
def __init__(self, *segments, **kw):
self._length = None
self._lengths = None
if 'closed' in kw:
self.closed = kw['closed'] # DEPRECATED
if len(segments) >= 1:
if isinstance(segments[0], str):
if len(segments) >= 2:
current_pos = segments[1]
elif 'current_pos' in kw:
current_pos = kw['current_pos']
else:
current_pos = 0j
self._segments = list()
self._parse_path(segments[0], current_pos)
else:
self._segments = list(segments)
else:
self._segments = list()
if self._segments:
self._start = self._segments[0].start
self._end = self._segments[-1].end
else:
self._start = None
self._end = None
if 'tree_element' in kw:
self._tree_element = kw['tree_element']
def __getitem__(self, index):
return self._segments[index]
def __setitem__(self, index, value):
self._segments[index] = value
self._length = None
self._start = self._segments[0].start
self._end = self._segments[-1].end
def __delitem__(self, index):
del self._segments[index]
self._length = None
self._start = self._segments[0].start
self._end = self._segments[-1].end
def __iter__(self):
return self._segments.__iter__()
def __contains__(self, x):
return self._segments.__contains__(x)
def insert(self, index, value):
self._segments.insert(index, value)
self._length = None
self._start = self._segments[0].start
self._end = self._segments[-1].end
def reversed(self):
"""returns a copy of the Path object with its orientation reversed."""
newpath = [seg.reversed() for seg in self]
newpath.reverse()
return Path(*newpath)
def __len__(self):
return len(self._segments)
def __repr__(self):
return "Path({})".format(
",\n ".join(repr(x) for x in self._segments))
def __eq__(self, other):
if not isinstance(other, Path):
return NotImplemented
if len(self) != len(other):
return False
for s, o in zip(self._segments, other._segments):
if not s == o:
return False
return True
def __ne__(self, other):
if not isinstance(other, Path):
return NotImplemented
return not self == other
def _calc_lengths(self, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
if self._length is not None:
return
lengths = [each.length(error=error, min_depth=min_depth) for each in
self._segments]
self._length = sum(lengths)
self._lengths = [each/self._length for each in lengths]
def point(self, pos):
# Shortcuts
if pos == 0.0:
return self._segments[0].point(pos)
if pos == 1.0:
return self._segments[-1].point(pos)
self._calc_lengths()
# Find which segment the point we search for is located on:
segment_start = 0
for index, segment in enumerate(self._segments):
segment_end = segment_start + self._lengths[index]
if segment_end >= pos:
# This is the segment! How far in on the segment is the point?
segment_pos = (pos - segment_start)/(
segment_end - segment_start)
return segment.point(segment_pos)
segment_start = segment_end
def length(self, T0=0, T1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
self._calc_lengths(error=error, min_depth=min_depth)
if T0 == 0 and T1 == 1:
return self._length
else:
if len(self) == 1:
return self[0].length(t0=T0, t1=T1)
idx0, t0 = self.T2t(T0)
idx1, t1 = self.T2t(T1)
if idx0 == idx1:
return self[idx0].length(t0=t0, t1=t1)
return (self[idx0].length(t0=t0) +
sum(self[idx].length() for idx in range(idx0 + 1, idx1)) +
self[idx1].length(t1=t1))
def ilength(self, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
"""Returns a float, t, such that self.length(0, t) is approximately s.
See the inv_arclength() docstring for more details."""
return inv_arclength(self, s, s_tol=s_tol, maxits=maxits, error=error,
min_depth=min_depth)
def iscontinuous(self):
"""Checks if a path is continuous with respect to its
parameterization."""
return all(self[i].end == self[i+1].start for i in range(len(self) - 1))
def continuous_subpaths(self):
"""Breaks self into its continuous components, returning a list of
continuous subpaths.
I.e.
(all(subpath.iscontinuous() for subpath in self.continuous_subpaths())
and self == concatpaths(self.continuous_subpaths()))
)
"""
subpaths = []
subpath_start = 0
for i in range(len(self) - 1):
if self[i].end != self[(i+1) % len(self)].start:
subpaths.append(Path(*self[subpath_start: i+1]))
subpath_start = i+1
subpaths.append(Path(*self[subpath_start: len(self)]))
return subpaths
def isclosed(self):
"""This function determines if a connected path is closed."""
assert len(self) != 0
assert self.iscontinuous()
return self.start == self.end
def isclosedac(self):
assert len(self) != 0
return self.start == self.end
def _is_closable(self):
end = self[-1].end
for segment in self:
if segment.start == end:
return True
return False
@property
def closed(self, warning_on=CLOSED_WARNING_ON):
"""The closed attribute is deprecated, please use the isclosed()
method instead. See _closed_warning for more information."""
mes = ("This attribute is deprecated, consider using isclosed() "
"method instead.\n\nThis attribute is kept for compatibility "
"with scripts created using svg.path (v2.0). You can prevent "
"this warning in the future by setting "
"CLOSED_WARNING_ON=False.")
if warning_on:
warn(mes)
return self._closed and self._is_closable()
@closed.setter
def closed(self, value):
value = bool(value)
if value and not self._is_closable():
raise ValueError("End does not coincide with a segment start.")
self._closed = value
@property
def start(self):
if not self._start:
self._start = self._segments[0].start
return self._start
@start.setter
def start(self, pt):
self._start = pt
self._segments[0].start = pt
@property
def end(self):
if not self._end:
self._end = self._segments[-1].end
return self._end
@end.setter
def end(self, pt):
self._end = pt
self._segments[-1].end = pt
def d(self, useSandT=False, use_closed_attrib=False, rel=False):
"""Returns a path d-string for the path object.
For an explanation of useSandT and use_closed_attrib, see the
compatibility notes in the README."""
if use_closed_attrib:
self_closed = self.iscontinuous() and self.isclosed()
if self_closed:
segments = self[:-1]
else:
segments = self[:]
else:
self_closed = False
segments = self[:]
current_pos = None
parts = []
previous_segment = None
end = self[-1].end
for segment in segments:
seg_start = segment.start
# If the start of this segment does not coincide with the end of
# the last segment or if this segment is actually the close point
# of a closed path, then we should start a new subpath here.
if current_pos != seg_start or \
(self_closed and seg_start == end and use_closed_attrib):
if rel:
_seg_start = seg_start - current_pos if current_pos is not None else seg_start
else:
_seg_start = seg_start
parts.append('M {},{}'.format(_seg_start.real, _seg_start.imag))
if isinstance(segment, Line):
if rel:
_seg_end = segment.end - seg_start
else:
_seg_end = segment.end
parts.append('L {},{}'.format(_seg_end.real, _seg_end.imag))
elif isinstance(segment, CubicBezier):
if useSandT and segment.is_smooth_from(previous_segment,
warning_on=False):
if rel:
_seg_control2 = segment.control2 - seg_start
_seg_end = segment.end - seg_start
else:
_seg_control2 = segment.control2
_seg_end = segment.end
args = (_seg_control2.real, _seg_control2.imag,
_seg_end.real, _seg_end.imag)
parts.append('S {},{} {},{}'.format(*args))
else:
if rel:
_seg_control1 = segment.control1 - seg_start
_seg_control2 = segment.control2 - seg_start
_seg_end = segment.end - seg_start
else:
_seg_control1 = segment.control1
_seg_control2 = segment.control2
_seg_end = segment.end
args = (_seg_control1.real, _seg_control1.imag,
_seg_control2.real, _seg_control2.imag,
_seg_end.real, _seg_end.imag)
parts.append('C {},{} {},{} {},{}'.format(*args))
elif isinstance(segment, QuadraticBezier):
if useSandT and segment.is_smooth_from(previous_segment,
warning_on=False):
if rel:
_seg_end = segment.end - seg_start
else:
_seg_end = segment.end
args = _seg_end.real, _seg_end.imag
parts.append('T {},{}'.format(*args))
else:
if rel:
_seg_control = segment.control - seg_start
_seg_end = segment.end - seg_start
else:
_seg_control = segment.control
_seg_end = segment.end
args = (_seg_control.real, _seg_control.imag,
_seg_end.real, _seg_end.imag)
parts.append('Q {},{} {},{}'.format(*args))
elif isinstance(segment, Arc):
if rel:
_seg_end = segment.end - seg_start
else:
_seg_end = segment.end
args = (segment.radius.real, segment.radius.imag,
segment.rotation,int(segment.large_arc),
int(segment.sweep),_seg_end.real, _seg_end.imag)
parts.append('A {},{} {} {:d},{:d} {},{}'.format(*args))
current_pos = segment.end
previous_segment = segment
if self_closed:
parts.append('Z')
s = ' '.join(parts)
return s if not rel else s.lower()
def joins_smoothly_with(self, previous, wrt_parameterization=False):
"""Checks if this Path object joins smoothly with previous
path/segment. By default, this only checks that this Path starts
moving (at t=0) in the same direction (and from the same positive) as
previous stopped moving (at t=1). To check if the tangent magnitudes
also match, set wrt_parameterization=True."""
if wrt_parameterization:
return self[0].start == previous.end and self.derivative(
0) == previous.derivative(1)
else:
return self[0].start == previous.end and self.unit_tangent(
0) == previous.unit_tangent(1)
def T2t(self, T):
"""returns the segment index, `seg_idx`, and segment parameter, `t`,
corresponding to the path parameter `T`. In other words, this is the
inverse of the `Path.t2T()` method."""
if T == 1:
return len(self)-1, 1
if T == 0:
return 0, 0
self._calc_lengths()
# Find which segment self.point(T) falls on:
T0 = 0 # the T-value the current segment starts on
for seg_idx, seg_length in enumerate(self._lengths):
T1 = T0 + seg_length # the T-value the current segment ends on
if T1 >= T:
# This is the segment!
t = (T - T0)/seg_length
return seg_idx, t
T0 = T1
assert 0 <= T <= 1
raise BugException
def t2T(self, seg, t):
"""returns the path parameter T which corresponds to the segment
parameter t. In other words, for any Path object, path, and any
segment in path, seg, T(t) = path.t2T(seg, t) is the unique
reparameterization such that path.point(T(t)) == seg.point(t) for all
0 <= t <= 1.
Input Note: seg can be a segment in the Path object or its
corresponding index."""
self._calc_lengths()
# Accept an index or a segment for seg
if isinstance(seg, int):
seg_idx = seg
else:
try:
seg_idx = self.index(seg)
except ValueError:
assert is_path_segment(seg) or isinstance(seg, int)
raise
segment_start = sum(self._lengths[:seg_idx])
segment_end = segment_start + self._lengths[seg_idx]
T = (segment_end - segment_start)*t + segment_start
return T
def derivative(self, T, n=1):
"""returns the tangent vector of the Path at T (centered at the origin
and expressed as a complex number).
Note: Bezier curves can have points where their derivative vanishes.
If you are interested in the tangent direction, use unit_tangent()
method instead."""
seg_idx, t = self.T2t(T)
seg = self._segments[seg_idx]
return seg.derivative(t, n=n)/seg.length()**n
def unit_tangent(self, T):
"""returns the unit tangent vector of the Path at T (centered at the
origin and expressed as a complex number). If the tangent vector's
magnitude is zero, this method will find the limit of
self.derivative(tau)/abs(self.derivative(tau)) as tau approaches T."""
seg_idx, t = self.T2t(T)
return self._segments[seg_idx].unit_tangent(t)
def normal(self, t):
"""returns the (right hand rule) unit normal vector to self at t."""
return -1j*self.unit_tangent(t)
def curvature(self, T):
"""returns the curvature of this Path object at T and outputs
float('inf') if not differentiable at T."""
seg_idx, t = self.T2t(T)
seg = self[seg_idx]
if np.isclose(t, 0) and (seg_idx != 0 or self.end==self.start):
previous_seg_in_path = self._segments[
(seg_idx - 1) % len(self._segments)]
if not seg.joins_smoothly_with(previous_seg_in_path):
return float('inf')
elif np.isclose(t, 1) and (seg_idx != len(self) - 1 or
self.end == self.start):
next_seg_in_path = self._segments[
(seg_idx + 1) % len(self._segments)]
if not next_seg_in_path.joins_smoothly_with(seg):
return float('inf')
dz = self.derivative(T)
ddz = self.derivative(T, n=2)
dx, dy = dz.real, dz.imag
ddx, ddy = ddz.real, ddz.imag
return abs(dx*ddy - dy*ddx)/(dx*dx + dy*dy)**1.5
# def icurvature(self, kappa):
# """returns a list of T-values such that 0 <= T <= 1 and
# seg.curvature(t) = kappa.
# Note: not implemented for paths containing Arc segments."""
# assert is_bezier_path(self)
# Ts = []
# for i, seg in enumerate(self):
# Ts += [self.t2T(i, t) for t in seg.icurvature(kappa)]
# return Ts
def area(self, chord_length=1e-4):
"""Find area enclosed by path.
Approximates any Arc segments in the Path with lines
approximately `chord_length` long, and returns the area enclosed
by the approximated Path. Default chord length is 0.01. If Arc
segments are included in path, to ensure accurate results, make
sure this `chord_length` is set to a reasonable value (e.g. by
checking curvature).
Notes
-----
* Negative area results from clockwise (as opposed to
counter-clockwise) parameterization of the input Path.
To Contributors
---------------
This is one of many parts of `svgpathtools` that could be
improved by a noble soul implementing a piecewise-linear
approximation scheme for paths (one with controls to guarantee a
desired accuracy).
"""
def area_without_arcs(path):
area_enclosed = 0
for seg in path:
x = real(seg.poly())
dy = imag(seg.poly()).deriv()
integrand = x*dy
integral = integrand.integ()
area_enclosed += integral(1) - integral(0)
return area_enclosed
def seg2lines(seg):
"""Find piecewise-linear approximation of `seg`."""
num_lines = int(ceil(seg.length() / chord_length))
pts = [seg.point(t) for t in np.linspace(0, 1, num_lines+1)]
return [Line(pts[i], pts[i+1]) for i in range(num_lines)]
assert self.isclosed()
bezier_path_approximation = []
for seg in self:
if isinstance(seg, Arc):
bezier_path_approximation += seg2lines(seg)
else:
bezier_path_approximation.append(seg)
return area_without_arcs(Path(*bezier_path_approximation))
def intersect(self, other_curve, justonemode=False, tol=1e-12):
"""returns list of pairs of pairs ((T1, seg1, t1), (T2, seg2, t2))
giving the intersection points.
If justonemode==True, then returns just the first
intersection found.
tol is used to check for redundant intersections (see comment above
the code block where tol is used).
Note: If the two path objects coincide for more than a finite set of
points, this code will fail."""
path1 = self
if isinstance(other_curve, Path):
path2 = other_curve
else:
path2 = Path(other_curve)
assert path1 != path2
intersection_list = []
for seg1 in path1:
for seg2 in path2:
if justonemode and intersection_list:
return intersection_list[0]
for t1, t2 in seg1.intersect(seg2, tol=tol):
T1 = path1.t2T(seg1, t1)
T2 = path2.t2T(seg2, t2)
intersection_list.append(((T1, seg1, t1), (T2, seg2, t2)))
if justonemode and intersection_list:
return intersection_list[0]
# Note: If the intersection takes place at a joint (point one seg ends
# and next begins in path) then intersection_list may contain a
# redundant intersection. This code block checks for and removes said
# redundancies.
if intersection_list:
pts = [seg1.point(_t1)
for _T1, _seg1, _t1 in list(zip(*intersection_list))[0]]
indices2remove = []
for ind1 in range(len(pts)):
for ind2 in range(ind1 + 1, len(pts)):
if abs(pts[ind1] - pts[ind2]) < tol:
# then there's a redundancy. Remove it.
indices2remove.append(ind2)
intersection_list = [inter for ind, inter in
enumerate(intersection_list) if
ind not in indices2remove]
return intersection_list
def bbox(self):
"""returns a bounding box for the input Path object in the form
(xmin, xmax, ymin, ymax)."""
bbs = [seg.bbox() for seg in self._segments]
xmins, xmaxs, ymins, ymaxs = list(zip(*bbs))
xmin = min(xmins)
xmax = max(xmaxs)
ymin = min(ymins)
ymax = max(ymaxs)
return xmin, xmax, ymin, ymax
def cropped(self, T0, T1):
"""returns a cropped copy of the path."""
assert 0 <= T0 <= 1 and 0 <= T1<= 1
assert T0 != T1
assert not (T0 == 1 and T1 == 0)
if T0 == 1 and 0 < T1 < 1 and self.isclosed():
return self.cropped(0, T1)
if T1 == 1:
seg1 = self[-1]
t_seg1 = 1
i1 = len(self) - 1
else:
seg1_idx, t_seg1 = self.T2t(T1)
seg1 = self[seg1_idx]
if np.isclose(t_seg1, 0):
i1 = (self.index(seg1) - 1) % len(self)
seg1 = self[i1]
t_seg1 = 1
else:
i1 = self.index(seg1)
if T0 == 0:
seg0 = self[0]
t_seg0 = 0
i0 = 0
else:
seg0_idx, t_seg0 = self.T2t(T0)
seg0 = self[seg0_idx]
if np.isclose(t_seg0, 1):
i0 = (self.index(seg0) + 1) % len(self)
seg0 = self[i0]
t_seg0 = 0
else:
i0 = self.index(seg0)
if T0 < T1 and i0 == i1:
new_path = Path(seg0.cropped(t_seg0, t_seg1))
else:
new_path = Path(seg0.cropped(t_seg0, 1))
# T1<T0 must cross discontinuity case
if T1 < T0:
if not self.isclosed():
raise ValueError("This path is not closed, thus T0 must "
"be less than T1.")
else:
for i in range(i0 + 1, len(self)):
new_path.append(self[i])
for i in range(0, i1):
new_path.append(self[i])
# T0<T1 straight-forward case
else:
for i in range(i0 + 1, i1):
new_path.append(self[i])
if t_seg1 != 0:
new_path.append(seg1.cropped(0, t_seg1))
return new_path
def radialrange(self, origin, return_all_global_extrema=False):
"""returns the tuples (d_min, t_min, idx_min), (d_max, t_max, idx_max)
which minimize and maximize, respectively, the distance
d = |self[idx].point(t)-origin|."""
if return_all_global_extrema:
raise NotImplementedError
else:
global_min = (np.inf, None, None)
global_max = (0, None, None)
for seg_idx, seg in enumerate(self):
seg_global_min, seg_global_max = seg.radialrange(origin)
if seg_global_min[0] < global_min[0]:
global_min = seg_global_min + (seg_idx,)
if seg_global_max[0] > global_max[0]:
global_max = seg_global_max + (seg_idx,)
return global_min, global_max
def rotated(self, degs, origin=None):
"""Returns a copy of self rotated by `degs` degrees (CCW) around the
point `origin` (a complex number). By default `origin` is either
`self.point(0.5)`, or in the case that self is an Arc object,
`origin` defaults to `self.center`."""
return rotate(self, degs, origin=origin)
def translated(self, z0):
"""Returns a copy of self shifted by the complex quantity `z0` such
that self.translated(z0).point(t) = self.point(t) + z0 for any t."""
return translate(self, z0)
def scaled(self, sx, sy=None, origin=0j):
"""Scale transform. See `scale` function for further explanation."""
return scale(self, sx=sx, sy=sy, origin=origin)
def is_contained_by(self, other):
"""Returns true if the path is fully contained in other closed path"""
assert isinstance(other, Path)
assert other.isclosed()
assert self != other
if self.intersect(other, justonemode=True):
return False
pt = self.point(0)
xmin, xmax, ymin, ymax = other.bbox()
pt_in_bbox = (xmin <= pt.real <= xmax) and (ymin <= pt.imag <= ymax)
if not pt_in_bbox:
return False
opt = complex(xmin-1, ymin-1)
return path_encloses_pt(pt, opt, other)
def _tokenize_path(self, pathdef):
for x in COMMAND_RE.split(pathdef):
if x in COMMANDS:
yield x
for token in FLOAT_RE.findall(x):
yield token
def _parse_path(self, pathdef, current_pos=0j, tree_element=None):
# In the SVG specs, initial movetos are absolute, even if
# specified as 'm'. This is the default behavior here as well.
# But if you pass in a current_pos variable, the initial moveto
# will be relative to that current_pos. This is useful.
elements = list(self._tokenize_path(pathdef))
# Reverse for easy use of .pop()
elements.reverse()
segments = self._segments
start_pos = None
command = None
while elements:
if elements[-1] in COMMANDS:
# New command.
last_command = command # Used by S and T
command = elements.pop()
absolute = command in UPPERCASE
command = command.upper()
else:
# If this element starts with numbers, it is an implicit command
# and we don't change the command. Check that it's allowed:
if command is None:
raise ValueError("Unallowed implicit command in %s, position %s" % (
pathdef, len(pathdef.split()) - len(elements)))
if command == 'M':
# Moveto command.
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if absolute:
current_pos = pos
else:
current_pos += pos
# when M is called, reset start_pos
# This behavior of Z is defined in svg spec:
# http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand
start_pos = current_pos
# Implicit moveto commands are treated as lineto commands.
# So we set command to lineto here, in case there are
# further implicit commands after this moveto.
command = 'L'
elif command == 'Z':
# Close path
if not (current_pos == start_pos):
segments.append(Line(current_pos, start_pos))
self.closed = True
current_pos = start_pos
command = None
elif command == 'L':
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if not absolute:
pos += current_pos
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'H':
x = elements.pop()
pos = float(x) + current_pos.imag * 1j
if not absolute:
pos += current_pos.real
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'V':
y = elements.pop()
pos = current_pos.real + float(y) * 1j
if not absolute:
pos += current_pos.imag * 1j
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'C':
control1 = float(elements.pop()) + float(elements.pop()) * 1j
control2 = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control1 += current_pos
control2 += current_pos
end += current_pos
segments.append(CubicBezier(current_pos, control1, control2, end))
current_pos = end
elif command == 'S':
# Smooth curve. First control point is the "reflection" of
# the second control point in the previous path.
if last_command not in 'CS':
# If there is no previous command or if the previous command
# was not an C, c, S or s, assume the first control point is
# coincident with the current point.
control1 = current_pos
else:
# The first control point is assumed to be the reflection of
# the second control point on the previous command relative
# to the current point.
control1 = current_pos + current_pos - segments[-1].control2
control2 = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control2 += current_pos
end += current_pos
segments.append(CubicBezier(current_pos, control1, control2, end))
current_pos = end
elif command == 'Q':
control = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control += current_pos
end += current_pos
segments.append(QuadraticBezier(current_pos, control, end))
current_pos = end
elif command == 'T':
# Smooth curve. Control point is the "reflection" of
# the second control point in the previous path.
if last_command not in 'QT':
# If there is no previous command or if the previous command
# was not an Q, q, T or t, assume the first control point is
# coincident with the current point.
control = current_pos
else:
# The control point is assumed to be the reflection of
# the control point on the previous command relative
# to the current point.
control = current_pos + current_pos - segments[-1].control
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(QuadraticBezier(current_pos, control, end))
current_pos = end
elif command == 'A':
radius = float(elements.pop()) + float(elements.pop()) * 1j
rotation = float(elements.pop())
arc = float(elements.pop())
sweep = float(elements.pop())
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(Arc(current_pos, radius, rotation, arc, sweep, end))
current_pos = end
return segments