#include "solvespace.h" const hEntity Entity::FREE_IN_3D = { 0 }; const hEntity Entity::NO_ENTITY = { 0 }; const hParam Param::NO_PARAM = { 0 }; #define NO_PARAM (Param::NO_PARAM) const hGroup Group::HGROUP_REFERENCES = { 1 }; const hRequest Request::HREQUEST_REFERENCE_XY = { 1 }; const hRequest Request::HREQUEST_REFERENCE_YZ = { 2 }; const hRequest Request::HREQUEST_REFERENCE_ZX = { 3 }; void Group::AddParam(IdList *param, hParam hp, double v) { Param pa; memset(&pa, 0, sizeof(pa)); pa.h = hp; pa.val = v; param->Add(&pa); } void Group::MenuGroup(int id) { Group g; memset(&g, 0, sizeof(g)); g.visible = true; if(id >= RECENT_IMPORT && id < (RECENT_IMPORT + MAX_RECENT)) { strcpy(g.impFile, RecentFile[id-RECENT_IMPORT]); id = GraphicsWindow::MNU_GROUP_IMPORT; } SS.GW.GroupSelection(); #define gs (SS.GW.gs) switch(id) { case GraphicsWindow::MNU_GROUP_3D: g.type = DRAWING_3D; g.name.strcpy("draw-in-3d"); break; case GraphicsWindow::MNU_GROUP_WRKPL: g.type = DRAWING_WORKPLANE; g.name.strcpy("draw-in-plane"); if(gs.points == 1 && gs.n == 1) { g.subtype = WORKPLANE_BY_POINT_ORTHO; Vector u = SS.GW.projRight, v = SS.GW.projUp; u = u.ClosestOrtho(); v = v.Minus(u.ScaledBy(v.Dot(u))); v = v.ClosestOrtho(); g.wrkpl.q = Quaternion::MakeFrom(u, v); g.wrkpl.origin = gs.point[0]; } else if(gs.points == 1 && gs.lineSegments == 2 && gs.n == 3) { g.subtype = WORKPLANE_BY_LINE_SEGMENTS; g.wrkpl.origin = gs.point[0]; g.wrkpl.entityB = gs.entity[0]; g.wrkpl.entityC = gs.entity[1]; Vector ut = SS.GetEntity(g.wrkpl.entityB)->VectorGetNum(); Vector vt = SS.GetEntity(g.wrkpl.entityC)->VectorGetNum(); ut = ut.WithMagnitude(1); vt = vt.WithMagnitude(1); if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) { SWAP(Vector, ut, vt); g.wrkpl.swapUV = true; } if(SS.GW.projRight.Dot(ut) < 0) g.wrkpl.negateU = true; if(SS.GW.projUp. Dot(vt) < 0) g.wrkpl.negateV = true; } else { Error("Bad selection for new drawing in workplane."); return; } SS.GW.ClearSelection(); break; case GraphicsWindow::MNU_GROUP_EXTRUDE: g.type = EXTRUDE; g.opA = SS.GW.activeGroup; g.color = RGB(100, 100, 100); g.wrkpl.entityB = SS.GW.ActiveWorkplane(); g.subtype = ONE_SIDED; g.name.strcpy("extrude"); break; case GraphicsWindow::MNU_GROUP_ROT: g.type = ROTATE; g.opA = SS.GW.activeGroup; g.exprA = Expr::FromConstant(3)->DeepCopyKeep(); g.subtype = ONE_SIDED; g.name.strcpy("rotate"); break; case GraphicsWindow::MNU_GROUP_TRANS: g.type = TRANSLATE; g.opA = SS.GW.activeGroup; g.exprA = Expr::FromConstant(3)->DeepCopyKeep(); g.subtype = ONE_SIDED; g.name.strcpy("translate"); break; case GraphicsWindow::MNU_GROUP_IMPORT: { g.type = IMPORTED; g.opA = SS.GW.activeGroup; if(strlen(g.impFile) == 0) { if(!GetOpenFile(g.impFile, SLVS_EXT, SLVS_PATTERN)) return; } g.name.strcpy("import"); break; } default: oops(); } SS.group.AddAndAssignId(&g); if(g.type == IMPORTED) { SS.ReloadAllImported(); } SS.GenerateAll(SS.GW.solving == GraphicsWindow::SOLVE_ALWAYS); SS.GW.activeGroup = g.h; if(g.type == DRAWING_WORKPLANE) { SS.GetGroup(g.h)->activeWorkplane = g.h.entity(0); } SS.GW.AnimateOntoWorkplane(); TextWindow::ScreenSelectGroup(0, g.h.v); SS.TW.Show(); } char *Group::DescriptionString(void) { static char ret[100]; if(name.str[0]) { sprintf(ret, "g%03x-%s", h.v, name.str); } else { sprintf(ret, "g%03x-(unnamed)", h.v); } return ret; } void Group::Generate(IdList *entity, IdList *param) { Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp); Vector gp = SS.GW.projRight.Plus(SS.GW.projUp); gn = gn.WithMagnitude(200/SS.GW.scale); gp = gp.WithMagnitude(200/SS.GW.scale); int a, i; switch(type) { case DRAWING_3D: break; case DRAWING_WORKPLANE: { Quaternion q; if(subtype == WORKPLANE_BY_LINE_SEGMENTS) { Vector u = SS.GetEntity(wrkpl.entityB)->VectorGetNum(); Vector v = SS.GetEntity(wrkpl.entityC)->VectorGetNum(); u = u.WithMagnitude(1); Vector n = u.Cross(v); v = (n.Cross(u)).WithMagnitude(1); if(wrkpl.swapUV) SWAP(Vector, u, v); if(wrkpl.negateU) u = u.ScaledBy(-1); if(wrkpl.negateV) v = v.ScaledBy(-1); q = Quaternion::MakeFrom(u, v); } else if(subtype == WORKPLANE_BY_POINT_ORTHO) { // Already given, numerically. q = wrkpl.q; } else oops(); Entity normal; memset(&normal, 0, sizeof(normal)); normal.type = Entity::NORMAL_N_COPY; normal.numNormal = q; normal.point[0] = h.entity(2); normal.group = h; normal.h = h.entity(1); entity->Add(&normal); Entity point; memset(&point, 0, sizeof(point)); point.type = Entity::POINT_N_COPY; point.numPoint = SS.GetEntity(wrkpl.origin)->PointGetNum(); point.group = h; point.h = h.entity(2); entity->Add(&point); Entity wp; memset(&wp, 0, sizeof(wp)); wp.type = Entity::WORKPLANE; wp.normal = normal.h; wp.point[0] = point.h; wp.group = h; wp.h = h.entity(0); entity->Add(&wp); break; } case EXTRUDE: AddParam(param, h.param(0), gn.x); AddParam(param, h.param(1), gn.y); AddParam(param, h.param(2), gn.z); int ai, af; if(subtype == ONE_SIDED) { ai = 0; af = 2; } else if(subtype == TWO_SIDED) { ai = -1; af = 1; } else oops(); for(i = 0; i < entity->n; i++) { Entity *e = &(entity->elem[i]); if(e->group.v != opA.v) continue; e->CalculateNumerical(); hEntity he = e->h; e = NULL; // As soon as I call CopyEntity, e may become invalid! That // adds entities, which may cause a realloc. CopyEntity(SS.GetEntity(he), ai, h.param(0), h.param(1), h.param(2), NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, true); CopyEntity(SS.GetEntity(he), af, h.param(0), h.param(1), h.param(2), NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, true); MakeExtrusionLines(he, ai, af); } break; case TRANSLATE: { // The translation vector AddParam(param, h.param(0), gp.x); AddParam(param, h.param(1), gp.y); AddParam(param, h.param(2), gp.z); int n = (int)(exprA->Eval()); for(a = 0; a < n; a++) { for(i = 0; i < entity->n; i++) { Entity *e = &(entity->elem[i]); if(e->group.v != opA.v) continue; e->CalculateNumerical(); CopyEntity(e, a*2 - (subtype == ONE_SIDED ? 0 : (n-1)), h.param(0), h.param(1), h.param(2), NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, true); } } break; } case ROTATE: // The translation vector AddParam(param, h.param(0), gp.x); AddParam(param, h.param(1), gp.y); AddParam(param, h.param(2), gp.z); // The rotation quaternion AddParam(param, h.param(3), 1); AddParam(param, h.param(4), 0); AddParam(param, h.param(5), 0); AddParam(param, h.param(6), 0); for(i = 0; i < entity->n; i++) { Entity *e = &(entity->elem[i]); if(e->group.v != opA.v) continue; e->CalculateNumerical(); CopyEntity(e, 0, h.param(0), h.param(1), h.param(2), h.param(3), h.param(4), h.param(5), h.param(6), false); } break; case IMPORTED: // The translation vector AddParam(param, h.param(0), gp.x); AddParam(param, h.param(1), gp.y); AddParam(param, h.param(2), gp.z); // The rotation quaternion AddParam(param, h.param(3), 1); AddParam(param, h.param(4), 0); AddParam(param, h.param(5), 0); AddParam(param, h.param(6), 0); for(i = 0; i < impEntity.n; i++) { Entity *ie = &(impEntity.elem[i]); CopyEntity(ie, 0, h.param(0), h.param(1), h.param(2), h.param(3), h.param(4), h.param(5), h.param(6), false); } break; default: oops(); } } void Group::GenerateEquations(IdList *l) { Equation eq; if(type == ROTATE || type == IMPORTED) { // Normalize the quaternion ExprQuaternion q = { Expr::FromParam(h.param(3)), Expr::FromParam(h.param(4)), Expr::FromParam(h.param(5)), Expr::FromParam(h.param(6)) }; eq.e = (q.Magnitude())->Minus(Expr::FromConstant(1)); eq.h = h.equation(0); l->Add(&eq); } else if(type == EXTRUDE) { if(wrkpl.entityB.v != Entity::FREE_IN_3D.v) { // The extrusion path is locked along a line, normal to the // specified workplane. Entity *w = SS.GetEntity(wrkpl.entityB); ExprVector u = w->Normal()->NormalExprsU(); ExprVector v = w->Normal()->NormalExprsV(); ExprVector extruden = { Expr::FromParam(h.param(0)), Expr::FromParam(h.param(1)), Expr::FromParam(h.param(2)) }; eq.e = u.Dot(extruden); eq.h = h.equation(0); l->Add(&eq); eq.e = v.Dot(extruden); eq.h = h.equation(1); l->Add(&eq); } } } hEntity Group::Remap(hEntity in, int copyNumber) { int i; for(i = 0; i < remap.n; i++) { EntityMap *em = &(remap.elem[i]); if(em->input.v == in.v && em->copyNumber == copyNumber) { // We already have a mapping for this entity. return h.entity(em->h.v); } } // We don't have a mapping yet, so create one. EntityMap em; em.input = in; em.copyNumber = copyNumber; remap.AddAndAssignId(&em); return h.entity(em.h.v); } void Group::MakeExtrusionLines(hEntity in, int ai, int af) { Entity *ep = SS.GetEntity(in); if(!(ep->IsPoint())) return; Entity en; memset(&en, 0, sizeof(en)); en.point[0] = Remap(ep->h, ai); en.point[1] = Remap(ep->h, af); en.group = h; en.h = Remap(ep->h, 10); en.type = Entity::LINE_SEGMENT; // And then this line segment gets added SS.entity.Add(&en); } void Group::CopyEntity(Entity *ep, int a, hParam dx, hParam dy, hParam dz, hParam qw, hParam qvx, hParam qvy, hParam qvz, bool transOnly) { Entity en; memset(&en, 0, sizeof(en)); en.type = ep->type; en.h = Remap(ep->h, a); en.group = h; en.construction = ep->construction; switch(ep->type) { case Entity::WORKPLANE: // Don't copy these. return; case Entity::LINE_SEGMENT: en.point[0] = Remap(ep->point[0], a); en.point[1] = Remap(ep->point[1], a); break; case Entity::CUBIC: en.point[0] = Remap(ep->point[0], a); en.point[1] = Remap(ep->point[1], a); en.point[2] = Remap(ep->point[2], a); en.point[3] = Remap(ep->point[3], a); break; case Entity::CIRCLE: en.point[0] = Remap(ep->point[0], a); en.normal = Remap(ep->normal, a); en.distance = Remap(ep->distance, a); break; case Entity::ARC_OF_CIRCLE: en.point[0] = Remap(ep->point[0], a); en.point[1] = Remap(ep->point[1], a); en.point[2] = Remap(ep->point[2], a); en.normal = Remap(ep->normal, a); break; case Entity::POINT_N_COPY: case Entity::POINT_N_TRANS: case Entity::POINT_N_ROT_TRANS: case Entity::POINT_IN_3D: case Entity::POINT_IN_2D: if(transOnly) { en.type = Entity::POINT_N_TRANS; en.param[0] = dx; en.param[1] = dy; en.param[2] = dz; } else { en.type = Entity::POINT_N_ROT_TRANS; en.param[0] = dx; en.param[1] = dy; en.param[2] = dz; en.param[3] = qw; en.param[4] = qvx; en.param[5] = qvy; en.param[6] = qvz; } en.numPoint = ep->actPoint; en.timesApplied = a; break; case Entity::NORMAL_N_COPY: case Entity::NORMAL_N_ROT: case Entity::NORMAL_IN_3D: case Entity::NORMAL_IN_2D: if(transOnly) { en.type = Entity::NORMAL_N_COPY; } else { en.type = Entity::NORMAL_N_ROT; en.param[0] = qw; en.param[1] = qvx; en.param[2] = qvy; en.param[3] = qvz; } en.numNormal = ep->actNormal; en.point[0] = Remap(ep->point[0], a); en.timesApplied = a; break; case Entity::DISTANCE_N_COPY: case Entity::DISTANCE: en.type = Entity::DISTANCE_N_COPY; en.numDistance = ep->actDistance; break; default: oops(); } SS.entity.Add(&en); } SMesh *Group::PreviousGroupMesh(void) { int i; for(i = 0; i < SS.group.n; i++) { Group *g = &(SS.group.elem[i]); if(g->h.v == h.v) break; } if(i == 0 || i >= SS.group.n) oops(); return &(SS.group.elem[i-1].mesh); } void Group::MakePolygons(void) { poly.Clear(); SEdgeList edges; ZERO(&edges); SMesh outm; ZERO(&outm); if(type == DRAWING_3D || type == DRAWING_WORKPLANE || type == ROTATE || type == TRANSLATE) { int i; for(i = 0; i < SS.entity.n; i++) { Entity *e = &(SS.entity.elem[i]); if(e->group.v != h.v) continue; e->GenerateEdges(&edges); } SEdge error; if(edges.AssemblePolygon(&poly, &error)) { polyError.yes = false; poly.normal = poly.ComputeNormal(); poly.FixContourDirections(); } else { polyError.yes = true; polyError.notClosedAt = error; poly.Clear(); } } else if(type == EXTRUDE) { int i; Group *src = SS.GetGroup(opA); Vector translate = Vector::MakeFrom( SS.GetParam(h.param(0))->val, SS.GetParam(h.param(1))->val, SS.GetParam(h.param(2))->val ); Vector tbot, ttop; if(subtype == ONE_SIDED) { tbot = Vector::MakeFrom(0, 0, 0); ttop = translate.ScaledBy(2); } else { tbot = translate.ScaledBy(-1); ttop = translate.ScaledBy(1); } bool flipBottom = translate.Dot(src->poly.normal) > 0; // Get a triangulation of the source poly; this is not a closed mesh. SMesh srcm; ZERO(&srcm); (src->poly).TriangulateInto(&srcm); STriMeta meta = { 0, color }; // Do the bottom; that has normal pointing opposite from translate for(i = 0; i < srcm.l.n; i++) { STriangle *st = &(srcm.l.elem[i]); Vector at = (st->a).Plus(tbot), bt = (st->b).Plus(tbot), ct = (st->c).Plus(tbot); if(flipBottom) { outm.AddTriangle(meta, ct, bt, at); } else { outm.AddTriangle(meta, at, bt, ct); } } // And the top; that has the normal pointing the same dir as translate for(i = 0; i < srcm.l.n; i++) { STriangle *st = &(srcm.l.elem[i]); Vector at = (st->a).Plus(ttop), bt = (st->b).Plus(ttop), ct = (st->c).Plus(ttop); if(flipBottom) { outm.AddTriangle(meta, at, bt, ct); } else { outm.AddTriangle(meta, ct, bt, at); } } srcm.Clear(); // Get the source polygon to extrude, and break it down to edges edges.Clear(); (src->poly).MakeEdgesInto(&edges); // The sides; these are quads, represented as two triangles. for(i = 0; i < edges.l.n; i++) { SEdge *edge = &(edges.l.elem[i]); Vector abot = (edge->a).Plus(tbot), bbot = (edge->b).Plus(tbot); Vector atop = (edge->a).Plus(ttop), btop = (edge->b).Plus(ttop); if(flipBottom) { outm.AddTriangle(meta, bbot, abot, atop); outm.AddTriangle(meta, bbot, atop, btop); } else { outm.AddTriangle(meta, abot, bbot, atop); outm.AddTriangle(meta, bbot, btop, atop); } } } else if(type == IMPORTED) { // Triangles are just copied over, with the appropriate transformation // applied. Vector offset = { SS.GetParam(h.param(0))->val, SS.GetParam(h.param(1))->val, SS.GetParam(h.param(2))->val }; Quaternion q = { SS.GetParam(h.param(3))->val, SS.GetParam(h.param(4))->val, SS.GetParam(h.param(5))->val, SS.GetParam(h.param(6))->val }; for(int i = 0; i < impMesh.l.n; i++) { STriangle st = impMesh.l.elem[i]; st.a = q.Rotate(st.a).Plus(offset); st.b = q.Rotate(st.b).Plus(offset); st.c = q.Rotate(st.c).Plus(offset); outm.AddTriangle(&st); } } edges.Clear(); // So our group's mesh appears in outm. Combine this with the previous // group's mesh, using the requested operation. mesh.Clear(); SMesh *a = PreviousGroupMesh(); if(meshCombine == COMBINE_AS_UNION) { mesh.MakeFromUnion(a, &outm); } else { mesh.MakeFromDifference(a, &outm); } outm.Clear(); } void Group::Draw(void) { // Show this even if the group is not visible. It's already possible // to show or hide just this with the "show solids" flag. bool useModelColor; if(type == DRAWING_3D || type == DRAWING_WORKPLANE) { GLfloat mpf[] = { 0.1f, 0.1f, 0.1f, 1.0 }; glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mpf); useModelColor = false; } else { useModelColor = true; } // The back faces are drawn in red; should never seem them, since we // draw closed shells, so that's a debugging aid. GLfloat mpb[] = { 1.0f, 0.1f, 0.1f, 1.0 }; glMaterialfv(GL_BACK, GL_AMBIENT_AND_DIFFUSE, mpb); glEnable(GL_LIGHTING); if(SS.GW.showShaded) glxFillMesh(useModelColor, &mesh); glDisable(GL_LIGHTING); if(SS.GW.showMesh) glxDebugMesh(&mesh); if(!SS.GW.showShaded) return; if(polyError.yes) { glxColor4d(1, 0, 0, 0.2); glLineWidth(10); glBegin(GL_LINES); glxVertex3v(polyError.notClosedAt.a); glxVertex3v(polyError.notClosedAt.b); glEnd(); glLineWidth(1); glxColor3d(1, 0, 0); glPushMatrix(); glxTranslatev(polyError.notClosedAt.b); glxOntoWorkplane(SS.GW.projRight, SS.GW.projUp); glxWriteText("not closed contour!"); glPopMatrix(); } else { glxColor4d(0, 1.0, 1.0, 0.05); glPolygonOffset(-1, -1); glxFillPolygon(&poly); glPolygonOffset(0, 0); } } hParam Request::AddParam(IdList *param, hParam hp) { Param pa; memset(&pa, 0, sizeof(pa)); pa.h = hp; param->Add(&pa); return hp; } void Request::Generate(IdList *entity, IdList *param) { int points = 0; int params = 0; int et = 0; bool hasNormal = false; bool hasDistance = false; int i; Entity e; memset(&e, 0, sizeof(e)); switch(type) { case Request::WORKPLANE: et = Entity::WORKPLANE; points = 1; hasNormal = true; break; case Request::DATUM_POINT: et = 0; points = 1; break; case Request::LINE_SEGMENT: et = Entity::LINE_SEGMENT; points = 2; break; case Request::CIRCLE: et = Entity::CIRCLE; points = 1; params = 1; hasNormal = true; hasDistance = true; break; case Request::ARC_OF_CIRCLE: et = Entity::ARC_OF_CIRCLE; points = 3; hasNormal = true; break; case Request::CUBIC: et = Entity::CUBIC; points = 4; break; default: oops(); } // Generate the entity that's specific to this request. e.type = et; e.group = group; e.workplane = workplane; e.construction = construction; e.h = h.entity(0); // And generate entities for the points for(i = 0; i < points; i++) { Entity p; memset(&p, 0, sizeof(p)); p.workplane = workplane; // points start from entity 1, except for datum point case p.h = h.entity(i+(et ? 1 : 0)); p.group = group; if(workplane.v == Entity::FREE_IN_3D.v) { p.type = Entity::POINT_IN_3D; // params for x y z p.param[0] = AddParam(param, h.param(16 + 3*i + 0)); p.param[1] = AddParam(param, h.param(16 + 3*i + 1)); p.param[2] = AddParam(param, h.param(16 + 3*i + 2)); } else { p.type = Entity::POINT_IN_2D; // params for u v p.param[0] = AddParam(param, h.param(16 + 3*i + 0)); p.param[1] = AddParam(param, h.param(16 + 3*i + 1)); } entity->Add(&p); e.point[i] = p.h; } if(hasNormal) { Entity n; memset(&n, 0, sizeof(n)); n.workplane = workplane; n.h = h.entity(32); n.group = group; if(workplane.v == Entity::FREE_IN_3D.v) { n.type = Entity::NORMAL_IN_3D; n.param[0] = AddParam(param, h.param(32+0)); n.param[1] = AddParam(param, h.param(32+1)); n.param[2] = AddParam(param, h.param(32+2)); n.param[3] = AddParam(param, h.param(32+3)); } else { n.type = Entity::NORMAL_IN_2D; // and this is just a copy of the workplane quaternion, // so no params required } if(points < 1) oops(); // The point determines where the normal gets displayed on-screen; // it's entirely cosmetic. n.point[0] = e.point[0]; entity->Add(&n); e.normal = n.h; } if(hasDistance) { Entity d; memset(&d, 0, sizeof(d)); d.workplane = workplane; d.h = h.entity(64); d.group = group; d.type = Entity::DISTANCE; d.param[0] = AddParam(param, h.param(64)); entity->Add(&d); e.distance = d.h; } // And generate any params not associated with the point that // we happen to need. for(i = 0; i < params; i++) { e.param[i] = AddParam(param, h.param(i)); } if(et) entity->Add(&e); } char *Request::DescriptionString(void) { static char ret[100]; if(name.str[0]) { sprintf(ret, "r%03x-%s", h.v, name.str); } else { sprintf(ret, "r%03x-(unnamed)", h.v); } return ret; }