changed version number in preparation for PyPI update

pull/34/head 1.3.2
Andy 2017-11-27 15:27:25 -08:00
parent 1f074d5adc
commit b54bf778b4
6 changed files with 51 additions and 39 deletions

Binary file not shown.

BIN
dist/svgpathtools-1.3.2.tar.gz vendored Normal file

Binary file not shown.

View File

@ -3,7 +3,7 @@ import codecs
import os
VERSION = '1.3.2beta'
VERSION = '1.3.2'
AUTHOR_NAME = 'Andy Port'
AUTHOR_EMAIL = 'AndyAPort@gmail.com'

View File

@ -1,13 +1,15 @@
Metadata-Version: 1.1
Name: svgpathtools
Version: 1.3.1
Version: 1.3.2
Summary: A collection of tools for manipulating and analyzing SVG Path objects and Bezier curves.
Home-page: https://github.com/mathandy/svgpathtools
Author: Andy Port
Author-email: AndyAPort@gmail.com
License: MIT
Download-URL: http://github.com/mathandy/svgpathtools/tarball/1.3.1
Description: svgpathtools
Download-URL: http://github.com/mathandy/svgpathtools/tarball/1.3.2
Description-Content-Type: UNKNOWN
Description:
svgpathtools
============
svgpathtools is a collection of tools for manipulating and analyzing SVG
@ -46,11 +48,6 @@ Description: svgpathtools
- compute **inverse arc length**
- convert RGB color tuples to hexadecimal color strings and back
Note on Python 3
----------------
While I am hopeful that this package entirely works with Python 3, it was born from a larger project coded in Python 2 and has not been thoroughly tested in
Python 3. Please let me know if you find any incompatibilities.
Prerequisites
-------------
@ -94,8 +91,6 @@ Description: svgpathtools
module <https://github.com/regebro/svg.path>`__. Interested svg.path
users should see the compatibility notes at bottom of this readme.
Also, a big thanks to the author(s) of `A Primer on Bézier Curves <http://pomax.github.io/bezierinfo/>`_, an outstanding resource for learning about Bézier curves and Bézier curve-related algorithms.
Basic Usage
-----------
@ -126,11 +121,11 @@ Description: svgpathtools
on discontinuous Path objects. A simple workaround is provided, however,
by the ``Path.continuous_subpaths()`` method. `↩ <#a1>`__
.. code:: python
.. code:: ipython2
from __future__ import division, print_function
.. code:: python
.. code:: ipython2
# Coordinates are given as points in the complex plane
from svgpathtools import Path, Line, QuadraticBezier, CubicBezier, Arc
@ -167,7 +162,7 @@ Description: svgpathtools
list. So segments can **append**\ ed, **insert**\ ed, set by index,
**del**\ eted, **enumerate**\ d, **slice**\ d out, etc.
.. code:: python
.. code:: ipython2
# Let's append another to the end of it
path.append(CubicBezier(250+350j, 275+350j, 250+225j, 200+100j))
@ -234,7 +229,7 @@ Description: svgpathtools
| Note: Line, Polyline, Polygon, and Path SVG elements can all be
converted to Path objects using this function.
.. code:: python
.. code:: ipython2
# Read SVG into a list of path objects and list of dictionaries of attributes
from svgpathtools import svg2paths, wsvg
@ -271,7 +266,7 @@ Description: svgpathtools
automatically attempt to open the created svg file in your default SVG
viewer.
.. code:: python
.. code:: ipython2
# Let's make a new SVG that's identical to the first
wsvg(paths, attributes=attributes, svg_attributes=svg_attributes, filename='output1.svg')
@ -303,7 +298,7 @@ Description: svgpathtools
that ``path.point(T)=path[k].point(t)``.
| There is also a ``Path.t2T()`` method to solve the inverse problem.
.. code:: python
.. code:: ipython2
# Example:
@ -333,11 +328,11 @@ Description: svgpathtools
True
Tangent vectors and Bezier curves as numpy polynomial objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bezier curves as NumPy polynomial objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| Another great way to work with the parameterizations for Line,
QuadraticBezier, and CubicBezier objects is to convert them to
| Another great way to work with the parameterizations for ``Line``,
``QuadraticBezier``, and ``CubicBezier`` objects is to convert them to
``numpy.poly1d`` objects. This is done easily using the
``Line.poly()``, ``QuadraticBezier.poly()`` and ``CubicBezier.poly()``
methods.
@ -369,9 +364,10 @@ Description: svgpathtools
\end{bmatrix}
\begin{bmatrix}P_0\\P_1\\P_2\\P_3\end{bmatrix}
QuadraticBezier.poly() and Line.poly() are defined similarly.
``QuadraticBezier.poly()`` and ``Line.poly()`` are `defined
similarly <https://en.wikipedia.org/wiki/B%C3%A9zier_curve#General_definition>`__.
.. code:: python
.. code:: ipython2
# Example:
b = CubicBezier(300+100j, 100+100j, 200+200j, 200+300j)
@ -401,15 +397,25 @@ Description: svgpathtools
(-400 + -100j) t + (900 + 300j) t - 600 t + (300 + 100j)
To illustrate the awesomeness of being able to convert our Bezier curve
objects to numpy.poly1d objects and back, lets compute the unit tangent
vector of the above CubicBezier object, b, at t=0.5 in four different
ways.
The ability to convert between Bezier objects to NumPy polynomial
objects is very useful. For starters, we can take turn a list of Bézier
segments into a NumPy array
Tangent vectors (and more on polynomials)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Numpy Array operations on Bézier path segments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
`Example available
here <https://github.com/mathandy/svgpathtools/blob/master/examples/compute-many-points-quickly-using-numpy-arrays.py>`__
To further illustrate the power of being able to convert our Bezier
curve objects to numpy.poly1d objects and back, lets compute the unit
tangent vector of the above CubicBezier object, b, at t=0.5 in four
different ways.
Tangent vectors (and more on NumPy polynomials)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: ipython2
t = 0.5
### Method 1: the easy way
@ -451,7 +457,7 @@ Description: svgpathtools
Translations (shifts), reversing orientation, and normal vectors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
.. code:: ipython2
# Speaking of tangents, let's add a normal vector to the picture
n = b.normal(t)
@ -481,7 +487,7 @@ Description: svgpathtools
Rotations and Translations
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
.. code:: ipython2
# Let's take a Line and an Arc and make some pictures
top_half = Arc(start=-1, radius=1+2j, rotation=0, large_arc=1, sweep=1, end=1)
@ -514,7 +520,7 @@ Description: svgpathtools
``CubicBezier.length()``, and ``Arc.length()`` methods, as well as the
related inverse arc length methods ``.ilength()`` function to do this.
.. code:: python
.. code:: ipython2
# First we'll load the path data from the file test.svg
paths, attributes = svg2paths('test.svg')
@ -556,7 +562,7 @@ Description: svgpathtools
Intersections between Bezier curves
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
.. code:: ipython2
# Let's find all intersections between redpath and the other
redpath = paths[0]
@ -580,7 +586,7 @@ Description: svgpathtools
Here we'll find the `offset
curve <https://en.wikipedia.org/wiki/Parallel_curve>`__ for a few paths.
.. code:: python
.. code:: ipython2
from svgpathtools import parse_path, Line, Path, wsvg
def offset_curve(path, offset_distance, steps=1000):
@ -638,6 +644,7 @@ Description: svgpathtools
This module is under a MIT License.
Keywords: svg,svg path,svg.path,bezier,parse svg path,display svg
Platform: OS Independent
Classifier: Development Status :: 4 - Beta

View File

@ -15,23 +15,26 @@ test.svg
vectorframes.svg
svgpathtools/__init__.py
svgpathtools/bezier.py
svgpathtools/directional_field.py
svgpathtools/misctools.py
svgpathtools/parser.py
svgpathtools/path.py
svgpathtools/paths2svg.py
svgpathtools/pathtools.py
svgpathtools/polytools.py
svgpathtools/smoothing.py
svgpathtools/svg2paths.py
svgpathtools.egg-info/PKG-INFO
svgpathtools.egg-info/SOURCES.txt
svgpathtools.egg-info/dependency_links.txt
svgpathtools.egg-info/requires.txt
svgpathtools.egg-info/top_level.txt
test/circle.svg
test/ellipse.svg
test/polygons.svg
test/rects.svg
test/test.svg
test/test_bezier.py
test/test_generation.py
test/test_parsing.py
test/test_path.py
test/test_pathtools.py
test/test_polytools.py
test/test_svg2paths.py

View File

@ -0,0 +1,2 @@
numpy
svgwrite