//----------------------------------------------------------------------------- // Data structures used frequently in the program, various kinds of vectors // (of real numbers, not symbolic algebra stuff) and our templated lists. // // Copyright 2008-2013 Jonathan Westhues. //----------------------------------------------------------------------------- #ifndef SOLVESPACE_DSC_H #define SOLVESPACE_DSC_H #include "solvespace.h" #include /// Trait indicating which types are handle types and should get the associated operators. /// Specialize for each handle type and inherit from std::true_type. template struct IsHandleOracle : std::false_type {}; // Equality-compare any two instances of a handle type. template static inline typename std::enable_if::value, bool>::type operator==(T const &lhs, T const &rhs) { return lhs.v == rhs.v; } // Inequality-compare any two instances of a handle type. template static inline typename std::enable_if::value, bool>::type operator!=(T const &lhs, T const &rhs) { return !(lhs == rhs); } // Less-than-compare any two instances of a handle type. template static inline typename std::enable_if::value, bool>::type operator<(T const &lhs, T const &rhs) { return lhs.v < rhs.v; } class Vector; class Vector4; class Point2d; class hEntity; class hParam; class Quaternion { public: // a + (vx)*i + (vy)*j + (vz)*k double w, vx, vy, vz; static const Quaternion IDENTITY; static Quaternion From(double w, double vx, double vy, double vz); static Quaternion From(hParam w, hParam vx, hParam vy, hParam vz); static Quaternion From(Vector u, Vector v); static Quaternion From(Vector axis, double dtheta); Quaternion Plus(Quaternion b) const; Quaternion Minus(Quaternion b) const; Quaternion ScaledBy(double s) const; double Magnitude() const; Quaternion WithMagnitude(double s) const; // Call a rotation matrix [ u' v' n' ]'; this returns the first and // second rows, where that matrix is generated by this quaternion Vector RotationU() const; Vector RotationV() const; Vector RotationN() const; Vector Rotate(Vector p) const; Quaternion ToThe(double p) const; Quaternion Inverse() const; Quaternion Times(Quaternion b) const; Quaternion Mirror() const; }; class Vector { public: double x, y, z; static Vector From(double x, double y, double z); static Vector From(hParam x, hParam y, hParam z); static Vector AtIntersectionOfPlanes(Vector n1, double d1, Vector n2, double d2); static Vector AtIntersectionOfLines(Vector a0, Vector a1, Vector b0, Vector b1, bool *skew, double *pa=NULL, double *pb=NULL); static Vector AtIntersectionOfPlaneAndLine(Vector n, double d, Vector p0, Vector p1, bool *parallel); static Vector AtIntersectionOfPlanes(Vector na, double da, Vector nb, double db, Vector nc, double dc, bool *parallel); static void ClosestPointBetweenLines(Vector pa, Vector da, Vector pb, Vector db, double *ta, double *tb); double Element(int i) const; bool Equals(Vector v, double tol=LENGTH_EPS) const; bool EqualsExactly(Vector v) const; Vector Plus(Vector b) const; Vector Minus(Vector b) const; Vector Negated() const; Vector Cross(Vector b) const; double DirectionCosineWith(Vector b) const; double Dot(Vector b) const; Vector Normal(int which) const; Vector RotatedAbout(Vector orig, Vector axis, double theta) const; Vector RotatedAbout(Vector axis, double theta) const; Vector DotInToCsys(Vector u, Vector v, Vector n) const; Vector ScaleOutOfCsys(Vector u, Vector v, Vector n) const; double DistanceToLine(Vector p0, Vector dp) const; double DistanceToPlane(Vector normal, Vector origin) const; bool OnLineSegment(Vector a, Vector b, double tol=LENGTH_EPS) const; Vector ClosestPointOnLine(Vector p0, Vector deltal) const; double Magnitude() const; double MagSquared() const; Vector WithMagnitude(double s) const; Vector ScaledBy(double s) const; Vector ProjectInto(hEntity wrkpl) const; Vector ProjectVectorInto(hEntity wrkpl) const; double DivProjected(Vector delta) const; Vector ClosestOrtho() const; void MakeMaxMin(Vector *maxv, Vector *minv) const; Vector ClampWithin(double minv, double maxv) const; static bool BoundingBoxesDisjoint(Vector amax, Vector amin, Vector bmax, Vector bmin); static bool BoundingBoxIntersectsLine(Vector amax, Vector amin, Vector p0, Vector p1, bool asSegment); bool OutsideAndNotOn(Vector maxv, Vector minv) const; Vector InPerspective(Vector u, Vector v, Vector n, Vector origin, double cameraTan) const; Point2d Project2d(Vector u, Vector v) const; Point2d ProjectXy() const; Vector4 Project4d() const; }; inline double Vector::Element(int i) const { switch (i) { case 0: return x; case 1: return y; case 2: return z; default: ssassert(false, "Unexpected vector element index"); } } inline bool Vector::Equals(Vector v, double tol) const { // Quick axis-aligned tests before going further const Vector dv = this->Minus(v); if (fabs(dv.x) > tol) return false; if (fabs(dv.y) > tol) return false; if (fabs(dv.z) > tol) return false; return dv.MagSquared() < tol*tol; } struct VectorHash { size_t operator()(const Vector &v) const; }; struct VectorPred { bool operator()(Vector a, Vector b) const; }; class Vector4 { public: double w, x, y, z; static Vector4 From(double w, double x, double y, double z); static Vector4 From(double w, Vector v3); static Vector4 Blend(Vector4 a, Vector4 b, double t); Vector4 Plus(Vector4 b) const; Vector4 Minus(Vector4 b) const; Vector4 ScaledBy(double s) const; Vector PerspectiveProject() const; }; class Point2d { public: double x, y; static Point2d From(double x, double y); static Point2d FromPolar(double r, double a); Point2d Plus(const Point2d &b) const; Point2d Minus(const Point2d &b) const; Point2d ScaledBy(double s) const; double DivProjected(Point2d delta) const; double Dot(Point2d p) const; double DistanceTo(const Point2d &p) const; double DistanceToLine(const Point2d &p0, const Point2d &dp, bool asSegment) const; double DistanceToLineSigned(const Point2d &p0, const Point2d &dp, bool asSegment) const; double Angle() const; double AngleTo(const Point2d &p) const; double Magnitude() const; double MagSquared() const; Point2d WithMagnitude(double v) const; Point2d Normal() const; bool Equals(Point2d v, double tol=LENGTH_EPS) const; }; // A simple list template class List { T *elem = nullptr; int elemsAllocated = 0; public: int n = 0; bool IsEmpty() const { return n == 0; } void ReserveMore(int howMuch) { if(n + howMuch > elemsAllocated) { elemsAllocated = n + howMuch; T *newElem = (T *)MemAlloc((size_t)elemsAllocated*sizeof(T)); for(int i = 0; i < n; i++) { new(&newElem[i]) T(std::move(elem[i])); elem[i].~T(); } MemFree(elem); elem = newElem; } } void AllocForOneMore() { if(n >= elemsAllocated) { ReserveMore((elemsAllocated + 32)*2 - n); } } void Add(const T *t) { AllocForOneMore(); new(&elem[n++]) T(*t); } void AddToBeginning(const T *t) { AllocForOneMore(); new(&elem[n]) T(); std::move_backward(elem, elem + 1, elem + n + 1); elem[0] = *t; n++; } T *First() { return IsEmpty() ? nullptr : &(elem[0]); } const T *First() const { return IsEmpty() ? nullptr : &(elem[0]); } T *Last() { return IsEmpty() ? nullptr : &(elem[n - 1]); } const T *Last() const { return IsEmpty() ? nullptr : &(elem[n - 1]); } T *NextAfter(T *prev) { if(IsEmpty() || !prev) return NULL; if(prev - First() == (n - 1)) return NULL; return prev + 1; } const T *NextAfter(const T *prev) const { if(IsEmpty() || !prev) return NULL; if(prev - First() == (n - 1)) return NULL; return prev + 1; } T &Get(size_t i) { return elem[i]; } T const &Get(size_t i) const { return elem[i]; } T &operator[](size_t i) { return Get(i); } T const &operator[](size_t i) const { return Get(i); } T *begin() { return IsEmpty() ? nullptr : &elem[0]; } T *end() { return IsEmpty() ? nullptr : &elem[n]; } const T *begin() const { return IsEmpty() ? nullptr : &elem[0]; } const T *end() const { return IsEmpty() ? nullptr : &elem[n]; } const T *cbegin() const { return begin(); } const T *cend() const { return end(); } void ClearTags() { for(auto & elt : *this) { elt.tag = 0; } } void Clear() { for(int i = 0; i < n; i++) elem[i].~T(); if(elem) MemFree(elem); elem = NULL; n = elemsAllocated = 0; } void RemoveTagged() { auto newEnd = std::remove_if(this->begin(), this->end(), [](T &t) { if(t.tag) { return true; } return false; }); auto oldEnd = this->end(); n = newEnd - begin(); if (newEnd != nullptr && oldEnd != nullptr) { while(newEnd != oldEnd) { newEnd->~T(); ++newEnd; } } // and elemsAllocated is untouched, because we didn't resize } void RemoveLast(int cnt) { ssassert(n >= cnt, "Removing more elements than the list contains"); for(int i = n - cnt; i < n; i++) elem[i].~T(); n -= cnt; // and elemsAllocated is untouched, same as in RemoveTagged } void Reverse() { int i; for(i = 0; i < (n/2); i++) { swap(elem[i], elem[(n-1)-i]); } } }; // Comparison functor used by IdList and related classes template struct CompareId { bool operator()(T const& lhs, T const& rhs) const { return lhs.h.v < rhs.h.v; } bool operator()(T const& lhs, H rhs) const { return lhs.h.v < rhs.v; } }; // A list, where each element has an integer identifier. The list is kept // sorted by that identifier, and items can be looked up in log n time by // id. template class IdList { T *elem = nullptr; int elemsAllocated = 0; public: int n = 0; using Compare = CompareId; bool IsEmpty() const { return n == 0; } void AllocForOneMore() { if(n >= elemsAllocated) { ReserveMore((elemsAllocated + 32)*2 - n); } } uint32_t MaximumId() { if(IsEmpty()) { return 0; } else { return Last()->h.v; } } H AddAndAssignId(T *t) { t->h.v = (MaximumId() + 1); Add(t); return t->h; } T * LowerBound(T const& t) { if(IsEmpty()) { return nullptr; } auto it = std::lower_bound(begin(), end(), t, Compare()); return it; } T * LowerBound(H const& h) { if(IsEmpty()) { return nullptr; } auto it = std::lower_bound(begin(), end(), h, Compare()); return it; } int LowerBoundIndex(T const& t) { if(IsEmpty()) { return 0; } auto it = LowerBound(t); auto idx = std::distance(begin(), it); auto i = static_cast(idx); return i; } void ReserveMore(int howMuch) { if(n + howMuch > elemsAllocated) { elemsAllocated = n + howMuch; T *newElem = (T *)MemAlloc((size_t)elemsAllocated*sizeof(T)); for(int i = 0; i < n; i++) { new(&newElem[i]) T(std::move(elem[i])); elem[i].~T(); } MemFree(elem); elem = newElem; } } void Add(T *t) { AllocForOneMore(); // Look to see if we already have something with the same handle value. ssassert(FindByIdNoOops(t->h) == nullptr, "Handle isn't unique"); // Copy-construct at the end of the list. new(&elem[n]) T(*t); ++n; // The item we just added is trivially sorted, so "merge" std::inplace_merge(begin(), end() - 1, end(), Compare()); } T *FindById(H h) { T *t = FindByIdNoOops(h); ssassert(t != NULL, "Cannot find handle"); return t; } int IndexOf(H h) { if(IsEmpty()) { return -1; } auto it = LowerBound(h); auto idx = std::distance(begin(), it); if (idx < n) { return idx; } return -1; } T *FindByIdNoOops(H h) { if(IsEmpty()) { return nullptr; } auto it = LowerBound(h); if (it == nullptr || it == end()) { return nullptr; } if (it->h.v == h.v) { return it; } return nullptr; } T *First() { return (IsEmpty()) ? NULL : &(elem[0]); } T *Last() { return (IsEmpty()) ? NULL : &(elem[n-1]); } T *NextAfter(T *prev) { if(IsEmpty() || !prev) return NULL; if(prev - First() == (n - 1)) return NULL; return prev + 1; } T &Get(size_t i) { return elem[i]; } T const &Get(size_t i) const { return elem[i]; } T &operator[](size_t i) { return Get(i); } T const &operator[](size_t i) const { return Get(i); } T *begin() { return IsEmpty() ? nullptr : &elem[0]; } T *end() { return IsEmpty() ? nullptr : &elem[0] + n; } const T *begin() const { return IsEmpty() ? nullptr : &elem[0]; } const T *end() const { return IsEmpty() ? nullptr : &elem[0] + n; } const T *cbegin() const { return begin(); } const T *cend() const { return end(); } void ClearTags() { for(auto &elt : *this) { elt.tag = 0; } } void Tag(H h, int tag) { auto it = FindByIdNoOops(h); if (it != nullptr) { it->tag = tag; } } void RemoveTagged() { int src, dest; dest = 0; for(src = 0; src < n; src++) { if(elem[src].tag) { // this item should be deleted elem[src].Clear(); } else { if(src != dest) { elem[dest] = elem[src]; } dest++; } } for(int i = dest; i < n; i++) elem[i].~T(); n = dest; // and elemsAllocated is untouched, because we didn't resize } void RemoveById(H h) { ClearTags(); FindById(h)->tag = 1; RemoveTagged(); } void MoveSelfInto(IdList *l) { l->Clear(); std::swap(l->elem, elem); std::swap(l->elemsAllocated, elemsAllocated); std::swap(l->n, n); } void DeepCopyInto(IdList *l) { l->Clear(); l->elem = (T *)MemAlloc(elemsAllocated * sizeof(elem[0])); for(int i = 0; i < n; i++) new(&l->elem[i]) T(elem[i]); l->elemsAllocated = elemsAllocated; l->n = n; } void Clear() { for(int i = 0; i < n; i++) { elem[i].Clear(); elem[i].~T(); } if(elem) MemFree(elem); elem = NULL; elemsAllocated = n = 0; } }; class BandedMatrix { public: enum { MAX_UNKNOWNS = 16, RIGHT_OF_DIAG = 1, LEFT_OF_DIAG = 2 }; double A[MAX_UNKNOWNS][MAX_UNKNOWNS]; double B[MAX_UNKNOWNS]; double X[MAX_UNKNOWNS]; int n; void Solve(); }; #define RGBi(r, g, b) RgbaColor::From((r), (g), (b)) #define RGBf(r, g, b) RgbaColor::FromFloat((float)(r), (float)(g), (float)(b)) // Note: sizeof(class RgbaColor) should be exactly 4 // class RgbaColor { public: uint8_t red, green, blue, alpha; float redF() const { return (float)red / 255.0f; } float greenF() const { return (float)green / 255.0f; } float blueF() const { return (float)blue / 255.0f; } float alphaF() const { return (float)alpha / 255.0f; } bool IsEmpty() const { return alpha == 0; } bool Equals(RgbaColor c) const { return c.red == red && c.green == green && c.blue == blue && c.alpha == alpha; } RgbaColor WithAlpha(uint8_t newAlpha) const { RgbaColor color = *this; color.alpha = newAlpha; return color; } uint32_t ToPackedIntBGRA() const { return blue | (uint32_t)(green << 8) | (uint32_t)(red << 16) | (uint32_t)((255 - alpha) << 24); } uint32_t ToPackedInt() const { return red | (uint32_t)(green << 8) | (uint32_t)(blue << 16) | (uint32_t)((255 - alpha) << 24); } uint32_t ToARGB32() const { return blue | (uint32_t)(green << 8) | (uint32_t)(red << 16) | (uint32_t)(alpha << 24); } static RgbaColor From(int r, int g, int b, int a = 255) { RgbaColor c; c.red = (uint8_t)r; c.green = (uint8_t)g; c.blue = (uint8_t)b; c.alpha = (uint8_t)a; return c; } static RgbaColor FromFloat(float r, float g, float b, float a = 1.0) { return From( (int)(255.1f * r), (int)(255.1f * g), (int)(255.1f * b), (int)(255.1f * a)); } static RgbaColor FromPackedInt(uint32_t rgba) { return From( (int)((rgba) & 0xff), (int)((rgba >> 8) & 0xff), (int)((rgba >> 16) & 0xff), (int)(255 - ((rgba >> 24) & 0xff))); } static RgbaColor FromPackedIntBGRA(uint32_t bgra) { return From( (int)((bgra >> 16) & 0xff), (int)((bgra >> 8) & 0xff), (int)((bgra) & 0xff), (int)(255 - ((bgra >> 24) & 0xff))); } }; struct RgbaColorCompare { bool operator()(RgbaColor a, RgbaColor b) const { return a.ToARGB32() < b.ToARGB32(); } }; class BBox { public: Vector minp; Vector maxp; static BBox From(const Vector &p0, const Vector &p1); Vector GetOrigin() const; Vector GetExtents() const; void Include(const Vector &v, double r = 0.0); bool Overlaps(const BBox &b1) const; bool Contains(const Point2d &p, double r = 0.0) const; }; #endif