improve distribution to PyPI

Now svg files, readme, unit tests, and license included in PyPI dis
pull/7/head 1.2.5
Andy 2016-10-29 00:35:51 -07:00
parent a42484f6ac
commit 08e8dc71ff
28 changed files with 4387 additions and 15 deletions

View File

@ -1,12 +0,0 @@
# file GENERATED by distutils, do NOT edit
setup.py
svgpathtools/__init__.py
svgpathtools/bezier.py
svgpathtools/misctools.py
svgpathtools/parser.py
svgpathtools/path.py
svgpathtools/paths2svg.py
svgpathtools/pathtools.py
svgpathtools/polytools.py
svgpathtools/smoothing.py
svgpathtools/svg2paths.py

2
MANIFEST.in Normal file
View File

@ -0,0 +1,2 @@
include *.svg LICENSE*
recursive-include test *.svg

View File

@ -0,0 +1,19 @@
from .bezier import (bezier_point, bezier2polynomial,
polynomial2bezier, split_bezier,
bezier_bounding_box, bezier_intersections,
bezier_by_line_intersections)
from .path import (Path, Line, QuadraticBezier, CubicBezier, Arc,
bezier_segment, is_bezier_segment, is_path_segment,
is_bezier_path, concatpaths, poly2bez, bpoints2bezier,
closest_point_in_path, farthest_point_in_path,
path_encloses_pt, bbox2path)
from .parser import parse_path
from .paths2svg import disvg, wsvg
from .polytools import polyroots, polyroots01, rational_limit, real, imag
from .misctools import hex2rgb, rgb2hex
from .smoothing import smoothed_path, smoothed_joint, is_differentiable, kinks
try:
from .svg2paths import svg2paths, svg2paths2
except ImportError:
pass

View File

@ -0,0 +1,374 @@
"""This submodule contains tools that deal with generic, degree n, Bezier
curves.
Note: Bezier curves here are always represented by the tuple of their control
points given by their standard representation."""
# External dependencies:
from __future__ import division, absolute_import, print_function
from math import factorial as fac, ceil, log, sqrt
from numpy import poly1d
# Internal dependencies
from .polytools import real, imag, polyroots, polyroots01
# Evaluation ##################################################################
def n_choose_k(n, k):
return fac(n)//fac(k)//fac(n-k)
def bernstein(n, t):
"""returns a list of the Bernstein basis polynomials b_{i, n} evaluated at
t, for i =0...n"""
t1 = 1-t
return [n_choose_k(n, k) * t1**(n-k) * t**k for k in range(n+1)]
def bezier_point(p, t):
"""Evaluates the Bezier curve given by it's control points, p, at t.
Note: Uses Horner's rule for cubic and lower order Bezier curves.
Warning: Be concerned about numerical stability when using this function
with high order curves."""
# begin arc support block ########################
try:
p.large_arc
return p.point(t)
except:
pass
# end arc support block ##########################
deg = len(p) - 1
if deg == 3:
return p[0] + t*(
3*(p[1] - p[0]) + t*(
3*(p[0] + p[2]) - 6*p[1] + t*(
-p[0] + 3*(p[1] - p[2]) + p[3])))
elif deg == 2:
return p[0] + t*(
2*(p[1] - p[0]) + t*(
p[0] - 2*p[1] + p[2]))
elif deg == 1:
return p[0] + t*(p[1] - p[0])
elif deg == 0:
return p[0]
else:
bern = bernstein(deg, t)
return sum(bern[k]*p[k] for k in range(deg+1))
# Conversion ##################################################################
def bezier2polynomial(p, numpy_ordering=True, return_poly1d=False):
"""Converts a tuple of Bezier control points to a tuple of coefficients
of the expanded polynomial.
return_poly1d : returns a numpy.poly1d object. This makes computations
of derivatives/anti-derivatives and many other operations quite quick.
numpy_ordering : By default (to accommodate numpy) the coefficients will
be output in reverse standard order."""
if len(p) == 4:
coeffs = (-p[0] + 3*(p[1] - p[2]) + p[3],
3*(p[0] - 2*p[1] + p[2]),
3*(p[1]-p[0]),
p[0])
elif len(p) == 3:
coeffs = (p[0] - 2*p[1] + p[2],
2*(p[1] - p[0]),
p[0])
elif len(p) == 2:
coeffs = (p[1]-p[0],
p[0])
elif len(p) == 1:
coeffs = p
else:
# https://en.wikipedia.org/wiki/Bezier_curve#Polynomial_form
n = len(p) + 1
coeffs = [fac(n)//fac(n-j) * sum(
(-1)**(i+j) * p[i] / (fac(i) * fac(j-i)) for i in xrange(j+1))
for j in range(n+1)]
if not numpy_ordering:
coeffs.reverse()
if return_poly1d:
return poly1d(coeffs)
return coeffs
def polynomial2bezier(poly):
"""Converts a cubic or lower order Polynomial object (or a sequence of
coefficients) to a CubicBezier, QuadraticBezier, or Line object as
appropriate."""
if isinstance(poly, poly1d):
c = poly.coeffs
else:
c = poly
order = len(c)-1
if order == 3:
bpoints = (c[3], c[2]/3 + c[3], (c[1] + 2*c[2])/3 + c[3],
c[0] + c[1] + c[2] + c[3])
elif order == 2:
bpoints = (c[2], c[1]/2 + c[2], c[0] + c[1] + c[2])
elif order == 1:
bpoints = (c[1], c[0] + c[1])
else:
raise AssertionError("This function is only implemented for linear, "
"quadratic, and cubic polynomials.")
return bpoints
# Curve Splitting #############################################################
def split_bezier(bpoints, t):
"""Uses deCasteljau's recursion to split the Bezier curve at t into two
Bezier curves of the same order."""
def split_bezier_recursion(bpoints_left_, bpoints_right_, bpoints_, t_):
if len(bpoints_) == 1:
bpoints_left_.append(bpoints_[0])
bpoints_right_.append(bpoints_[0])
else:
new_points = [None]*(len(bpoints_) - 1)
bpoints_left_.append(bpoints_[0])
bpoints_right_.append(bpoints_[-1])
for i in range(len(bpoints_) - 1):
new_points[i] = (1 - t_)*bpoints_[i] + t_*bpoints_[i + 1]
bpoints_left_, bpoints_right_ = split_bezier_recursion(
bpoints_left_, bpoints_right_, new_points, t_)
return bpoints_left_, bpoints_right_
bpoints_left = []
bpoints_right = []
bpoints_left, bpoints_right = \
split_bezier_recursion(bpoints_left, bpoints_right, bpoints, t)
bpoints_right.reverse()
return bpoints_left, bpoints_right
def halve_bezier(p):
# begin arc support block ########################
try:
p.large_arc
return p.split(0.5)
except:
pass
# end arc support block ##########################
if len(p) == 4:
return ([p[0], (p[0] + p[1])/2, (p[0] + 2*p[1] + p[2])/4,
(p[0] + 3*p[1] + 3*p[2] + p[3])/8],
[(p[0] + 3*p[1] + 3*p[2] + p[3])/8,
(p[1] + 2*p[2] + p[3])/4, (p[2] + p[3])/2, p[3]])
else:
return split_bezier(p, 0.5)
# Bounding Boxes ##############################################################
def bezier_real_minmax(p):
"""returns the minimum and maximum for any real cubic bezier"""
local_extremizers = [0, 1]
if len(p) == 4: # cubic case
a = [p.real for p in p]
denom = a[0] - 3*a[1] + 3*a[2] - a[3]
if denom != 0:
delta = a[1]**2 - (a[0] + a[1])*a[2] + a[2]**2 + (a[0] - a[1])*a[3]
if delta >= 0: # otherwise no local extrema
sqdelta = sqrt(delta)
tau = a[0] - 2*a[1] + a[2]
r1 = (tau + sqdelta)/denom
r2 = (tau - sqdelta)/denom
if 0 < r1 < 1:
local_extremizers.append(r1)
if 0 < r2 < 1:
local_extremizers.append(r2)
local_extrema = [bezier_point(a, t) for t in local_extremizers]
return min(local_extrema), max(local_extrema)
# find reverse standard coefficients of the derivative
dcoeffs = bezier2polynomial(a, return_poly1d=True).deriv().coeffs
# find real roots, r, such that 0 <= r <= 1
local_extremizers += polyroots01(dcoeffs)
local_extrema = [bezier_point(a, t) for t in local_extremizers]
return min(local_extrema), max(local_extrema)
def bezier_bounding_box(bez):
"""returns the bounding box for the segment in the form
(xmin, xmax, ymin, ymax).
Warning: For the non-cubic case this is not particularly efficient."""
# begin arc support block ########################
try:
bla = bez.large_arc
return bez.bbox() # added to support Arc objects
except:
pass
# end arc support block ##########################
if len(bez) == 4:
xmin, xmax = bezier_real_minmax([p.real for p in bez])
ymin, ymax = bezier_real_minmax([p.imag for p in bez])
return xmin, xmax, ymin, ymax
poly = bezier2polynomial(bez, return_poly1d=True)
x = real(poly)
y = imag(poly)
dx = x.deriv()
dy = y.deriv()
x_extremizers = [0, 1] + polyroots(dx, realroots=True,
condition=lambda r: 0 < r < 1)
y_extremizers = [0, 1] + polyroots(dy, realroots=True,
condition=lambda r: 0 < r < 1)
x_extrema = [x(t) for t in x_extremizers]
y_extrema = [y(t) for t in y_extremizers]
return min(x_extrema), max(x_extrema), min(y_extrema), max(y_extrema)
def box_area(xmin, xmax, ymin, ymax):
"""
INPUT: 2-tuple of cubics (given by control points)
OUTPUT: boolean
"""
return (xmax - xmin)*(ymax - ymin)
def interval_intersection_width(a, b, c, d):
"""returns the width of the intersection of intervals [a,b] and [c,d]
(thinking of these as intervals on the real number line)"""
return max(0, min(b, d) - max(a, c))
def boxes_intersect(box1, box2):
"""Determines if two rectangles, each input as a tuple
(xmin, xmax, ymin, ymax), intersect."""
xmin1, xmax1, ymin1, ymax1 = box1
xmin2, xmax2, ymin2, ymax2 = box2
if interval_intersection_width(xmin1, xmax1, xmin2, xmax2) and \
interval_intersection_width(ymin1, ymax1, ymin2, ymax2):
return True
else:
return False
# Intersections ###############################################################
class ApproxSolutionSet(list):
"""A class that behaves like a set but treats two elements , x and y, as
equivalent if abs(x-y) < self.tol"""
def __init__(self, tol):
self.tol = tol
def __contains__(self, x):
for y in self:
if abs(x - y) < self.tol:
return True
return False
def appadd(self, pt):
if pt not in self:
self.append(pt)
class BPair(object):
def __init__(self, bez1, bez2, t1, t2):
self.bez1 = bez1
self.bez2 = bez2
self.t1 = t1 # t value to get the mid point of this curve from cub1
self.t2 = t2 # t value to get the mid point of this curve from cub2
def bezier_intersections(bez1, bez2, longer_length, tol=1e-8, tol_deC=1e-8):
"""INPUT:
bez1, bez2 = [P0,P1,P2,...PN], [Q0,Q1,Q2,...,PN] defining the two
Bezier curves to check for intersections between.
longer_length - the length (or an upper bound) on the longer of the two
Bezier curves. Determines the maximum iterations needed together with tol.
tol - is the smallest distance that two solutions can differ by and still
be considered distinct solutions.
OUTPUT: a list of tuples (t,s) in [0,1]x[0,1] such that
bezier_point(cubs[0],t) - bezier_point(cubs[1],s) < tol_deC
Note: This will return exactly one such tuple for each intersection
(assuming tol_deC is small enough)"""
maxits = int(ceil(1-log(tol_deC/longer_length)/log(2)))
pair_list = [BPair(bez1, bez2, 0.5, 0.5)]
intersection_list = []
k = 0
approx_point_set = ApproxSolutionSet(tol)
while pair_list and k < maxits:
new_pairs = []
delta = 0.5**(k + 2)
for pair in pair_list:
bbox1 = bezier_bounding_box(pair.bez1)
bbox2 = bezier_bounding_box(pair.bez2)
if boxes_intersect(bbox1, bbox2):
if box_area(*bbox1) < tol_deC and box_area(*bbox2) < tol_deC:
point = bezier_point(bez1, pair.t1)
if point not in approx_point_set:
approx_point_set.append(point)
# this is the point in the middle of the pair
intersection_list.append((pair.t1, pair.t2))
# this prevents the output of redundant intersection points
for otherPair in pair_list:
if pair.bez1 == otherPair.bez1 or \
pair.bez2 == otherPair.bez2 or \
pair.bez1 == otherPair.bez2 or \
pair.bez2 == otherPair.bez1:
pair_list.remove(otherPair)
else:
(c11, c12) = halve_bezier(pair.bez1)
(t11, t12) = (pair.t1 - delta, pair.t1 + delta)
(c21, c22) = halve_bezier(pair.bez2)
(t21, t22) = (pair.t2 - delta, pair.t2 + delta)
new_pairs += [BPair(c11, c21, t11, t21),
BPair(c11, c22, t11, t22),
BPair(c12, c21, t12, t21),
BPair(c12, c22, t12, t22)]
pair_list = new_pairs
k += 1
if k >= maxits:
raise Exception("bezier_intersections has reached maximum "
"iterations without terminating... "
"either there's a problem/bug or you can fix by "
"raising the max iterations or lowering tol_deC")
return intersection_list
def bezier_by_line_intersections(bezier, line):
"""Returns tuples (t1,t2) such that bezier.point(t1) ~= line.point(t2)."""
# The method here is to translate (shift) then rotate the complex plane so
# that line starts at the origin and proceeds along the positive real axis.
# After this transformation, the intersection points are the real roots of
# the imaginary component of the bezier for which the real component is
# between 0 and abs(line[1]-line[0])].
assert len(line[:]) == 2
assert line[0] != line[1]
if not any(p != bezier[0] for p in bezier):
raise ValueError("bezier is nodal, use "
"bezier_by_line_intersection(bezier[0], line) "
"instead for a bool to be returned.")
# First let's shift the complex plane so that line starts at the origin
shifted_bezier = [z - line[0] for z in bezier]
shifted_line_end = line[1] - line[0]
line_length = abs(shifted_line_end)
# Now let's rotate the complex plane so that line falls on the x-axis
rotation_matrix = line_length/shifted_line_end
transformed_bezier = [rotation_matrix*z for z in shifted_bezier]
# Now all intersections should be roots of the imaginary component of
# the transformed bezier
transformed_bezier_imag = [p.imag for p in transformed_bezier]
coeffs_y = bezier2polynomial(transformed_bezier_imag)
roots_y = list(polyroots01(coeffs_y)) # returns real roots 0 <= r <= 1
transformed_bezier_real = [p.real for p in transformed_bezier]
intersection_list = []
for bez_t in set(roots_y):
xval = bezier_point(transformed_bezier_real, bez_t)
if 0 <= xval <= line_length:
line_t = xval/line_length
intersection_list.append((bez_t, line_t))
return intersection_list

View File

@ -0,0 +1,64 @@
"""This submodule contains miscellaneous tools that are used internally, but
aren't specific to SVGs or related mathematical objects."""
# External dependencies:
from __future__ import division, absolute_import, print_function
import os
import sys
import webbrowser
# stackoverflow.com/questions/214359/converting-hex-color-to-rgb-and-vice-versa
def hex2rgb(value):
"""Converts a hexadeximal color string to an RGB 3-tuple
EXAMPLE
-------
>>> hex2rgb('#0000FF')
(0, 0, 255)
"""
value = value.lstrip('#')
lv = len(value)
return tuple(int(value[i:i+lv//3], 16) for i in range(0, lv, lv//3))
# stackoverflow.com/questions/214359/converting-hex-color-to-rgb-and-vice-versa
def rgb2hex(rgb):
"""Converts an RGB 3-tuple to a hexadeximal color string.
EXAMPLE
-------
>>> rgb2hex((0,0,255))
'#0000FF'
"""
return ('#%02x%02x%02x' % rgb).upper()
def isclose(a, b, rtol=1e-5, atol=1e-8):
"""This is essentially np.isclose, but slightly faster."""
return abs(a - b) < (atol + rtol * abs(b))
def open_in_browser(file_location):
"""Attempt to open file located at file_location in the default web
browser."""
# If just the name of the file was given, check if it's in the Current
# Working Directory.
if not os.path.isfile(file_location):
file_location = os.path.join(os.getcwd(), file_location)
if not os.path.isfile(file_location):
raise IOError("\n\nFile not found.")
# For some reason OSX requires this adjustment (tested on 10.10.4)
if sys.platform == "darwin":
file_location = "file:///"+file_location
new = 2 # open in a new tab, if possible
webbrowser.get().open(file_location, new=new)
BugException = Exception("This code should never be reached. You've found a "
"bug. Please submit an issue to \n"
"https://github.com/mathandy/svgpathtools/issues"
"\nwith an easily reproducible example.")

View File

@ -0,0 +1,196 @@
"""This submodule contains the path_parse() function used to convert SVG path
element d-strings into svgpathtools Path objects.
Note: This file was taken (nearly) as is from the svg.path module
(v 2.0)."""
# External dependencies
from __future__ import division, absolute_import, print_function
import re
# Internal dependencies
from .path import Path, Line, QuadraticBezier, CubicBezier, Arc
COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
UPPERCASE = set('MZLHVCSQTA')
COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
def _tokenize_path(pathdef):
for x in COMMAND_RE.split(pathdef):
if x in COMMANDS:
yield x
for token in FLOAT_RE.findall(x):
yield token
def parse_path(pathdef, current_pos=0j):
# In the SVG specs, initial movetos are absolute, even if
# specified as 'm'. This is the default behavior here as well.
# But if you pass in a current_pos variable, the initial moveto
# will be relative to that current_pos. This is useful.
elements = list(_tokenize_path(pathdef))
# Reverse for easy use of .pop()
elements.reverse()
segments = Path()
start_pos = None
command = None
while elements:
if elements[-1] in COMMANDS:
# New command.
last_command = command # Used by S and T
command = elements.pop()
absolute = command in UPPERCASE
command = command.upper()
else:
# If this element starts with numbers, it is an implicit command
# and we don't change the command. Check that it's allowed:
if command is None:
raise ValueError("Unallowed implicit command in %s, position %s" % (
pathdef, len(pathdef.split()) - len(elements)))
if command == 'M':
# Moveto command.
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if absolute:
current_pos = pos
else:
current_pos += pos
# when M is called, reset start_pos
# This behavior of Z is defined in svg spec:
# http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand
start_pos = current_pos
# Implicit moveto commands are treated as lineto commands.
# So we set command to lineto here, in case there are
# further implicit commands after this moveto.
command = 'L'
elif command == 'Z':
# Close path
if not (current_pos == start_pos):
segments.append(Line(current_pos, start_pos))
segments.closed = True
current_pos = start_pos
start_pos = None
command = None # You can't have implicit commands after closing.
elif command == 'L':
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if not absolute:
pos += current_pos
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'H':
x = elements.pop()
pos = float(x) + current_pos.imag * 1j
if not absolute:
pos += current_pos.real
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'V':
y = elements.pop()
pos = current_pos.real + float(y) * 1j
if not absolute:
pos += current_pos.imag * 1j
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'C':
control1 = float(elements.pop()) + float(elements.pop()) * 1j
control2 = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control1 += current_pos
control2 += current_pos
end += current_pos
segments.append(CubicBezier(current_pos, control1, control2, end))
current_pos = end
elif command == 'S':
# Smooth curve. First control point is the "reflection" of
# the second control point in the previous path.
if last_command not in 'CS':
# If there is no previous command or if the previous command
# was not an C, c, S or s, assume the first control point is
# coincident with the current point.
control1 = current_pos
else:
# The first control point is assumed to be the reflection of
# the second control point on the previous command relative
# to the current point.
control1 = current_pos + current_pos - segments[-1].control2
control2 = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control2 += current_pos
end += current_pos
segments.append(CubicBezier(current_pos, control1, control2, end))
current_pos = end
elif command == 'Q':
control = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control += current_pos
end += current_pos
segments.append(QuadraticBezier(current_pos, control, end))
current_pos = end
elif command == 'T':
# Smooth curve. Control point is the "reflection" of
# the second control point in the previous path.
if last_command not in 'QT':
# If there is no previous command or if the previous command
# was not an Q, q, T or t, assume the first control point is
# coincident with the current point.
control = current_pos
else:
# The control point is assumed to be the reflection of
# the control point on the previous command relative
# to the current point.
control = current_pos + current_pos - segments[-1].control
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(QuadraticBezier(current_pos, control, end))
current_pos = end
elif command == 'A':
radius = float(elements.pop()) + float(elements.pop()) * 1j
rotation = float(elements.pop())
arc = float(elements.pop())
sweep = float(elements.pop())
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(Arc(current_pos, radius, rotation, arc, sweep, end))
current_pos = end
return segments

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,385 @@
"""This submodule contains tools for creating svg files from paths and path
segments."""
# External dependencies:
from __future__ import division, absolute_import, print_function
from math import ceil
from os import getcwd, path as os_path, makedirs
from xml.dom.minidom import parse as md_xml_parse
from svgwrite import Drawing, text as txt
from time import time
from warnings import warn
# Internal dependencies
from .path import Path, Line, is_path_segment
from .misctools import open_in_browser
# Used to convert a string colors (identified by single chars) to a list.
color_dict = {'a': 'aqua',
'b': 'blue',
'c': 'cyan',
'd': 'darkblue',
'e': '',
'f': '',
'g': 'green',
'h': '',
'i': '',
'j': '',
'k': 'black',
'l': 'lime',
'm': 'magenta',
'n': 'brown',
'o': 'orange',
'p': 'pink',
'q': 'turquoise',
'r': 'red',
's': 'salmon',
't': 'tan',
'u': 'purple',
'v': 'violet',
'w': 'white',
'x': '',
'y': 'yellow',
'z': 'azure'}
def str2colorlist(s, default_color=None):
color_list = [color_dict[ch] for ch in s]
if default_color:
for idx, c in enumerate(color_list):
if not c:
color_list[idx] = default_color
return color_list
def is3tuple(c):
return isinstance(c, tuple) and len(c) == 3
def big_bounding_box(paths_n_stuff):
"""Finds a BB containing a collection of paths, Bezier path segments, and
points (given as complex numbers)."""
bbs = []
for thing in paths_n_stuff:
if is_path_segment(thing) or isinstance(thing, Path):
bbs.append(thing.bbox())
elif isinstance(thing, complex):
bbs.append((thing.real, thing.real, thing.imag, thing.imag))
else:
try:
complexthing = complex(thing)
bbs.append((complexthing.real, complexthing.real,
complexthing.imag, complexthing.imag))
except ValueError:
raise TypeError(
"paths_n_stuff can only contains Path, CubicBezier, "
"QuadraticBezier, Line, and complex objects.")
xmins, xmaxs, ymins, ymaxs = zip(*bbs)
xmin = min(xmins)
xmax = max(xmaxs)
ymin = min(ymins)
ymax = max(ymaxs)
return xmin, xmax, ymin, ymax
def disvg(paths=None, colors=None,
filename=os_path.join(getcwd(), 'disvg_output.svg'),
stroke_widths=None, nodes=None, node_colors=None, node_radii=None,
openinbrowser=True, timestamp=False,
margin_size=0.1, mindim=600, dimensions=None,
viewbox=None, text=None, text_path=None, font_size=None,
attributes=None, svg_attributes=None):
"""Takes in a list of paths and creates an SVG file containing said paths.
REQUIRED INPUTS:
:param paths - a list of paths
OPTIONAL INPUT:
:param colors - specifies the path stroke color. By default all paths
will be black (#000000). This paramater can be input in a few ways
1) a list of strings that will be input into the path elements stroke
attribute (so anything that is understood by the svg viewer).
2) a string of single character colors -- e.g. setting colors='rrr' is
equivalent to setting colors=['red', 'red', 'red'] (see the
'color_dict' dictionary above for a list of possibilities).
3) a list of rgb 3-tuples -- e.g. colors = [(255, 0, 0), ...].
:param filename - the desired location/filename of the SVG file
created (by default the SVG will be stored in the current working
directory and named 'disvg_output.svg').
:param stroke_widths - a list of stroke_widths to use for paths
(default is 0.5% of the SVG's width or length)
:param nodes - a list of points to draw as filled-in circles
:param node_colors - a list of colors to use for the nodes (by default
nodes will be red)
:param node_radii - a list of radii to use for the nodes (by default
nodes will be radius will be 1 percent of the svg's width/length)
:param text - string or list of strings to be displayed
:param text_path - if text is a list, then this should be a list of
path (or path segments of the same length. Note: the path must be
long enough to display the text or the text will be cropped by the svg
viewer.
:param font_size - a single float of list of floats.
:param openinbrowser - Set to True to automatically open the created
SVG in the user's default web browser.
:param timestamp - if True, then the a timestamp will be appended to
the output SVG's filename. This will fix issues with rapidly opening
multiple SVGs in your browser.
:param margin_size - The min margin (empty area framing the collection
of paths) size used for creating the canvas and background of the SVG.
:param mindim - The minimum dimension (height or width) of the output
SVG (default is 600).
:param dimensions - The display dimensions of the output SVG. Using
this will override the mindim parameter.
:param viewbox - This specifies what rectangular patch of R^2 will be
viewable through the outputSVG. It should be input in the form
(min_x, min_y, width, height). This is different from the display
dimension of the svg, which can be set through mindim or dimensions.
:param attributes - a list of dictionaries of attributes for the input
paths. Note: This will override any other conflicting settings.
:param svg_attributes - a dictionary of attributes for output svg.
Note: This will override any other conflicting settings.
NOTES:
-The unit of length here is assumed to be pixels in all variables.
-If this function is used multiple times in quick succession to
display multiple SVGs (all using the default filename), the
svgviewer/browser will likely fail to load some of the SVGs in time.
To fix this, use the timestamp attribute, or give the files unique
names, or use a pause command (e.g. time.sleep(1)) between uses.
"""
_default_relative_node_radius = 5e-3
_default_relative_stroke_width = 1e-3
_default_path_color = '#000000' # black
_default_node_color = '#ff0000' # red
_default_font_size = 12
# append directory to filename (if not included)
if os_path.dirname(filename) == '':
filename = os_path.join(getcwd(), filename)
# append time stamp to filename
if timestamp:
fbname, fext = os_path.splitext(filename)
dirname = os_path.dirname(filename)
tstamp = str(time()).replace('.', '')
stfilename = os_path.split(fbname)[1] + '_' + tstamp + fext
filename = os_path.join(dirname, stfilename)
# check paths and colors are set
if isinstance(paths, Path) or is_path_segment(paths):
paths = [paths]
if paths:
if not colors:
colors = [_default_path_color] * len(paths)
else:
assert len(colors) == len(paths)
if isinstance(colors, str):
colors = str2colorlist(colors,
default_color=_default_path_color)
elif isinstance(colors, list):
for idx, c in enumerate(colors):
if is3tuple(c):
colors[idx] = "rgb" + str(c)
# check nodes and nodes_colors are set (node_radii are set later)
if nodes:
if not node_colors:
node_colors = [_default_node_color] * len(nodes)
else:
assert len(node_colors) == len(nodes)
if isinstance(node_colors, str):
node_colors = str2colorlist(node_colors,
default_color=_default_node_color)
elif isinstance(node_colors, list):
for idx, c in enumerate(node_colors):
if is3tuple(c):
node_colors[idx] = "rgb" + str(c)
# set up the viewBox and display dimensions of the output SVG
# along the way, set stroke_widths and node_radii if not provided
assert paths or nodes
stuff2bound = []
if viewbox:
szx, szy = viewbox[2:4]
else:
if paths:
stuff2bound += paths
if nodes:
stuff2bound += nodes
if text_path:
stuff2bound += text_path
xmin, xmax, ymin, ymax = big_bounding_box(stuff2bound)
dx = xmax - xmin
dy = ymax - ymin
if dx == 0:
dx = 1
if dy == 0:
dy = 1
# determine stroke_widths to use (if not provided) and max_stroke_width
if paths:
if not stroke_widths:
sw = max(dx, dy) * _default_relative_stroke_width
stroke_widths = [sw]*len(paths)
max_stroke_width = sw
else:
assert len(paths) == len(stroke_widths)
max_stroke_width = max(stroke_widths)
else:
max_stroke_width = 0
# determine node_radii to use (if not provided) and max_node_diameter
if nodes:
if not node_radii:
r = max(dx, dy) * _default_relative_node_radius
node_radii = [r]*len(nodes)
max_node_diameter = 2*r
else:
assert len(nodes) == len(node_radii)
max_node_diameter = 2*max(node_radii)
else:
max_node_diameter = 0
extra_space_for_style = max(max_stroke_width, max_node_diameter)
xmin -= margin_size*dx + extra_space_for_style/2
ymin -= margin_size*dy + extra_space_for_style/2
dx += 2*margin_size*dx + extra_space_for_style
dy += 2*margin_size*dy + extra_space_for_style
viewbox = "%s %s %s %s" % (xmin, ymin, dx, dy)
if dimensions:
szx, szy = dimensions
else:
if dx > dy:
szx = str(mindim) + 'px'
szy = str(int(ceil(mindim * dy / dx))) + 'px'
else:
szx = str(int(ceil(mindim * dx / dy))) + 'px'
szy = str(mindim) + 'px'
# Create an SVG file
if svg_attributes:
dwg = Drawing(filename=filename, **svg_attributes)
else:
dwg = Drawing(filename=filename, size=(szx, szy), viewBox=viewbox)
# add paths
if paths:
for i, p in enumerate(paths):
if isinstance(p, Path):
ps = p.d()
elif is_path_segment(p):
ps = Path(p).d()
else: # assume this path, p, was input as a Path d-string
ps = p
if attributes:
good_attribs = {'d': ps}
for key in attributes[i]:
val = attributes[i][key]
if key != 'd':
try:
dwg.path(ps, **{key: val})
good_attribs.update({key: val})
except Exception as e:
warn(str(e))
dwg.add(dwg.path(**good_attribs))
else:
dwg.add(dwg.path(ps, stroke=colors[i],
stroke_width=str(stroke_widths[i]),
fill='none'))
# add nodes (filled in circles)
if nodes:
for i_pt, pt in enumerate([(z.real, z.imag) for z in nodes]):
dwg.add(dwg.circle(pt, node_radii[i_pt], fill=node_colors[i_pt]))
# add texts
if text:
assert isinstance(text, str) or (isinstance(text, list) and
isinstance(text_path, list) and
len(text_path) == len(text))
if isinstance(text, str):
text = [text]
if not font_size:
font_size = [_default_font_size]
if not text_path:
pos = complex(xmin + margin_size*dx, ymin + margin_size*dy)
text_path = [Line(pos, pos + 1).d()]
else:
if font_size:
if isinstance(font_size, list):
assert len(font_size) == len(text)
else:
font_size = [font_size] * len(text)
else:
font_size = [_default_font_size] * len(text)
for idx, s in enumerate(text):
p = text_path[idx]
if isinstance(p, Path):
ps = p.d()
elif is_path_segment(p):
ps = Path(p).d()
else: # assume this path, p, was input as a Path d-string
ps = p
# paragraph = dwg.add(dwg.g(font_size=font_size[idx]))
# paragraph.add(dwg.textPath(ps, s))
pathid = 'tp' + str(idx)
dwg.defs.add(dwg.path(d=ps, id=pathid))
txter = dwg.add(dwg.text('', font_size=font_size[idx]))
txter.add(txt.TextPath('#'+pathid, s))
# save svg
if not os_path.exists(os_path.dirname(filename)):
makedirs(os_path.dirname(filename))
dwg.save()
# re-open the svg, make the xml pretty, and save it again
xmlstring = md_xml_parse(filename).toprettyxml()
with open(filename, 'w') as f:
f.write(xmlstring)
# try to open in web browser
if openinbrowser:
try:
open_in_browser(filename)
except:
print("Failed to open output SVG in browser. SVG saved to:")
print(filename)
def wsvg(paths=None, colors=None,
filename=os_path.join(getcwd(), 'disvg_output.svg'),
stroke_widths=None, nodes=None, node_colors=None, node_radii=None,
openinbrowser=False, timestamp=False,
margin_size=0.1, mindim=600, dimensions=None,
viewbox=None, text=None, text_path=None, font_size=None,
attributes=None, svg_attributes=None):
"""Convenience function; identical to disvg() except that
openinbrowser=False by default. See disvg() docstring for more info."""
disvg(paths, colors=colors, filename=filename,
stroke_widths=stroke_widths, nodes=nodes,
node_colors=node_colors, node_radii=node_radii,
openinbrowser=openinbrowser, timestamp=timestamp,
margin_size=margin_size, mindim=mindim, dimensions=dimensions,
viewbox=viewbox, text=text, text_path=text_path, font_size=font_size,
attributes=attributes, svg_attributes=svg_attributes)

View File

@ -0,0 +1,14 @@
"""This submodule contains additional tools for working with paths composed of
Line and CubicBezier objects. QuadraticBezier and Arc objects are only
partially supported."""
# External dependencies:
from __future__ import division, absolute_import, print_function
# Internal dependencies
from .path import Path, Line, QuadraticBezier, CubicBezier, Arc
# Misc#########################################################################

View File

@ -0,0 +1,80 @@
"""This submodule contains tools for working with numpy.poly1d objects."""
# External Dependencies
from __future__ import division, absolute_import
from itertools import combinations
import numpy as np
# Internal Dependencies
from .misctools import isclose
def polyroots(p, realroots=False, condition=lambda r: True):
"""
Returns the roots of a polynomial with coefficients given in p.
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
INPUT:
p - Rank-1 array-like object of polynomial coefficients.
realroots - a boolean. If true, only real roots will be returned and the
condition function can be written assuming all roots are real.
condition - a boolean-valued function. Only roots satisfying this will be
returned. If realroots==True, these conditions should assume the roots
are real.
OUTPUT:
A list containing the roots of the polynomial.
NOTE: This uses np.isclose and np.roots"""
roots = np.roots(p)
if realroots:
roots = [r.real for r in roots if isclose(r.imag, 0)]
roots = [r for r in roots if condition(r)]
duplicates = []
for idx, (r1, r2) in enumerate(combinations(roots, 2)):
if isclose(r1, r2):
duplicates.append(idx)
return [r for idx, r in enumerate(roots) if idx not in duplicates]
def polyroots01(p):
"""Returns the real roots between 0 and 1 of the polynomial with
coefficients given in p,
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
p can also be a np.poly1d object. See polyroots for more information."""
return polyroots(p, realroots=True, condition=lambda tval: 0 <= tval <= 1)
def rational_limit(f, g, t0):
"""Computes the limit of the rational function (f/g)(t)
as t approaches t0."""
assert isinstance(f, np.poly1d) and isinstance(g, np.poly1d)
assert g != np.poly1d([0])
if g(t0) != 0:
return f(t0)/g(t0)
elif f(t0) == 0:
return rational_limit(f.deriv(), g.deriv(), t0)
else:
raise ValueError("Limit does not exist.")
def real(z):
try:
return np.poly1d(z.coeffs.real)
except AttributeError:
return z.real
def imag(z):
try:
return np.poly1d(z.coeffs.imag)
except AttributeError:
return z.imag
def poly_real_part(poly):
"""Deprecated."""
return np.poly1d(poly.coeffs.real)
def poly_imag_part(poly):
"""Deprecated."""
return np.poly1d(poly.coeffs.imag)

View File

@ -0,0 +1,201 @@
"""This submodule contains functions related to smoothing paths of Bezier
curves."""
# External Dependencies
from __future__ import division, absolute_import, print_function
# Internal Dependencies
from .path import Path, CubicBezier, Line
from .misctools import isclose
from .paths2svg import disvg
def is_differentiable(path, tol=1e-8):
for idx in range(len(path)):
u = path[(idx-1) % len(path)].unit_tangent(1)
v = path[idx].unit_tangent(0)
u_dot_v = u.real*v.real + u.imag*v.imag
if abs(u_dot_v - 1) > tol:
return False
return True
def kinks(path, tol=1e-8):
"""returns indices of segments that start on a non-differentiable joint."""
kink_list = []
for idx in xrange(len(path)):
if idx == 0 and not path.isclosed():
continue
try:
u = path[(idx - 1) % len(path)].unit_tangent(1)
v = path[idx].unit_tangent(0)
u_dot_v = u.real*v.real + u.imag*v.imag
flag = False
except ValueError:
flag = True
if flag or abs(u_dot_v - 1) > tol:
kink_list.append(idx)
return kink_list
def _report_unfixable_kinks(_path, _kink_list):
mes = ("\n%s kinks have been detected at that cannot be smoothed.\n"
"To ignore these kinks and fix all others, run this function "
"again with the second argument 'ignore_unfixable_kinks=True' "
"The locations of the unfixable kinks are at the beginnings of "
"segments: %s" % (len(_kink_list), _kink_list))
disvg(_path, nodes=[_path[idx].start for idx in _kink_list])
raise Exception(mes)
def smoothed_joint(seg0, seg1, maxjointsize=3, tightness=1.99):
""" See Andy's notes on
Smoothing Bezier Paths for an explanation of the method.
Input: two segments seg0, seg1 such that seg0.end==seg1.start, and
jointsize, a positive number
Output: seg0_trimmed, elbow, seg1_trimmed, where elbow is a cubic bezier
object that smoothly connects seg0_trimmed and seg1_trimmed.
"""
assert seg0.end == seg1.start
assert 0 < maxjointsize
assert 0 < tightness < 2
# sgn = lambda x:x/abs(x)
q = seg0.end
try: v = seg0.unit_tangent(1)
except: v = seg0.unit_tangent(1 - 1e-4)
try: w = seg1.unit_tangent(0)
except: w = seg1.unit_tangent(1e-4)
max_a = maxjointsize / 2
a = min(max_a, min(seg1.length(), seg0.length()) / 20)
if isinstance(seg0, Line) and isinstance(seg1, Line):
'''
Note: Letting
c(t) = elbow.point(t), v= the unit tangent of seg0 at 1, w = the
unit tangent vector of seg1 at 0,
Q = seg0.point(1) = seg1.point(0), and a,b>0 some constants.
The elbow will be the unique CubicBezier, c, such that
c(0)= Q-av, c(1)=Q+aw, c'(0) = bv, and c'(1) = bw
where a and b are derived above/below from tightness and
maxjointsize.
'''
# det = v.imag*w.real-v.real*w.imag
# Note:
# If det is negative, the curvature of elbow is negative for all
# real t if and only if b/a > 6
# If det is positive, the curvature of elbow is negative for all
# real t if and only if b/a < 2
# if det < 0:
# b = (6+tightness)*a
# elif det > 0:
# b = (2-tightness)*a
# else:
# raise Exception("seg0 and seg1 are parallel lines.")
b = (2 - tightness)*a
elbow = CubicBezier(q - a*v, q - (a - b/3)*v, q + (a - b/3)*w, q + a*w)
seg0_trimmed = Line(seg0.start, elbow.start)
seg1_trimmed = Line(elbow.end, seg1.end)
return seg0_trimmed, [elbow], seg1_trimmed
elif isinstance(seg0, Line):
'''
Note: Letting
c(t) = elbow.point(t), v= the unit tangent of seg0 at 1,
w = the unit tangent vector of seg1 at 0,
Q = seg0.point(1) = seg1.point(0), and a,b>0 some constants.
The elbow will be the unique CubicBezier, c, such that
c(0)= Q-av, c(1)=Q, c'(0) = bv, and c'(1) = bw
where a and b are derived above/below from tightness and
maxjointsize.
'''
# det = v.imag*w.real-v.real*w.imag
# Note: If g has the same sign as det, then the curvature of elbow is
# negative for all real t if and only if b/a < 4
b = (4 - tightness)*a
# g = sgn(det)*b
elbow = CubicBezier(q - a*v, q + (b/3 - a)*v, q - b/3*w, q)
seg0_trimmed = Line(seg0.start, elbow.start)
return seg0_trimmed, [elbow], seg1
elif isinstance(seg1, Line):
args = (seg1.reversed(), seg0.reversed(), maxjointsize, tightness)
rseg1_trimmed, relbow, rseg0 = smoothed_joint(*args)
elbow = relbow[0].reversed()
return seg0, [elbow], rseg1_trimmed.reversed()
else:
# find a point on each seg that is about a/2 away from joint. Make
# line between them.
t0 = seg0.ilength(seg0.length() - a/2)
t1 = seg1.ilength(a/2)
seg0_trimmed = seg0.cropped(0, t0)
seg1_trimmed = seg1.cropped(t1, 1)
seg0_line = Line(seg0_trimmed.end, q)
seg1_line = Line(q, seg1_trimmed.start)
args = (seg0_trimmed, seg0_line, maxjointsize, tightness)
dummy, elbow0, seg0_line_trimmed = smoothed_joint(*args)
args = (seg1_line, seg1_trimmed, maxjointsize, tightness)
seg1_line_trimmed, elbow1, dummy = smoothed_joint(*args)
args = (seg0_line_trimmed, seg1_line_trimmed, maxjointsize, tightness)
seg0_line_trimmed, elbowq, seg1_line_trimmed = smoothed_joint(*args)
elbow = elbow0 + [seg0_line_trimmed] + elbowq + [seg1_line_trimmed] + elbow1
return seg0_trimmed, elbow, seg1_trimmed
def smoothed_path(path, maxjointsize=3, tightness=1.99, ignore_unfixable_kinks=False):
"""returns a path with no non-differentiable joints."""
if len(path) == 1:
return path
assert path.iscontinuous()
sharp_kinks = []
new_path = [path[0]]
for idx in range(len(path)):
if idx == len(path)-1:
if not path.isclosed():
continue
else:
seg1 = new_path[0]
else:
seg1 = path[idx + 1]
seg0 = new_path[-1]
try:
unit_tangent0 = seg0.unit_tangent(1)
unit_tangent1 = seg1.unit_tangent(0)
flag = False
except ValueError:
flag = True # unit tangent not well-defined
if not flag and isclose(unit_tangent0, unit_tangent1): # joint is already smooth
if idx != len(path)-1:
new_path.append(seg1)
continue
else:
kink_idx = (idx + 1) % len(path) # kink at start of this seg
if not flag and isclose(-unit_tangent0, unit_tangent1):
# joint is sharp 180 deg (must be fixed manually)
new_path.append(seg1)
sharp_kinks.append(kink_idx)
else: # joint is not smooth, let's smooth it.
args = (seg0, seg1, maxjointsize, tightness)
new_seg0, elbow_segs, new_seg1 = smoothed_joint(*args)
new_path[-1] = new_seg0
new_path += elbow_segs
if idx == len(path) - 1:
new_path[0] = new_seg1
else:
new_path.append(new_seg1)
# If unfixable kinks were found, let the user know
if sharp_kinks and not ignore_unfixable_kinks:
_report_unfixable_kinks(path, sharp_kinks)
return Path(*new_path)

View File

@ -0,0 +1,126 @@
"""This submodule contains tools for creating path objects from SVG files.
The main tool being the svg2paths() function."""
# External dependencies
from __future__ import division, absolute_import, print_function
from xml.dom.minidom import parse
from os import path as os_path, getcwd
from shutil import copyfile
# Internal dependencies
from .parser import parse_path
def polyline2pathd(polyline_d):
"""converts the string from a polyline d-attribute to a string for a Path
object d-attribute"""
points = polyline_d.replace(', ', ',')
points = points.replace(' ,', ',')
points = points.split()
if points[0] == points[-1]:
closed = True
else:
closed = False
d = 'M' + points.pop(0).replace(',', ' ')
for p in points:
d += 'L' + p.replace(',', ' ')
if closed:
d += 'z'
return d
def svg2paths(svg_file_location,
convert_lines_to_paths=True,
convert_polylines_to_paths=True,
convert_polygons_to_paths=True,
return_svg_attributes=False):
"""
Converts an SVG file into a list of Path objects and a list of
dictionaries containing their attributes. This currently supports
SVG Path, Line, Polyline, and Polygon elements.
:param svg_file_location: the location of the svg file
:param convert_lines_to_paths: Set to False to disclude SVG-Line objects
(converted to Paths)
:param convert_polylines_to_paths: Set to False to disclude SVG-Polyline
objects (converted to Paths)
:param convert_polygons_to_paths: Set to False to disclude SVG-Polygon
objects (converted to Paths)
:param return_svg_attributes: Set to True and a dictionary of
svg-attributes will be extracted and returned
:return: list of Path objects, list of path attribute dictionaries, and
(optionally) a dictionary of svg-attributes
"""
if os_path.dirname(svg_file_location) == '':
svg_file_location = os_path.join(getcwd(), svg_file_location)
# if pathless_svg:
# copyfile(svg_file_location, pathless_svg)
# doc = parse(pathless_svg)
# else:
doc = parse(svg_file_location)
def dom2dict(element):
"""Converts DOM elements to dictionaries of attributes."""
keys = element.attributes.keys()
values = [val.value for val in element.attributes.values()]
return dict(zip(keys, values))
# Use minidom to extract path strings from input SVG
paths = [dom2dict(el) for el in doc.getElementsByTagName('path')]
d_strings = [el['d'] for el in paths]
attribute_dictionary_list = paths
# if pathless_svg:
# for el in doc.getElementsByTagName('path'):
# el.parentNode.removeChild(el)
# Use minidom to extract polyline strings from input SVG, convert to
# path strings, add to list
if convert_polylines_to_paths:
plins = [dom2dict(el) for el in doc.getElementsByTagName('polyline')]
d_strings += [polyline2pathd(pl['points']) for pl in plins]
attribute_dictionary_list += plins
# Use minidom to extract polygon strings from input SVG, convert to
# path strings, add to list
if convert_polygons_to_paths:
pgons = [dom2dict(el) for el in doc.getElementsByTagName('polygon')]
d_strings += [polyline2pathd(pg['points']) + 'z' for pg in pgons]
attribute_dictionary_list += pgons
if convert_lines_to_paths:
lines = [dom2dict(el) for el in doc.getElementsByTagName('line')]
d_strings += [('M' + l['x1'] + ' ' + l['y1'] +
'L' + l['x2'] + ' ' + l['y2']) for l in lines]
attribute_dictionary_list += lines
# if pathless_svg:
# with open(pathless_svg, "wb") as f:
# doc.writexml(f)
if return_svg_attributes:
svg_attributes = dom2dict(doc.getElementsByTagName('svg')[0])
doc.unlink()
path_list = [parse_path(d) for d in d_strings]
return path_list, attribute_dictionary_list, svg_attributes
else:
doc.unlink()
path_list = [parse_path(d) for d in d_strings]
return path_list, attribute_dictionary_list
def svg2paths2(svg_file_location,
convert_lines_to_paths=True,
convert_polylines_to_paths=True,
convert_polygons_to_paths=True,
return_svg_attributes=True):
"""Convenience function; identical to svg2paths() except that
return_svg_attributes=True by default. See svg2paths() docstring for more
info."""
return svg2paths(svg_file_location=svg_file_location,
convert_lines_to_paths=convert_lines_to_paths,
convert_polylines_to_paths=convert_polylines_to_paths,
convert_polygons_to_paths=convert_polygons_to_paths,
return_svg_attributes=return_svg_attributes)

Binary file not shown.

BIN
dist/svgpathtools-1.2.5.tar.gz vendored Normal file

Binary file not shown.

5
setup.cfg Normal file
View File

@ -0,0 +1,5 @@
[bdist_wheel]
universal = 1
[metadata]
license_file = LICENSE.txt

View File

@ -1,19 +1,34 @@
from distutils.core import setup
from setuptools import setup
import codecs
import os
VERSION = '1.2.4'
VERSION = '1.2.5'
AUTHOR_NAME = 'Andy Port'
AUTHOR_EMAIL = 'AndyAPort@gmail.com'
def read(*parts):
"""
Build an absolute path from *parts* and and return the contents of the
resulting file. Assume UTF-8 encoding.
"""
HERE = os.path.abspath(os.path.dirname(__file__))
with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as f:
return f.read()
setup(name='svgpathtools',
packages=['svgpathtools'],
version=VERSION,
description=('A collection of tools for manipulating and analyzing SVG '
'Path objects and Bezier curves.'),
long_description=read("README.rst"),
# long_description=open('README.rst').read(),
author=AUTHOR_NAME,
author_email=AUTHOR_EMAIL,
url='https://github.com/mathandy/svgpathtools',
download_url = 'http://github.com/mathandy/svgpathtools/tarball/' + VERSION,
download_url = 'http://github.com/mathandy/svgpathtools/tarball/'+VERSION,
license='MIT',
# install_requires=['numpy', 'svgwrite'],

View File

@ -0,0 +1,657 @@
Metadata-Version: 1.1
Name: svgpathtools
Version: 1.2.5
Summary: A collection of tools for manipulating and analyzing SVG Path objects and Bezier curves.
Home-page: https://github.com/mathandy/svgpathtools
Author: Andy Port
Author-email: AndyAPort@gmail.com
License: MIT
Download-URL: http://github.com/mathandy/svgpathtools/tarball/1.2.5
Description: svgpathtools
============
svgpathtools is a collection of tools for manipulating and analyzing SVG
Path objects and Bézier curves.
Features
--------
svgpathtools contains functions designed to **easily read, write and
display SVG files** as well as *a large selection of
geometrically-oriented tools* to **transform and analyze path
elements**.
Additionally, the submodule *bezier.py* contains tools for for working
with general **nth order Bezier curves stored as n-tuples**.
Some included tools:
- **read**, **write**, and **display** SVG files containing Path (and
other) SVG elements
- convert Bézier path segments to **numpy.poly1d** (polynomial) objects
- convert polynomials (in standard form) to their Bézier form
- compute **tangent vectors** and (right-hand rule) **normal vectors**
- compute **curvature**
- break discontinuous paths into their **continuous subpaths**.
- efficiently compute **intersections** between paths and/or segments
- find a **bounding box** for a path or segment
- **reverse** segment/path orientation
- **crop** and **split** paths and segments
- **smooth** paths (i.e. smooth away kinks to make paths
differentiable)
- **transition maps** from path domain to segment domain and back (T2t
and t2T)
- compute **area** enclosed by a closed path
- compute **arc length**
- compute **inverse arc length**
- convert RGB color tuples to hexadecimal color strings and back
Note on Python 3
----------------
While I am hopeful that this package entirely works with Python 3, it was born from a larger project coded in Python 2 and has not been thoroughly tested in
Python 3. Please let me know if you find any incompatibilities.
Prerequisites
-------------
- **numpy**
- **svgwrite**
Setup
-----
If not already installed, you can **install the prerequisites** using
pip.
.. code:: bash
$ pip install numpy
.. code:: bash
$ pip install svgwrite
Then **install svgpathtools**:
.. code:: bash
$ pip install svgpathtools
Alternative Setup
~~~~~~~~~~~~~~~~~
You can download the source from Github and install by using the command
(from inside the folder containing setup.py):
.. code:: bash
$ python setup.py install
Credit where credit's due
-------------------------
Much of the core of this module was taken from `the svg.path (v2.0)
module <https://github.com/regebro/svg.path>`__. Interested svg.path
users should see the compatibility notes at bottom of this readme.
Also, a big thanks to the author(s) of `A Primer on Bézier Curves <http://pomax.github.io/bezierinfo/>`_, an outstanding resource for learning about Bézier curves and Bézier curve-related algorithms.
Basic Usage
-----------
Classes
~~~~~~~
The svgpathtools module is primarily structured around four path segment
classes: ``Line``, ``QuadraticBezier``, ``CubicBezier``, and ``Arc``.
There is also a fifth class, ``Path``, whose objects are sequences of
(connected or disconnected\ `1 <#f1>`__\ ) path segment objects.
- ``Line(start, end)``
- ``Arc(start, radius, rotation, large_arc, sweep, end)`` Note: See
docstring for a detailed explanation of these parameters
- ``QuadraticBezier(start, control, end)``
- ``CubicBezier(start, control1, control2, end)``
- ``Path(*segments)``
See the relevant docstrings in *path.py* or the `official SVG
specifications <http://www.w3.org/TR/SVG/paths.html>`__ for more
information on what each parameter means.
1 Warning: Some of the functionality in this library has not been tested
on discontinuous Path objects. A simple workaround is provided, however,
by the ``Path.continuous_subpaths()`` method. `↩ <#a1>`__
.. code:: python
from __future__ import division, print_function
.. code:: python
# Coordinates are given as points in the complex plane
from svgpathtools import Path, Line, QuadraticBezier, CubicBezier, Arc
seg1 = CubicBezier(300+100j, 100+100j, 200+200j, 200+300j) # A cubic beginning at (300, 100) and ending at (200, 300)
seg2 = Line(200+300j, 250+350j) # A line beginning at (200, 300) and ending at (250, 350)
path = Path(seg1, seg2) # A path traversing the cubic and then the line
# We could alternatively created this Path object using a d-string
from svgpathtools import parse_path
path_alt = parse_path('M 300 100 C 100 100 200 200 200 300 L 250 350')
# Let's check that these two methods are equivalent
print(path)
print(path_alt)
print(path == path_alt)
# On a related note, the Path.d() method returns a Path object's d-string
print(path.d())
print(parse_path(path.d()) == path)
.. parsed-literal::
Path(CubicBezier(start=(300+100j), control1=(100+100j), control2=(200+200j), end=(200+300j)),
Line(start=(200+300j), end=(250+350j)))
Path(CubicBezier(start=(300+100j), control1=(100+100j), control2=(200+200j), end=(200+300j)),
Line(start=(200+300j), end=(250+350j)))
True
M 300.0,100.0 C 100.0,100.0 200.0,200.0 200.0,300.0 L 250.0,350.0
True
The ``Path`` class is a mutable sequence, so it behaves much like a
list. So segments can **append**\ ed, **insert**\ ed, set by index,
**del**\ eted, **enumerate**\ d, **slice**\ d out, etc.
.. code:: python
# Let's append another to the end of it
path.append(CubicBezier(250+350j, 275+350j, 250+225j, 200+100j))
print(path)
# Let's replace the first segment with a Line object
path[0] = Line(200+100j, 200+300j)
print(path)
# You may have noticed that this path is connected and now is also closed (i.e. path.start == path.end)
print("path is continuous? ", path.iscontinuous())
print("path is closed? ", path.isclosed())
# The curve the path follows is not, however, smooth (differentiable)
from svgpathtools import kinks, smoothed_path
print("path contains non-differentiable points? ", len(kinks(path)) > 0)
# If we want, we can smooth these out (Experimental and only for line/cubic paths)
# Note: smoothing will always works (except on 180 degree turns), but you may want
# to play with the maxjointsize and tightness parameters to get pleasing results
# Note also: smoothing will increase the number of segments in a path
spath = smoothed_path(path)
print("spath contains non-differentiable points? ", len(kinks(spath)) > 0)
print(spath)
# Let's take a quick look at the path and its smoothed relative
# The following commands will open two browser windows to display path and spaths
from svgpathtools import disvg
from time import sleep
disvg(path)
sleep(1) # needed when not giving the SVGs unique names (or not using timestamp)
disvg(spath)
print("Notice that path contains {} segments and spath contains {} segments."
"".format(len(path), len(spath)))
.. parsed-literal::
Path(CubicBezier(start=(300+100j), control1=(100+100j), control2=(200+200j), end=(200+300j)),
Line(start=(200+300j), end=(250+350j)),
CubicBezier(start=(250+350j), control1=(275+350j), control2=(250+225j), end=(200+100j)))
Path(Line(start=(200+100j), end=(200+300j)),
Line(start=(200+300j), end=(250+350j)),
CubicBezier(start=(250+350j), control1=(275+350j), control2=(250+225j), end=(200+100j)))
path is continuous? True
path is closed? True
path contains non-differentiable points? True
spath contains non-differentiable points? False
Path(Line(start=(200+101.5j), end=(200+298.5j)),
CubicBezier(start=(200+298.5j), control1=(200+298.505j), control2=(201.057124638+301.057124638j), end=(201.060660172+301.060660172j)),
Line(start=(201.060660172+301.060660172j), end=(248.939339828+348.939339828j)),
CubicBezier(start=(248.939339828+348.939339828j), control1=(249.649982143+349.649982143j), control2=(248.995+350j), end=(250+350j)),
CubicBezier(start=(250+350j), control1=(275+350j), control2=(250+225j), end=(200+100j)),
CubicBezier(start=(200+100j), control1=(199.62675237+99.0668809257j), control2=(200+100.495j), end=(200+101.5j)))
Notice that path contains 3 segments and spath contains 6 segments.
Reading SVGSs
~~~~~~~~~~~~~
| The **svg2paths()** function converts an svgfile to a list of Path
objects and a separate list of dictionaries containing the attributes
of each said path.
| Note: Line, Polyline, Polygon, and Path SVG elements can all be
converted to Path objects using this function.
.. code:: python
# Read SVG into a list of path objects and list of dictionaries of attributes
from svgpathtools import svg2paths, wsvg
paths, attributes = svg2paths('test.svg')
# Update: You can now also extract the svg-attributes by setting
# return_svg_attributes=True, or with the convenience function svg2paths2
from svgpathtools import svg2paths2
paths, attributes, svg_attributes = svg2paths2('test.svg')
# Let's print out the first path object and the color it was in the SVG
# We'll see it is composed of two CubicBezier objects and, in the SVG file it
# came from, it was red
redpath = paths[0]
redpath_attribs = attributes[0]
print(redpath)
print(redpath_attribs['stroke'])
.. parsed-literal::
Path(CubicBezier(start=(10.5+80j), control1=(40+10j), control2=(65+10j), end=(95+80j)),
CubicBezier(start=(95+80j), control1=(125+150j), control2=(150+150j), end=(180+80j)))
red
Writing SVGSs (and some geometric functions and methods)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The **wsvg()** function creates an SVG file from a list of path. This
function can do many things (see docstring in *paths2svg.py* for more
information) and is meant to be quick and easy to use. Note: Use the
convenience function **disvg()** (or set 'openinbrowser=True') to
automatically attempt to open the created svg file in your default SVG
viewer.
.. code:: python
# Let's make a new SVG that's identical to the first
wsvg(paths, attributes=attributes, svg_attributes=svg_attributes, filename='output1.svg')
.. figure:: https://cdn.rawgit.com/mathandy/svgpathtools/master/output1.svg
:alt: output1.svg
output1.svg
There will be many more examples of writing and displaying path data
below.
The .point() method and transitioning between path and path segment parameterizations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SVG Path elements and their segments have official parameterizations.
These parameterizations can be accessed using the ``Path.point()``,
``Line.point()``, ``QuadraticBezier.point()``, ``CubicBezier.point()``,
and ``Arc.point()`` methods. All these parameterizations are defined
over the domain 0 <= t <= 1.
| **Note:** In this document and in inline documentation and doctrings,
I use a capital ``T`` when referring to the parameterization of a Path
object and a lower case ``t`` when referring speaking about path
segment objects (i.e. Line, QaudraticBezier, CubicBezier, and Arc
objects).
| Given a ``T`` value, the ``Path.T2t()`` method can be used to find the
corresponding segment index, ``k``, and segment parameter, ``t``, such
that ``path.point(T)=path[k].point(t)``.
| There is also a ``Path.t2T()`` method to solve the inverse problem.
.. code:: python
# Example:
# Let's check that the first segment of redpath starts
# at the same point as redpath
firstseg = redpath[0]
print(redpath.point(0) == firstseg.point(0) == redpath.start == firstseg.start)
# Let's check that the last segment of redpath ends on the same point as redpath
lastseg = redpath[-1]
print(redpath.point(1) == lastseg.point(1) == redpath.end == lastseg.end)
# This next boolean should return False as redpath is composed multiple segments
print(redpath.point(0.5) == firstseg.point(0.5))
# If we want to figure out which segment of redpoint the
# point redpath.point(0.5) lands on, we can use the path.T2t() method
k, t = redpath.T2t(0.5)
print(redpath[k].point(t) == redpath.point(0.5))
.. parsed-literal::
True
True
False
True
Tangent vectors and Bezier curves as numpy polynomial objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| Another great way to work with the parameterizations for Line,
QuadraticBezier, and CubicBezier objects is to convert them to
``numpy.poly1d`` objects. This is done easily using the
``Line.poly()``, ``QuadraticBezier.poly()`` and ``CubicBezier.poly()``
methods.
| There's also a ``polynomial2bezier()`` function in the pathtools.py
submodule to convert polynomials back to Bezier curves.
**Note:** cubic Bezier curves are parameterized as
.. math:: \mathcal{B}(t) = P_0(1-t)^3 + 3P_1(1-t)^2t + 3P_2(1-t)t^2 + P_3t^3
where :math:`P_0`, :math:`P_1`, :math:`P_2`, and :math:`P_3` are the
control points ``start``, ``control1``, ``control2``, and ``end``,
respectively, that svgpathtools uses to define a CubicBezier object. The
``CubicBezier.poly()`` method expands this polynomial to its standard
form
.. math:: \mathcal{B}(t) = c_0t^3 + c_1t^2 +c_2t+c3
where
.. math::
\begin{bmatrix}c_0\\c_1\\c_2\\c_3\end{bmatrix} =
\begin{bmatrix}
-1 & 3 & -3 & 1\\
3 & -6 & -3 & 0\\
-3 & 3 & 0 & 0\\
1 & 0 & 0 & 0\\
\end{bmatrix}
\begin{bmatrix}P_0\\P_1\\P_2\\P_3\end{bmatrix}
QuadraticBezier.poly() and Line.poly() are defined similarly.
.. code:: python
# Example:
b = CubicBezier(300+100j, 100+100j, 200+200j, 200+300j)
p = b.poly()
# p(t) == b.point(t)
print(p(0.235) == b.point(0.235))
# What is p(t)? It's just the cubic b written in standard form.
bpretty = "{}*(1-t)^3 + 3*{}*(1-t)^2*t + 3*{}*(1-t)*t^2 + {}*t^3".format(*b.bpoints())
print("The CubicBezier, b.point(x) = \n\n" +
bpretty + "\n\n" +
"can be rewritten in standard form as \n\n" +
str(p).replace('x','t'))
.. parsed-literal::
True
The CubicBezier, b.point(x) =
(300+100j)*(1-t)^3 + 3*(100+100j)*(1-t)^2*t + 3*(200+200j)*(1-t)*t^2 + (200+300j)*t^3
can be rewritten in standard form as
3 2
(-400 + -100j) t + (900 + 300j) t - 600 t + (300 + 100j)
To illustrate the awesomeness of being able to convert our Bezier curve
objects to numpy.poly1d objects and back, lets compute the unit tangent
vector of the above CubicBezier object, b, at t=0.5 in four different
ways.
Tangent vectors (and more on polynomials)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
t = 0.5
### Method 1: the easy way
u1 = b.unit_tangent(t)
### Method 2: another easy way
# Note: This way will fail if it encounters a removable singularity.
u2 = b.derivative(t)/abs(b.derivative(t))
### Method 2: a third easy way
# Note: This way will also fail if it encounters a removable singularity.
dp = p.deriv()
u3 = dp(t)/abs(dp(t))
### Method 4: the removable-singularity-proof numpy.poly1d way
# Note: This is roughly how Method 1 works
from svgpathtools import real, imag, rational_limit
dx, dy = real(dp), imag(dp) # dp == dx + 1j*dy
p_mag2 = dx**2 + dy**2 # p_mag2(t) = |p(t)|**2
# Note: abs(dp) isn't a polynomial, but abs(dp)**2 is, and,
# the limit_{t->t0}[f(t) / abs(f(t))] ==
# sqrt(limit_{t->t0}[f(t)**2 / abs(f(t))**2])
from cmath import sqrt
u4 = sqrt(rational_limit(dp**2, p_mag2, t))
print("unit tangent check:", u1 == u2 == u3 == u4)
# Let's do a visual check
mag = b.length()/4 # so it's not hard to see the tangent line
tangent_line = Line(b.point(t), b.point(t) + mag*u1)
disvg([b, tangent_line], 'bg', nodes=[b.point(t)])
.. parsed-literal::
unit tangent check: True
Translations (shifts), reversing orientation, and normal vectors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
# Speaking of tangents, let's add a normal vector to the picture
n = b.normal(t)
normal_line = Line(b.point(t), b.point(t) + mag*n)
disvg([b, tangent_line, normal_line], 'bgp', nodes=[b.point(t)])
# and let's reverse the orientation of b!
# the tangent and normal lines should be sent to their opposites
br = b.reversed()
# Let's also shift b_r over a bit to the right so we can view it next to b
# The simplest way to do this is br = br.translated(3*mag), but let's use
# the .bpoints() instead, which returns a Bezier's control points
br.start, br.control1, br.control2, br.end = [3*mag + bpt for bpt in br.bpoints()] #
tangent_line_r = Line(br.point(t), br.point(t) + mag*br.unit_tangent(t))
normal_line_r = Line(br.point(t), br.point(t) + mag*br.normal(t))
wsvg([b, tangent_line, normal_line, br, tangent_line_r, normal_line_r],
'bgpkgp', nodes=[b.point(t), br.point(t)], filename='vectorframes.svg',
text=["b's tangent", "br's tangent"], text_path=[tangent_line, tangent_line_r])
.. figure:: https://cdn.rawgit.com/mathandy/svgpathtools/master/vectorframes.svg
:alt: vectorframes.svg
vectorframes.svg
Rotations and Translations
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
# Let's take a Line and an Arc and make some pictures
top_half = Arc(start=-1, radius=1+2j, rotation=0, large_arc=1, sweep=1, end=1)
midline = Line(-1.5, 1.5)
# First let's make our ellipse whole
bottom_half = top_half.rotated(180)
decorated_ellipse = Path(top_half, bottom_half)
# Now let's add the decorations
for k in range(12):
decorated_ellipse.append(midline.rotated(30*k))
# Let's move it over so we can see the original Line and Arc object next
# to the final product
decorated_ellipse = decorated_ellipse.translated(4+0j)
wsvg([top_half, midline, decorated_ellipse], filename='decorated_ellipse.svg')
.. figure:: https://cdn.rawgit.com/mathandy/svgpathtools/master/decorated_ellipse.svg
:alt: decorated\_ellipse.svg
decorated\_ellipse.svg
arc length and inverse arc length
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here we'll create an SVG that shows off the parametric and geometric
midpoints of the paths from ``test.svg``. We'll need to compute use the
``Path.length()``, ``Line.length()``, ``QuadraticBezier.length()``,
``CubicBezier.length()``, and ``Arc.length()`` methods, as well as the
related inverse arc length methods ``.ilength()`` function to do this.
.. code:: python
# First we'll load the path data from the file test.svg
paths, attributes = svg2paths('test.svg')
# Let's mark the parametric midpoint of each segment
# I say "parametric" midpoint because Bezier curves aren't
# parameterized by arclength
# If they're also the geometric midpoint, let's mark them
# purple and otherwise we'll mark the geometric midpoint green
min_depth = 5
error = 1e-4
dots = []
ncols = []
nradii = []
for path in paths:
for seg in path:
parametric_mid = seg.point(0.5)
seg_length = seg.length()
if seg.length(0.5)/seg.length() == 1/2:
dots += [parametric_mid]
ncols += ['purple']
nradii += [5]
else:
t_mid = seg.ilength(seg_length/2)
geo_mid = seg.point(t_mid)
dots += [parametric_mid, geo_mid]
ncols += ['red', 'green']
nradii += [5] * 2
# In 'output2.svg' the paths will retain their original attributes
wsvg(paths, nodes=dots, node_colors=ncols, node_radii=nradii,
attributes=attributes, filename='output2.svg')
.. figure:: https://cdn.rawgit.com/mathandy/svgpathtools/master/output2.svg
:alt: output2.svg
output2.svg
Intersections between Bezier curves
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
# Let's find all intersections between redpath and the other
redpath = paths[0]
redpath_attribs = attributes[0]
intersections = []
for path in paths[1:]:
for (T1, seg1, t1), (T2, seg2, t2) in redpath.intersect(path):
intersections.append(redpath.point(T1))
disvg(paths, filename='output_intersections.svg', attributes=attributes,
nodes = intersections, node_radii = [5]*len(intersections))
.. figure:: https://cdn.rawgit.com/mathandy/svgpathtools/master/output_intersections.svg
:alt: output\_intersections.svg
output\_intersections.svg
An Advanced Application: Offsetting Paths
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here we'll find the `offset
curve <https://en.wikipedia.org/wiki/Parallel_curve>`__ for a few paths.
.. code:: python
from svgpathtools import parse_path, Line, Path, wsvg
def offset_curve(path, offset_distance, steps=1000):
"""Takes in a Path object, `path`, and a distance,
`offset_distance`, and outputs an piecewise-linear approximation
of the 'parallel' offset curve."""
nls = []
for seg in path:
ct = 1
for k in range(steps):
t = k / steps
offset_vector = offset_distance * seg.normal(t)
nl = Line(seg.point(t), seg.point(t) + offset_vector)
nls.append(nl)
connect_the_dots = [Line(nls[k].end, nls[k+1].end) for k in range(len(nls)-1)]
if path.isclosed():
connect_the_dots.append(Line(nls[-1].end, nls[0].end))
offset_path = Path(*connect_the_dots)
return offset_path
# Examples:
path1 = parse_path("m 288,600 c -52,-28 -42,-61 0,-97 ")
path2 = parse_path("M 151,395 C 407,485 726.17662,160 634,339").translated(300)
path3 = parse_path("m 117,695 c 237,-7 -103,-146 457,0").translated(500+400j)
paths = [path1, path2, path3]
offset_distances = [10*k for k in range(1,51)]
offset_paths = []
for path in paths:
for distances in offset_distances:
offset_paths.append(offset_curve(path, distances))
# Note: This will take a few moments
wsvg(paths + offset_paths, 'g'*len(paths) + 'r'*len(offset_paths), filename='offset_curves.svg')
.. figure:: https://cdn.rawgit.com/mathandy/svgpathtools/master/offset_curves.svg
:alt: offset\_curves.svg
offset\_curves.svg
Compatibility Notes for users of svg.path (v2.0)
------------------------------------------------
- renamed Arc.arc attribute as Arc.large\_arc
- Path.d() : For behavior similar\ `2 <#f2>`__\ to svg.path (v2.0),
set both useSandT and use\_closed\_attrib to be True.
2 The behavior would be identical, but the string formatting used in
this method has been changed to use default format (instead of the
General format, {:G}), for inceased precision. `↩ <#a2>`__
Licence
-------
This module is under a MIT License.
Keywords: svg,svg path,svg.path,bezier,parse svg path,display svg
Platform: OS Independent
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Multimedia :: Graphics :: Editors :: Vector-Based
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Visualization
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires: numpy
Requires: svgwrite

View File

@ -0,0 +1,36 @@
LICENSE.txt
LICENSE2.txt
MANIFEST.in
README.rst
decorated_ellipse.svg
disvg_output.svg
offset_curves.svg
output1.svg
output2.svg
output_intersections.svg
path.svg
setup.cfg
setup.py
test.svg
vectorframes.svg
svgpathtools/__init__.py
svgpathtools/bezier.py
svgpathtools/misctools.py
svgpathtools/parser.py
svgpathtools/path.py
svgpathtools/paths2svg.py
svgpathtools/pathtools.py
svgpathtools/polytools.py
svgpathtools/smoothing.py
svgpathtools/svg2paths.py
svgpathtools.egg-info/PKG-INFO
svgpathtools.egg-info/SOURCES.txt
svgpathtools.egg-info/dependency_links.txt
svgpathtools.egg-info/top_level.txt
test/test.svg
test/test_bezier.py
test/test_generation.py
test/test_parsing.py
test/test_path.py
test/test_pathtools.py
test/test_polytools.py

View File

@ -0,0 +1 @@

View File

@ -0,0 +1 @@
svgpathtools

View File

Before

Width:  |  Height:  |  Size: 2.6 KiB

After

Width:  |  Height:  |  Size: 2.6 KiB