added vectorized implementation of Path.point
parent
44e88d54e5
commit
8fd4fd73b8
|
@ -2432,25 +2432,31 @@ class Path(MutableSequence):
|
||||||
self._length = sum(lengths)
|
self._length = sum(lengths)
|
||||||
self._lengths = [each/self._length for each in lengths]
|
self._lengths = [each/self._length for each in lengths]
|
||||||
|
|
||||||
def point(self, pos):
|
def point(self, T):
|
||||||
|
|
||||||
# Shortcuts
|
# Shortcuts
|
||||||
if pos == 0.0:
|
if T == 0.0:
|
||||||
return self._segments[0].point(pos)
|
return self._segments[0].point(T)
|
||||||
if pos == 1.0:
|
if T == 1.0:
|
||||||
return self._segments[-1].point(pos)
|
return self._segments[-1].point(T)
|
||||||
|
|
||||||
self._calc_lengths()
|
self._calc_lengths()
|
||||||
# Find which segment the point we search for is located on:
|
# Find which segment the point we search for is located on:
|
||||||
segment_start = 0
|
cumulative_relative_lengths = np.cumsum(self._lengths)
|
||||||
for index, segment in enumerate(self._segments):
|
|
||||||
segment_end = segment_start + self._lengths[index]
|
if hasattr(T, '__iter__'):
|
||||||
if segment_end >= pos:
|
T = np.array(T).reshape(1, len(T))
|
||||||
# This is the segment! How far in on the segment is the point?
|
relevant_seg_indices = np.argmax(cumulative_relative_lengths[:, None] >= T, axis=0)
|
||||||
segment_pos = (pos - segment_start)/(
|
T0, T1 = cumulative_relative_lengths[relevant_seg_indices - 1],\
|
||||||
segment_end - segment_start)
|
cumulative_relative_lengths[relevant_seg_indices]
|
||||||
return segment.point(segment_pos)
|
t = (T - T0) / (T1 - T0)
|
||||||
segment_start = segment_end
|
return [self[i].point(tval) for i, tval in zip(relevant_seg_indices, t)]
|
||||||
|
else: # assume T is a scalar
|
||||||
|
relevant_seg_index = np.argmax(cumulative_relative_lengths >= T)
|
||||||
|
T0, T1 = cumulative_relative_lengths[relevant_seg_index - 1],\
|
||||||
|
cumulative_relative_lengths[relevant_seg_index]
|
||||||
|
t = (T - T0) / (T1 - T0)
|
||||||
|
return self[relevant_seg_index].point(t)
|
||||||
|
|
||||||
def length(self, T0=0, T1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
|
def length(self, T0=0, T1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
|
||||||
self._calc_lengths(error=error, min_depth=min_depth)
|
self._calc_lengths(error=error, min_depth=min_depth)
|
||||||
|
|
Loading…
Reference in New Issue