# External dependencies from __future__ import division, absolute_import, print_function import unittest from numpy import poly1d # Internal dependencies from svgpathtools import * class TestPathTools(unittest.TestCase): def setUp(self): self.arc1 = Arc(650+325j, 25+25j, -30.0, False, True, 700+300j) self.line1 = Line(0, 100+100j) self.quadratic1 = QuadraticBezier(100+100j, 150+150j, 300+200j) self.cubic1 = CubicBezier(300+200j, 350+400j, 400+425j, 650+325j) self.path_of_all_seg_types = Path(self.line1, self.quadratic1, self.cubic1, self.arc1) self.path_of_bezier_seg_types = Path(self.line1, self.quadratic1, self.cubic1) def test_is_bezier_segment(self): # False self.assertFalse(is_bezier_segment(self.arc1)) self.assertFalse(is_bezier_segment(self.path_of_bezier_seg_types)) # True self.assertTrue(is_bezier_segment(self.line1)) self.assertTrue(is_bezier_segment(self.quadratic1)) self.assertTrue(is_bezier_segment(self.cubic1)) def test_is_bezier_path(self): # False self.assertFalse(is_bezier_path(self.path_of_all_seg_types)) self.assertFalse(is_bezier_path(self.line1)) self.assertFalse(is_bezier_path(self.quadratic1)) self.assertFalse(is_bezier_path(self.cubic1)) self.assertFalse(is_bezier_path(self.arc1)) # True self.assertTrue(is_bezier_path(self.path_of_bezier_seg_types)) self.assertTrue(is_bezier_path(Path())) def test_polynomial2bezier(self): def distfcn(tup1, tup2): assert len(tup1) == len(tup2) return sum((tup1[i]-tup2[i])**2 for i in range(len(tup1)))**0.5 # Case: Line pcoeffs = [(-1.7-2j), (6+2j)] p = poly1d(pcoeffs) correct_bpoints = [(6+2j), (4.3+0j)] # Input poly1d object bez = poly2bez(p) bpoints = bez.bpoints() self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0) # Input list of coefficients bpoints = poly2bez(pcoeffs, return_bpoints=True) self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0) # Case: Quadratic pcoeffs = [(29.5+15.5j), (-31-19j), (7.5+5.5j)] p = poly1d(pcoeffs) correct_bpoints = [(7.5+5.5j), (-8-4j), (6+2j)] # Input poly1d object bez = poly2bez(p) bpoints = bez.bpoints() self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0) # Input list of coefficients bpoints = poly2bez(pcoeffs, return_bpoints=True) self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0) # Case: Cubic pcoeffs = [(-18.5-12.5j), (34.5+16.5j), (-18-6j), (6+2j)] p = poly1d(pcoeffs) correct_bpoints = [(6+2j), 0j, (5.5+3.5j), (4+0j)] # Input poly1d object bez = poly2bez(p) bpoints = bez.bpoints() self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0) # Input list of coefficients object bpoints = poly2bez(pcoeffs, return_bpoints=True) self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0) def test_bpoints2bezier(self): cubic_bpoints = [(6+2j), 0, (5.5+3.5j), (4+0j)] quadratic_bpoints = [(6+2j), 0, (5.5+3.5j)] line_bpoints = [(6+2j), 0] self.assertTrue(isinstance(bpoints2bezier(cubic_bpoints), CubicBezier)) self.assertTrue(isinstance(bpoints2bezier(quadratic_bpoints), QuadraticBezier)) self.assertTrue(isinstance(bpoints2bezier(line_bpoints), Line)) self.assertSequenceEqual(bpoints2bezier(cubic_bpoints).bpoints(), cubic_bpoints) self.assertSequenceEqual(bpoints2bezier(quadratic_bpoints).bpoints(), quadratic_bpoints) self.assertSequenceEqual(bpoints2bezier(line_bpoints).bpoints(), line_bpoints) # def test_line2pathd(self): # bpoints = (0+1.5j, 100+10j) # line = Line(*bpoints) # # # from Line object # pathd = line2pathd(line) # path = parse_path(pathd) # self.assertTrue(path[0] == line) # # # from list of bpoints # pathd = line2pathd(bpoints) # path = parse_path(pathd) # self.assertTrue(path[0] == line) # # def test_cubic2pathd(self): # bpoints = (0+1.5j, 100+10j, 150-155.3j, 0) # cubic = CubicBezier(*bpoints) # # # from Line object # pathd = cubic2pathd(cubic) # path = parse_path(pathd) # self.assertTrue(path[0] == cubic) # # # from list of bpoints # pathd = cubic2pathd(bpoints) # path = parse_path(pathd) # self.assertTrue(path[0] == cubic) def test_closest_point_in_path(self): def distfcn(tup1, tup2): assert len(tup1) == len(tup2) return sum((tup1[i]-tup2[i])**2 for i in range(len(tup1)))**0.5 # Note: currently the radiialrange method is not implemented for Arc # objects # test_path = self.path_of_all_seg_types # origin = -123 - 123j # expected_result = ??? # self.assertAlmostEqual(min_radius(origin, test_path), # expected_result) # generic case (where is_bezier_path(test_path) == True) test_path = self.path_of_bezier_seg_types pt = 300+300j expected_result = (29.382522853493143, 0.17477067969145446, 2) result = closest_point_in_path(pt, test_path) err = distfcn(expected_result, result) self.assertAlmostEqual(err, 0) # cubic test with multiple valid solutions test_path = Path(CubicBezier(1-2j, 10-1j, 10+1j, 1+2j)) pt = 3 expected_results = [(1.7191878932122302, 0.90731678233211366, 0), (1.7191878932122304, 0.092683217667886342, 0)] result = closest_point_in_path(pt, test_path) err = min(distfcn(e_res, result) for e_res in expected_results) self.assertAlmostEqual(err, 0) def test_farthest_point_in_path(self): def distfcn(tup1, tup2): assert len(tup1) == len(tup2) return sum((tup1[i]-tup2[i])**2 for i in range(len(tup1)))**0.5 # Note: currently the radiialrange method is not implemented for Arc # objects # test_path = self.path_of_all_seg_types # origin = -123 - 123j # expected_result = ??? # self.assertAlmostEqual(min_radius(origin, test_path), # expected_result) # boundary test test_path = self.path_of_bezier_seg_types pt = 300+300j expected_result = (424.26406871192853, 0, 0) result = farthest_point_in_path(pt, test_path) err = distfcn(expected_result, result) self.assertAlmostEqual(err, 0) # non-boundary test test_path = Path(CubicBezier(1-2j, 10-1j, 10+1j, 1+2j)) pt = 3 expected_result = (4.75, 0.5, 0) result = farthest_point_in_path(pt, test_path) err = distfcn(expected_result, result) self.assertAlmostEqual(err, 0) def test_path_encloses_pt(self): line1 = Line(0, 100+100j) quadratic1 = QuadraticBezier(100+100j, 150+150j, 300+200j) cubic1 = CubicBezier(300+200j, 350+400j, 400+425j, 650+325j) line2 = Line(650+325j, 650+10j) line3 = Line(650+10j, 0) open_bez_path = Path(line1, quadratic1, cubic1) closed_bez_path = Path(line1, quadratic1, cubic1, line2, line3) inside_pt = 200+20j outside_pt1 = 1000+1000j outside_pt2 = 800+800j boundary_pt = 50+50j # Note: currently the intersect() method is not implemented for Arc # objects # arc1 = Arc(650+325j, 25+25j, -30.0, False, True, 700+300j) # closed_path_with_arc = Path(line1, quadratic1, cubic1, arc1) # self.assertTrue( # path_encloses_pt(inside_pt, outside_pt2, closed_path_with_arc)) # True cases self.assertTrue( path_encloses_pt(inside_pt, outside_pt2, closed_bez_path)) self.assertTrue( path_encloses_pt(boundary_pt, outside_pt2, closed_bez_path)) # False cases self.assertFalse( path_encloses_pt(outside_pt1, outside_pt2, closed_bez_path)) # Exception Cases with self.assertRaises(AssertionError): path_encloses_pt(inside_pt, outside_pt2, open_bez_path) # Display test paths and points # ns2d = [inside_pt, outside_pt1, outside_pt2, boundary_pt] # ncolors = ['green', 'red', 'orange', 'purple'] # disvg(closed_path_with_arc, nodes=ns2d, node_colors=ncolors, # openinbrowser=True) # disvg(open_bez_path, nodes=ns2d, node_colors=ncolors, # openinbrowser=True) # disvg(closed_bez_path, nodes=ns2d, node_colors=ncolors, # openinbrowser=True) if __name__ == '__main__': unittest.main()