637 lines
23 KiB
C++
637 lines
23 KiB
C++
#include "solvespace.h"
|
|
|
|
Expr *Constraint::VectorsParallel(int eq, ExprVector a, ExprVector b) {
|
|
ExprVector r = a.Cross(b);
|
|
// Hairy ball theorem screws me here. There's no clean solution that I
|
|
// know, so let's pivot on the initial numerical guess. Our caller
|
|
// has ensured that if one of our input vectors is already known (e.g.
|
|
// it's from a previous group), then that one's in a; so that one's
|
|
// not going to move, and we should pivot on that one.
|
|
double mx = fabs((a.x)->Eval());
|
|
double my = fabs((a.y)->Eval());
|
|
double mz = fabs((a.z)->Eval());
|
|
// The basis vector in which the vectors have the LEAST energy is the
|
|
// one that we should look at most (e.g. if both vectors lie in the xy
|
|
// plane, then the z component of the cross product is most important).
|
|
// So find the strongest component of a and b, and that's the component
|
|
// of the cross product to ignore.
|
|
Expr *e0, *e1;
|
|
if(mx > my && mx > mz) {
|
|
e0 = r.y; e1 = r.z;
|
|
} else if(my > mz) {
|
|
e0 = r.z; e1 = r.x;
|
|
} else {
|
|
e0 = r.x; e1 = r.y;
|
|
}
|
|
|
|
if(eq == 0) return e0;
|
|
if(eq == 1) return e1;
|
|
oops();
|
|
}
|
|
|
|
Expr *Constraint::PointLineDistance(hEntity wrkpl, hEntity hpt, hEntity hln) {
|
|
Entity *ln = SS.GetEntity(hln);
|
|
Entity *a = SS.GetEntity(ln->point[0]);
|
|
Entity *b = SS.GetEntity(ln->point[1]);
|
|
|
|
Entity *p = SS.GetEntity(hpt);
|
|
|
|
if(wrkpl.v == Entity::FREE_IN_3D.v) {
|
|
ExprVector ep = p->PointGetExprs();
|
|
|
|
ExprVector ea = a->PointGetExprs();
|
|
ExprVector eb = b->PointGetExprs();
|
|
ExprVector eab = ea.Minus(eb);
|
|
Expr *m = eab.Magnitude();
|
|
|
|
return ((eab.Cross(ea.Minus(ep))).Magnitude())->Div(m);
|
|
} else {
|
|
Expr *ua, *va, *ub, *vb;
|
|
a->PointGetExprsInWorkplane(wrkpl, &ua, &va);
|
|
b->PointGetExprsInWorkplane(wrkpl, &ub, &vb);
|
|
|
|
Expr *du = ua->Minus(ub);
|
|
Expr *dv = va->Minus(vb);
|
|
|
|
Expr *u, *v;
|
|
p->PointGetExprsInWorkplane(wrkpl, &u, &v);
|
|
|
|
Expr *m = ((du->Square())->Plus(dv->Square()))->Sqrt();
|
|
|
|
Expr *proj = (dv->Times(ua->Minus(u)))->Minus(
|
|
(du->Times(va->Minus(v))));
|
|
|
|
return proj->Div(m);
|
|
}
|
|
}
|
|
|
|
Expr *Constraint::PointPlaneDistance(ExprVector p, hEntity hpl) {
|
|
ExprVector n;
|
|
Expr *d;
|
|
SS.GetEntity(hpl)->WorkplaneGetPlaneExprs(&n, &d);
|
|
return (p.Dot(n))->Minus(d);
|
|
}
|
|
|
|
Expr *Constraint::Distance(hEntity wrkpl, hEntity hpa, hEntity hpb) {
|
|
Entity *pa = SS.GetEntity(hpa);
|
|
Entity *pb = SS.GetEntity(hpb);
|
|
if(!(pa->IsPoint() && pb->IsPoint())) oops();
|
|
|
|
if(wrkpl.v == Entity::FREE_IN_3D.v) {
|
|
// This is true distance
|
|
ExprVector ea, eb, eab;
|
|
ea = pa->PointGetExprs();
|
|
eb = pb->PointGetExprs();
|
|
eab = ea.Minus(eb);
|
|
|
|
return eab.Magnitude();
|
|
} else {
|
|
// This is projected distance, in the given workplane.
|
|
Expr *au, *av, *bu, *bv;
|
|
|
|
pa->PointGetExprsInWorkplane(wrkpl, &au, &av);
|
|
pb->PointGetExprsInWorkplane(wrkpl, &bu, &bv);
|
|
|
|
Expr *du = au->Minus(bu);
|
|
Expr *dv = av->Minus(bv);
|
|
|
|
return ((du->Square())->Plus(dv->Square()))->Sqrt();
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Return the cosine of the angle between two vectors. If a workplane is
|
|
// specified, then it's the cosine of their projections into that workplane.
|
|
//-----------------------------------------------------------------------------
|
|
Expr *Constraint::DirectionCosine(hEntity wrkpl, ExprVector ae, ExprVector be) {
|
|
if(wrkpl.v == Entity::FREE_IN_3D.v) {
|
|
Expr *mags = (ae.Magnitude())->Times(be.Magnitude());
|
|
return (ae.Dot(be))->Div(mags);
|
|
} else {
|
|
Entity *w = SS.GetEntity(wrkpl);
|
|
ExprVector u = w->Normal()->NormalExprsU();
|
|
ExprVector v = w->Normal()->NormalExprsV();
|
|
Expr *ua = u.Dot(ae);
|
|
Expr *va = v.Dot(ae);
|
|
Expr *ub = u.Dot(be);
|
|
Expr *vb = v.Dot(be);
|
|
Expr *maga = (ua->Square()->Plus(va->Square()))->Sqrt();
|
|
Expr *magb = (ub->Square()->Plus(vb->Square()))->Sqrt();
|
|
Expr *dot = (ua->Times(ub))->Plus(va->Times(vb));
|
|
return dot->Div(maga->Times(magb));
|
|
}
|
|
}
|
|
|
|
ExprVector Constraint::PointInThreeSpace(hEntity workplane, Expr *u, Expr *v) {
|
|
Entity *w = SS.GetEntity(workplane);
|
|
|
|
ExprVector ub = w->Normal()->NormalExprsU();
|
|
ExprVector vb = w->Normal()->NormalExprsV();
|
|
ExprVector ob = w->WorkplaneGetOffsetExprs();
|
|
|
|
return (ub.ScaledBy(u)).Plus(vb.ScaledBy(v)).Plus(ob);
|
|
}
|
|
|
|
void Constraint::ModifyToSatisfy(void) {
|
|
if(type == ANGLE) {
|
|
Vector a = SS.GetEntity(entityA)->VectorGetNum();
|
|
Vector b = SS.GetEntity(entityB)->VectorGetNum();
|
|
if(other) a = a.ScaledBy(-1);
|
|
if(workplane.v != Entity::FREE_IN_3D.v) {
|
|
a = a.ProjectVectorInto(workplane);
|
|
b = b.ProjectVectorInto(workplane);
|
|
}
|
|
double c = (a.Dot(b))/(a.Magnitude() * b.Magnitude());
|
|
valA = acos(c)*180/PI;
|
|
} else {
|
|
// We'll fix these ones up by looking at their symbolic equation;
|
|
// that means no extra work.
|
|
IdList<Equation,hEquation> l;
|
|
// An uninit IdList could lead us to free some random address, bad.
|
|
ZERO(&l);
|
|
// Generate the equations even if this is a reference dimension
|
|
GenerateReal(&l);
|
|
if(l.n != 1) oops();
|
|
|
|
// These equations are written in the form f(...) - d = 0, where
|
|
// d is the value of the valA.
|
|
valA += (l.elem[0].e)->Eval();
|
|
|
|
l.Clear();
|
|
}
|
|
}
|
|
|
|
void Constraint::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) {
|
|
Equation eq;
|
|
eq.e = expr;
|
|
eq.h = h.equation(index);
|
|
l->Add(&eq);
|
|
}
|
|
|
|
void Constraint::Generate(IdList<Equation,hEquation> *l) {
|
|
if(!reference) {
|
|
GenerateReal(l);
|
|
}
|
|
}
|
|
void Constraint::GenerateReal(IdList<Equation,hEquation> *l) {
|
|
Expr *exA = Expr::From(valA);
|
|
|
|
switch(type) {
|
|
case PT_PT_DISTANCE:
|
|
AddEq(l, Distance(workplane, ptA, ptB)->Minus(exA), 0);
|
|
break;
|
|
|
|
case PT_LINE_DISTANCE:
|
|
AddEq(l,
|
|
PointLineDistance(workplane, ptA, entityA)->Minus(exA), 0);
|
|
break;
|
|
|
|
case PT_PLANE_DISTANCE: {
|
|
ExprVector pt = SS.GetEntity(ptA)->PointGetExprs();
|
|
AddEq(l, (PointPlaneDistance(pt, entityA))->Minus(exA), 0);
|
|
break;
|
|
}
|
|
|
|
case PT_FACE_DISTANCE: {
|
|
ExprVector pt = SS.GetEntity(ptA)->PointGetExprs();
|
|
Entity *f = SS.GetEntity(entityA);
|
|
ExprVector p0 = f->FaceGetPointExprs();
|
|
ExprVector n = f->FaceGetNormalExprs();
|
|
AddEq(l, (pt.Minus(p0)).Dot(n)->Minus(exA), 0);
|
|
break;
|
|
}
|
|
|
|
case EQUAL_LENGTH_LINES: {
|
|
Entity *a = SS.GetEntity(entityA);
|
|
Entity *b = SS.GetEntity(entityB);
|
|
AddEq(l, Distance(workplane, a->point[0], a->point[1])->Minus(
|
|
Distance(workplane, b->point[0], b->point[1])), 0);
|
|
break;
|
|
}
|
|
|
|
// These work on distance squared, since the pt-line distances are
|
|
// signed, and we want the absolute value.
|
|
case EQ_LEN_PT_LINE_D: {
|
|
Entity *forLen = SS.GetEntity(entityA);
|
|
Expr *d1 = Distance(workplane, forLen->point[0], forLen->point[1]);
|
|
Expr *d2 = PointLineDistance(workplane, ptA, entityB);
|
|
AddEq(l, (d1->Square())->Minus(d2->Square()), 0);
|
|
break;
|
|
}
|
|
case EQ_PT_LN_DISTANCES: {
|
|
Expr *d1 = PointLineDistance(workplane, ptA, entityA);
|
|
Expr *d2 = PointLineDistance(workplane, ptB, entityB);
|
|
AddEq(l, (d1->Square())->Minus(d2->Square()), 0);
|
|
break;
|
|
}
|
|
|
|
case LENGTH_RATIO: {
|
|
Entity *a = SS.GetEntity(entityA);
|
|
Entity *b = SS.GetEntity(entityB);
|
|
Expr *la = Distance(workplane, a->point[0], a->point[1]);
|
|
Expr *lb = Distance(workplane, b->point[0], b->point[1]);
|
|
AddEq(l, (la->Div(lb))->Minus(exA), 0);
|
|
break;
|
|
}
|
|
|
|
case DIAMETER: {
|
|
Entity *circle = SS.GetEntity(entityA);
|
|
Expr *r = circle->CircleGetRadiusExpr();
|
|
AddEq(l, (r->Times(Expr::From(2)))->Minus(exA), 0);
|
|
break;
|
|
}
|
|
|
|
case EQUAL_RADIUS: {
|
|
Entity *c1 = SS.GetEntity(entityA);
|
|
Entity *c2 = SS.GetEntity(entityB);
|
|
AddEq(l, (c1->CircleGetRadiusExpr())->Minus(
|
|
c2->CircleGetRadiusExpr()), 0);
|
|
break;
|
|
}
|
|
|
|
case POINTS_COINCIDENT: {
|
|
Entity *a = SS.GetEntity(ptA);
|
|
Entity *b = SS.GetEntity(ptB);
|
|
if(workplane.v == Entity::FREE_IN_3D.v) {
|
|
ExprVector pa = a->PointGetExprs();
|
|
ExprVector pb = b->PointGetExprs();
|
|
AddEq(l, pa.x->Minus(pb.x), 0);
|
|
AddEq(l, pa.y->Minus(pb.y), 1);
|
|
AddEq(l, pa.z->Minus(pb.z), 2);
|
|
} else {
|
|
Expr *au, *av;
|
|
Expr *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
AddEq(l, au->Minus(bu), 0);
|
|
AddEq(l, av->Minus(bv), 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PT_IN_PLANE:
|
|
// This one works the same, whether projected or not.
|
|
AddEq(l, PointPlaneDistance(
|
|
SS.GetEntity(ptA)->PointGetExprs(), entityA), 0);
|
|
break;
|
|
|
|
case PT_ON_FACE: {
|
|
// a plane, n dot (p - p0) = 0
|
|
ExprVector p = SS.GetEntity(ptA)->PointGetExprs();
|
|
Entity *f = SS.GetEntity(entityA);
|
|
ExprVector p0 = f->FaceGetPointExprs();
|
|
ExprVector n = f->FaceGetNormalExprs();
|
|
AddEq(l, (p.Minus(p0)).Dot(n), 0);
|
|
break;
|
|
}
|
|
|
|
case PT_ON_LINE:
|
|
if(workplane.v == Entity::FREE_IN_3D.v) {
|
|
Entity *ln = SS.GetEntity(entityA);
|
|
Entity *a = SS.GetEntity(ln->point[0]);
|
|
Entity *b = SS.GetEntity(ln->point[1]);
|
|
Entity *p = SS.GetEntity(ptA);
|
|
|
|
ExprVector ep = p->PointGetExprs();
|
|
ExprVector ea = a->PointGetExprs();
|
|
ExprVector eb = b->PointGetExprs();
|
|
ExprVector eab = ea.Minus(eb);
|
|
|
|
// Construct a vector from the point to either endpoint of
|
|
// the line segment, and choose the longer of these.
|
|
ExprVector eap = ea.Minus(ep);
|
|
ExprVector ebp = eb.Minus(ep);
|
|
ExprVector elp =
|
|
(ebp.Magnitude()->Eval() > eap.Magnitude()->Eval()) ?
|
|
ebp : eap;
|
|
|
|
if(p->group.v == group.v) {
|
|
AddEq(l, VectorsParallel(0, eab, elp), 0);
|
|
AddEq(l, VectorsParallel(1, eab, elp), 1);
|
|
} else {
|
|
AddEq(l, VectorsParallel(0, elp, eab), 0);
|
|
AddEq(l, VectorsParallel(1, elp, eab), 1);
|
|
}
|
|
} else {
|
|
AddEq(l, PointLineDistance(workplane, ptA, entityA), 0);
|
|
}
|
|
break;
|
|
|
|
case PT_ON_CIRCLE: {
|
|
// This actually constrains the point to lie on the cylinder.
|
|
Entity *circle = SS.GetEntity(entityA);
|
|
ExprVector center = SS.GetEntity(circle->point[0])->PointGetExprs();
|
|
ExprVector pt = SS.GetEntity(ptA)->PointGetExprs();
|
|
Entity *normal = SS.GetEntity(circle->normal);
|
|
ExprVector u = normal->NormalExprsU(),
|
|
v = normal->NormalExprsV();
|
|
|
|
Expr *du = (center.Minus(pt)).Dot(u),
|
|
*dv = (center.Minus(pt)).Dot(v);
|
|
|
|
Expr *r = circle->CircleGetRadiusExpr();
|
|
|
|
AddEq(l,
|
|
((du->Square())->Plus(dv->Square()))->Minus(r->Square()), 0);
|
|
break;
|
|
}
|
|
|
|
case AT_MIDPOINT:
|
|
if(workplane.v == Entity::FREE_IN_3D.v) {
|
|
Entity *ln = SS.GetEntity(entityA);
|
|
ExprVector a = SS.GetEntity(ln->point[0])->PointGetExprs();
|
|
ExprVector b = SS.GetEntity(ln->point[1])->PointGetExprs();
|
|
ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5));
|
|
|
|
if(ptA.v) {
|
|
ExprVector p = SS.GetEntity(ptA)->PointGetExprs();
|
|
AddEq(l, (m.x)->Minus(p.x), 0);
|
|
AddEq(l, (m.y)->Minus(p.y), 1);
|
|
AddEq(l, (m.z)->Minus(p.z), 2);
|
|
} else {
|
|
AddEq(l, PointPlaneDistance(m, entityB), 0);
|
|
}
|
|
} else {
|
|
Entity *ln = SS.GetEntity(entityA);
|
|
Entity *a = SS.GetEntity(ln->point[0]);
|
|
Entity *b = SS.GetEntity(ln->point[1]);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
Expr *mu = Expr::From(0.5)->Times(au->Plus(bu));
|
|
Expr *mv = Expr::From(0.5)->Times(av->Plus(bv));
|
|
|
|
if(ptA.v) {
|
|
Entity *p = SS.GetEntity(ptA);
|
|
Expr *pu, *pv;
|
|
p->PointGetExprsInWorkplane(workplane, &pu, &pv);
|
|
AddEq(l, pu->Minus(mu), 0);
|
|
AddEq(l, pv->Minus(mv), 1);
|
|
} else {
|
|
ExprVector m = PointInThreeSpace(workplane, mu, mv);
|
|
AddEq(l, PointPlaneDistance(m, entityB), 0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SYMMETRIC:
|
|
if(workplane.v == Entity::FREE_IN_3D.v) {
|
|
Entity *plane = SS.GetEntity(entityA);
|
|
Entity *ea = SS.GetEntity(ptA);
|
|
Entity *eb = SS.GetEntity(ptB);
|
|
ExprVector a = ea->PointGetExprs();
|
|
ExprVector b = eb->PointGetExprs();
|
|
|
|
// The midpoint of the line connecting the symmetric points
|
|
// lies on the plane of the symmetry.
|
|
ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5));
|
|
AddEq(l, PointPlaneDistance(m, plane->h), 0);
|
|
|
|
// And projected into the plane of symmetry, the points are
|
|
// coincident.
|
|
Expr *au, *av, *bu, *bv;
|
|
ea->PointGetExprsInWorkplane(plane->h, &au, &av);
|
|
eb->PointGetExprsInWorkplane(plane->h, &bu, &bv);
|
|
AddEq(l, au->Minus(bu), 1);
|
|
AddEq(l, av->Minus(bv), 2);
|
|
} else {
|
|
Entity *plane = SS.GetEntity(entityA);
|
|
Entity *a = SS.GetEntity(ptA);
|
|
Entity *b = SS.GetEntity(ptB);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
Expr *mu = Expr::From(0.5)->Times(au->Plus(bu));
|
|
Expr *mv = Expr::From(0.5)->Times(av->Plus(bv));
|
|
|
|
ExprVector m = PointInThreeSpace(workplane, mu, mv);
|
|
AddEq(l, PointPlaneDistance(m, plane->h), 0);
|
|
|
|
// Construct a vector within the workplane that is normal
|
|
// to the symmetry pane's normal (i.e., that lies in the
|
|
// plane of symmetry). The line connecting the points is
|
|
// perpendicular to that constructed vector.
|
|
Entity *w = SS.GetEntity(workplane);
|
|
ExprVector u = w->Normal()->NormalExprsU();
|
|
ExprVector v = w->Normal()->NormalExprsV();
|
|
|
|
ExprVector pa = a->PointGetExprs();
|
|
ExprVector pb = b->PointGetExprs();
|
|
ExprVector n;
|
|
Expr *d;
|
|
plane->WorkplaneGetPlaneExprs(&n, &d);
|
|
AddEq(l, (n.Cross(u.Cross(v))).Dot(pa.Minus(pb)), 1);
|
|
}
|
|
break;
|
|
|
|
case SYMMETRIC_HORIZ:
|
|
case SYMMETRIC_VERT: {
|
|
Entity *a = SS.GetEntity(ptA);
|
|
Entity *b = SS.GetEntity(ptB);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
|
|
if(type == SYMMETRIC_HORIZ) {
|
|
AddEq(l, av->Minus(bv), 0);
|
|
AddEq(l, au->Plus(bu), 1);
|
|
} else {
|
|
AddEq(l, au->Minus(bu), 0);
|
|
AddEq(l, av->Plus(bv), 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SYMMETRIC_LINE: {
|
|
Entity *pa = SS.GetEntity(ptA);
|
|
Entity *pb = SS.GetEntity(ptB);
|
|
|
|
Expr *pau, *pav, *pbu, *pbv;
|
|
pa->PointGetExprsInWorkplane(workplane, &pau, &pav);
|
|
pb->PointGetExprsInWorkplane(workplane, &pbu, &pbv);
|
|
|
|
Entity *ln = SS.GetEntity(entityA);
|
|
Entity *la = SS.GetEntity(ln->point[0]);
|
|
Entity *lb = SS.GetEntity(ln->point[1]);
|
|
Expr *lau, *lav, *lbu, *lbv;
|
|
la->PointGetExprsInWorkplane(workplane, &lau, &lav);
|
|
lb->PointGetExprsInWorkplane(workplane, &lbu, &lbv);
|
|
|
|
Expr *dpu = pbu->Minus(pau), *dpv = pbv->Minus(pav);
|
|
Expr *dlu = lbu->Minus(lau), *dlv = lbv->Minus(lav);
|
|
|
|
// The line through the points is perpendicular to the line
|
|
// of symmetry.
|
|
AddEq(l, (dlu->Times(dpu))->Plus(dlv->Times(dpv)), 0);
|
|
|
|
// And the signed distances of the points to the line are
|
|
// equal in magnitude and opposite in sign, so sum to zero
|
|
Expr *dista = (dlv->Times(lau->Minus(pau)))->Minus(
|
|
(dlu->Times(lav->Minus(pav))));
|
|
Expr *distb = (dlv->Times(lau->Minus(pbu)))->Minus(
|
|
(dlu->Times(lav->Minus(pbv))));
|
|
AddEq(l, dista->Plus(distb), 1);
|
|
|
|
break;
|
|
}
|
|
|
|
case HORIZONTAL:
|
|
case VERTICAL: {
|
|
hEntity ha, hb;
|
|
if(entityA.v) {
|
|
Entity *e = SS.GetEntity(entityA);
|
|
ha = e->point[0];
|
|
hb = e->point[1];
|
|
} else {
|
|
ha = ptA;
|
|
hb = ptB;
|
|
}
|
|
Entity *a = SS.GetEntity(ha);
|
|
Entity *b = SS.GetEntity(hb);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
|
|
AddEq(l, (type == HORIZONTAL) ? av->Minus(bv) : au->Minus(bu), 0);
|
|
break;
|
|
}
|
|
|
|
case SAME_ORIENTATION: {
|
|
Entity *a = SS.GetEntity(entityA);
|
|
Entity *b = SS.GetEntity(entityB);
|
|
if(b->group.v != group.v) {
|
|
SWAP(Entity *, a, b);
|
|
}
|
|
|
|
ExprVector au = a->NormalExprsU(),
|
|
av = a->NormalExprsV(),
|
|
an = a->NormalExprsN();
|
|
ExprVector bu = b->NormalExprsU(),
|
|
bv = b->NormalExprsV(),
|
|
bn = b->NormalExprsN();
|
|
|
|
AddEq(l, VectorsParallel(0, an, bn), 0);
|
|
AddEq(l, VectorsParallel(1, an, bn), 1);
|
|
Expr *d1 = au.Dot(bv);
|
|
Expr *d2 = au.Dot(bu);
|
|
// Allow either orientation for the coordinate system, depending
|
|
// on how it was drawn.
|
|
if(fabs(d1->Eval()) < fabs(d2->Eval())) {
|
|
AddEq(l, d1, 2);
|
|
} else {
|
|
AddEq(l, d2, 2);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PERPENDICULAR:
|
|
case ANGLE: {
|
|
Entity *a = SS.GetEntity(entityA);
|
|
Entity *b = SS.GetEntity(entityB);
|
|
ExprVector ae = a->VectorGetExprs();
|
|
ExprVector be = b->VectorGetExprs();
|
|
if(other) ae = ae.ScaledBy(Expr::From(-1));
|
|
Expr *c = DirectionCosine(workplane, ae, be);
|
|
|
|
if(type == ANGLE) {
|
|
// The direction cosine is equal to the cosine of the
|
|
// specified angle
|
|
Expr *rads = exA->Times(Expr::From(PI/180));
|
|
AddEq(l, c->Minus(rads->Cos()), 0);
|
|
} else {
|
|
// The dot product (and therefore the direction cosine)
|
|
// is equal to zero, perpendicular.
|
|
AddEq(l, c, 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EQUAL_ANGLE: {
|
|
Entity *a = SS.GetEntity(entityA);
|
|
Entity *b = SS.GetEntity(entityB);
|
|
Entity *c = SS.GetEntity(entityC);
|
|
Entity *d = SS.GetEntity(entityD);
|
|
ExprVector ae = a->VectorGetExprs();
|
|
ExprVector be = b->VectorGetExprs();
|
|
ExprVector ce = c->VectorGetExprs();
|
|
ExprVector de = d->VectorGetExprs();
|
|
|
|
if(other) ae = ae.ScaledBy(Expr::From(-1));
|
|
|
|
Expr *cab = DirectionCosine(workplane, ae, be);
|
|
Expr *ccd = DirectionCosine(workplane, ce, de);
|
|
|
|
AddEq(l, cab->Minus(ccd), 0);
|
|
break;
|
|
}
|
|
|
|
case ARC_LINE_TANGENT: {
|
|
Entity *arc = SS.GetEntity(entityA);
|
|
Entity *line = SS.GetEntity(entityB);
|
|
|
|
ExprVector ac = SS.GetEntity(arc->point[0])->PointGetExprs();
|
|
ExprVector ap =
|
|
SS.GetEntity(arc->point[other ? 2 : 1])->PointGetExprs();
|
|
|
|
ExprVector ld = line->VectorGetExprs();
|
|
|
|
// The line is perpendicular to the radius
|
|
AddEq(l, ld.Dot(ac.Minus(ap)), 0);
|
|
break;
|
|
}
|
|
|
|
case CUBIC_LINE_TANGENT: {
|
|
Entity *cubic = SS.GetEntity(entityA);
|
|
Entity *line = SS.GetEntity(entityB);
|
|
|
|
ExprVector endpoint =
|
|
SS.GetEntity(cubic->point[other ? 3 : 0])->PointGetExprs();
|
|
ExprVector ctrlpoint =
|
|
SS.GetEntity(cubic->point[other ? 2 : 1])->PointGetExprs();
|
|
|
|
ExprVector a = endpoint.Minus(ctrlpoint);
|
|
|
|
ExprVector b = line->VectorGetExprs();
|
|
|
|
if(workplane.v == Entity::FREE_IN_3D.v) {
|
|
AddEq(l, VectorsParallel(0, a, b), 0);
|
|
AddEq(l, VectorsParallel(1, a, b), 1);
|
|
} else {
|
|
Entity *w = SS.GetEntity(workplane);
|
|
ExprVector wn = w->Normal()->NormalExprsN();
|
|
AddEq(l, (a.Cross(b)).Dot(wn), 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PARALLEL: {
|
|
Entity *ea = SS.GetEntity(entityA), *eb = SS.GetEntity(entityB);
|
|
if(eb->group.v != group.v) {
|
|
SWAP(Entity *, ea, eb);
|
|
}
|
|
ExprVector a = ea->VectorGetExprs();
|
|
ExprVector b = eb->VectorGetExprs();
|
|
|
|
if(workplane.v == Entity::FREE_IN_3D.v) {
|
|
AddEq(l, VectorsParallel(0, a, b), 0);
|
|
AddEq(l, VectorsParallel(1, a, b), 1);
|
|
} else {
|
|
Entity *w = SS.GetEntity(workplane);
|
|
ExprVector wn = w->Normal()->NormalExprsN();
|
|
AddEq(l, (a.Cross(b)).Dot(wn), 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case COMMENT:
|
|
break;
|
|
|
|
default: oops();
|
|
}
|
|
}
|
|
|