415 lines
8.8 KiB
C++
415 lines
8.8 KiB
C++
#include "solvespace.h"
|
|
|
|
void MakeMatrix(double *mat, double a11, double a12, double a13, double a14,
|
|
double a21, double a22, double a23, double a24,
|
|
double a31, double a32, double a33, double a34,
|
|
double a41, double a42, double a43, double a44)
|
|
{
|
|
mat[ 0] = a11;
|
|
mat[ 1] = a21;
|
|
mat[ 2] = a31;
|
|
mat[ 3] = a41;
|
|
mat[ 4] = a12;
|
|
mat[ 5] = a22;
|
|
mat[ 6] = a32;
|
|
mat[ 7] = a42;
|
|
mat[ 8] = a13;
|
|
mat[ 9] = a23;
|
|
mat[10] = a33;
|
|
mat[11] = a43;
|
|
mat[12] = a14;
|
|
mat[13] = a24;
|
|
mat[14] = a34;
|
|
mat[15] = a44;
|
|
}
|
|
|
|
Quaternion Quaternion::MakeFrom(double w, double vx, double vy, double vz) {
|
|
Quaternion q;
|
|
q.w = w;
|
|
q.vx = vx;
|
|
q.vy = vy;
|
|
q.vz = vz;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::MakeFrom(Vector u, Vector v)
|
|
{
|
|
Vector n = u.Cross(v);
|
|
|
|
Quaternion q;
|
|
double s, tr = 1 + u.x + v.y + n.z;
|
|
if(tr > 1e-4) {
|
|
s = 2*sqrt(tr);
|
|
q.w = s/4;
|
|
q.vx = (v.z - n.y)/s;
|
|
q.vy = (n.x - u.z)/s;
|
|
q.vz = (u.y - v.x)/s;
|
|
} else {
|
|
double m = max(u.x, max(v.y, n.z));
|
|
if(m == u.x) {
|
|
s = 2*sqrt(1 + u.x - v.y - n.z);
|
|
q.w = (v.z - n.y)/s;
|
|
q.vx = s/4;
|
|
q.vy = (u.y + v.x)/s;
|
|
q.vz = (n.x + u.z)/s;
|
|
} else if(m == v.y) {
|
|
s = 2*sqrt(1 - u.x + v.y - n.z);
|
|
q.w = (n.x - u.z)/s;
|
|
q.vx = (u.y + v.x)/s;
|
|
q.vy = s/4;
|
|
q.vz = (v.z + n.y)/s;
|
|
} else if(m == n.z) {
|
|
s = 2*sqrt(1 - u.x - v.y + n.z);
|
|
q.w = (u.y - v.x)/s;
|
|
q.vx = (n.x + u.z)/s;
|
|
q.vy = (v.z + n.y)/s;
|
|
q.vz = s/4;
|
|
} else oops();
|
|
}
|
|
|
|
return q.WithMagnitude(1);
|
|
}
|
|
|
|
Quaternion Quaternion::Plus(Quaternion b) {
|
|
Quaternion q;
|
|
q.w = w + b.w;
|
|
q.vx = vx + b.vx;
|
|
q.vy = vy + b.vy;
|
|
q.vz = vz + b.vz;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::Minus(Quaternion b) {
|
|
Quaternion q;
|
|
q.w = w - b.w;
|
|
q.vx = vx - b.vx;
|
|
q.vy = vy - b.vy;
|
|
q.vz = vz - b.vz;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::ScaledBy(double s) {
|
|
Quaternion q;
|
|
q.w = w*s;
|
|
q.vx = vx*s;
|
|
q.vy = vy*s;
|
|
q.vz = vz*s;
|
|
return q;
|
|
}
|
|
|
|
double Quaternion::Magnitude(void) {
|
|
return sqrt(w*w + vx*vx + vy*vy + vz*vz);
|
|
}
|
|
|
|
Quaternion Quaternion::WithMagnitude(double s) {
|
|
return ScaledBy(s/Magnitude());
|
|
}
|
|
|
|
Vector Quaternion::RotationU(void) {
|
|
Vector v;
|
|
v.x = w*w + vx*vx - vy*vy - vz*vz;
|
|
v.y = 2*w *vz + 2*vx*vy;
|
|
v.z = 2*vx*vz - 2*w *vy;
|
|
return v;
|
|
}
|
|
|
|
Vector Quaternion::RotationV(void) {
|
|
Vector v;
|
|
v.x = 2*vx*vy - 2*w*vz;
|
|
v.y = w*w - vx*vx + vy*vy - vz*vz;
|
|
v.z = 2*w*vx + 2*vy*vz;
|
|
return v;
|
|
}
|
|
|
|
Vector Quaternion::RotationN(void) {
|
|
return RotationU().Cross(RotationV());
|
|
}
|
|
|
|
Vector Quaternion::Rotate(Vector p) {
|
|
// Express the point in the new basis
|
|
return (RotationU().ScaledBy(p.x)).Plus(
|
|
RotationV().ScaledBy(p.y)).Plus(
|
|
RotationN().ScaledBy(p.z));
|
|
}
|
|
|
|
Quaternion Quaternion::Inverse(void) {
|
|
Quaternion r;
|
|
r.w = w;
|
|
r.vx = -vx;
|
|
r.vy = -vy;
|
|
r.vz = -vz;
|
|
return r.WithMagnitude(1); // not that the normalize should be reqd
|
|
}
|
|
|
|
Quaternion Quaternion::ToThe(double p) {
|
|
Quaternion r;
|
|
Vector axis = Vector::MakeFrom(vx, vy, vz);
|
|
double theta = acos(w); // okay, since magnitude is 1, so -1 <= w <= 1
|
|
theta *= p;
|
|
r.w = cos(theta);
|
|
axis = axis.WithMagnitude(sin(theta));
|
|
r.vx = axis.x;
|
|
r.vy = axis.y;
|
|
r.vz = axis.z;
|
|
return r;
|
|
}
|
|
|
|
Quaternion Quaternion::Times(Quaternion b) {
|
|
double sa = w, sb = b.w;
|
|
Vector va = { vx, vy, vz };
|
|
Vector vb = { b.vx, b.vy, b.vz };
|
|
|
|
Quaternion r;
|
|
r.w = sa*sb - va.Dot(vb);
|
|
Vector vr = vb.ScaledBy(sa).Plus(
|
|
va.ScaledBy(sb).Plus(
|
|
va.Cross(vb)));
|
|
r.vx = vr.x;
|
|
r.vy = vr.y;
|
|
r.vz = vr.z;
|
|
return r;
|
|
}
|
|
|
|
|
|
Vector Vector::MakeFrom(double x, double y, double z) {
|
|
Vector v;
|
|
v.x = x; v.y = y; v.z = z;
|
|
return v;
|
|
}
|
|
|
|
bool Vector::Equals(Vector v) {
|
|
double tol = 0.1;
|
|
if(fabs(x - v.x) > tol) return false;
|
|
if(fabs(y - v.y) > tol) return false;
|
|
if(fabs(z - v.z) > tol) return false;
|
|
return true;
|
|
}
|
|
|
|
Vector Vector::Plus(Vector b) {
|
|
Vector r;
|
|
|
|
r.x = x + b.x;
|
|
r.y = y + b.y;
|
|
r.z = z + b.z;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::Minus(Vector b) {
|
|
Vector r;
|
|
|
|
r.x = x - b.x;
|
|
r.y = y - b.y;
|
|
r.z = z - b.z;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::Negated(void) {
|
|
Vector r;
|
|
|
|
r.x = -x;
|
|
r.y = -y;
|
|
r.z = -z;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::Cross(Vector b) {
|
|
Vector r;
|
|
|
|
r.x = -(z*b.y) + (y*b.z);
|
|
r.y = (z*b.x) - (x*b.z);
|
|
r.z = -(y*b.x) + (x*b.y);
|
|
|
|
return r;
|
|
}
|
|
|
|
double Vector::Dot(Vector b) {
|
|
return (x*b.x + y*b.y + z*b.z);
|
|
}
|
|
|
|
Vector Vector::Normal(int which) {
|
|
Vector n;
|
|
|
|
// Arbitrarily choose one vector that's normal to us, pivoting
|
|
// appropriately.
|
|
double xa = fabs(x), ya = fabs(y), za = fabs(z);
|
|
double minc = min(min(xa, ya), za);
|
|
if(minc == xa) {
|
|
n.x = 0;
|
|
n.y = z;
|
|
n.z = -y;
|
|
} else if(minc == ya) {
|
|
n.y = 0;
|
|
n.z = x;
|
|
n.x = -z;
|
|
} else if(minc == za) {
|
|
n.z = 0;
|
|
n.x = y;
|
|
n.y = -x;
|
|
} else oops();
|
|
|
|
if(which == 0) {
|
|
// That's the vector we return.
|
|
} else if(which == 1) {
|
|
n = this->Cross(n);
|
|
} else oops();
|
|
|
|
n = n.WithMagnitude(1);
|
|
|
|
return n;
|
|
}
|
|
|
|
Vector Vector::RotatedAbout(Vector axis, double theta) {
|
|
double c = cos(theta);
|
|
double s = sin(theta);
|
|
|
|
axis = axis.WithMagnitude(1);
|
|
|
|
Vector r;
|
|
|
|
r.x = (x)*(c + (1 - c)*(axis.x)*(axis.x)) +
|
|
(y)*((1 - c)*(axis.x)*(axis.y) - s*(axis.z)) +
|
|
(z)*((1 - c)*(axis.x)*(axis.z) + s*(axis.y));
|
|
|
|
r.y = (x)*((1 - c)*(axis.y)*(axis.x) + s*(axis.z)) +
|
|
(y)*(c + (1 - c)*(axis.y)*(axis.y)) +
|
|
(z)*((1 - c)*(axis.y)*(axis.z) - s*(axis.x));
|
|
|
|
r.z = (x)*((1 - c)*(axis.z)*(axis.x) - s*(axis.y)) +
|
|
(y)*((1 - c)*(axis.z)*(axis.y) + s*(axis.x)) +
|
|
(z)*(c + (1 - c)*(axis.z)*(axis.z));
|
|
|
|
return r;
|
|
}
|
|
|
|
double Vector::Magnitude(void) {
|
|
return sqrt(x*x + y*y + z*z);
|
|
}
|
|
|
|
Vector Vector::ScaledBy(double v) {
|
|
Vector r;
|
|
|
|
r.x = x * v;
|
|
r.y = y * v;
|
|
r.z = z * v;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::WithMagnitude(double v) {
|
|
double m = Magnitude();
|
|
if(m < 0.001) {
|
|
return MakeFrom(v, 0, 0);
|
|
} else {
|
|
return ScaledBy(v/Magnitude());
|
|
}
|
|
}
|
|
|
|
Vector Vector::ProjectInto(hEntity wrkpl) {
|
|
Entity *w = SS.GetEntity(wrkpl);
|
|
Vector u = w->Normal()->NormalU();
|
|
Vector v = w->Normal()->NormalV();
|
|
Vector p0 = w->WorkplaneGetOffset();
|
|
|
|
Vector f = this->Minus(p0);
|
|
double up = f.Dot(u);
|
|
double vp = f.Dot(v);
|
|
|
|
return p0.Plus((u.ScaledBy(up)).Plus(v.ScaledBy(vp)));
|
|
}
|
|
|
|
Point2d Vector::Project2d(Vector u, Vector v) {
|
|
Point2d p;
|
|
p.x = this->Dot(u);
|
|
p.y = this->Dot(v);
|
|
return p;
|
|
}
|
|
|
|
double Vector::DivPivoting(Vector delta) {
|
|
double m = max(fabs(delta.x), max(fabs(delta.y), fabs(delta.z)));
|
|
|
|
if(m == fabs(delta.x)) {
|
|
return x/delta.x;
|
|
} else if(m == fabs(delta.y)) {
|
|
return y/delta.y;
|
|
} else if(m == fabs(delta.z)) {
|
|
return z/delta.z;
|
|
} else oops();
|
|
}
|
|
|
|
Vector Vector::ClosestOrtho(void) {
|
|
double m = max(fabs(x), max(fabs(y), fabs(z)));
|
|
|
|
if(m == fabs(x)) {
|
|
return MakeFrom((x > 0) ? 1 : -1, 0, 0);
|
|
} else if(m == fabs(y)) {
|
|
return MakeFrom(0, (y > 0) ? 1 : -1, 0);
|
|
} else if(m == fabs(z)) {
|
|
return MakeFrom(0, 0, (z > 0) ? 1 : -1);
|
|
} else oops();
|
|
}
|
|
|
|
Point2d Point2d::Plus(Point2d b) {
|
|
Point2d r;
|
|
r.x = x + b.x;
|
|
r.y = y + b.y;
|
|
return r;
|
|
}
|
|
|
|
Point2d Point2d::Minus(Point2d b) {
|
|
Point2d r;
|
|
r.x = x - b.x;
|
|
r.y = y - b.y;
|
|
return r;
|
|
}
|
|
|
|
Point2d Point2d::ScaledBy(double s) {
|
|
Point2d r;
|
|
r.x = x*s;
|
|
r.y = y*s;
|
|
return r;
|
|
}
|
|
|
|
double Point2d::Magnitude(void) {
|
|
return sqrt(x*x + y*y);
|
|
}
|
|
|
|
Point2d Point2d::WithMagnitude(double v) {
|
|
double m = Magnitude();
|
|
if(m < 0.001) {
|
|
Point2d r = { v, 0 };
|
|
return r;
|
|
} else {
|
|
return ScaledBy(v/Magnitude());
|
|
}
|
|
}
|
|
|
|
double Point2d::DistanceTo(Point2d p) {
|
|
double dx = x - p.x;
|
|
double dy = y - p.y;
|
|
return sqrt(dx*dx + dy*dy);
|
|
}
|
|
|
|
double Point2d::DistanceToLine(Point2d p0, Point2d dp, bool segment) {
|
|
double m = dp.x*dp.x + dp.y*dp.y;
|
|
if(m < 0.05) return 1e12;
|
|
|
|
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
|
|
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
|
|
|
|
if((t < 0 || t > 1) && segment) {
|
|
// The closest point is one of the endpoints; determine which.
|
|
double d0 = DistanceTo(p0);
|
|
double d1 = DistanceTo(p0.Plus(dp));
|
|
|
|
return min(d1, d0);
|
|
} else {
|
|
Point2d closest = p0.Plus(dp.ScaledBy(t));
|
|
return DistanceTo(closest);
|
|
}
|
|
}
|
|
|
|
|