#include "solvespace.h" SolveSpace SS; void SolveSpace::Init(char *cmdLine) { int i; // Default list of colors for the model material modelColor[0] = CnfThawDWORD(RGB(150, 150, 150), "ModelColor_0"); modelColor[1] = CnfThawDWORD(RGB(100, 100, 100), "ModelColor_1"); modelColor[2] = CnfThawDWORD(RGB( 30, 30, 30), "ModelColor_2"); modelColor[3] = CnfThawDWORD(RGB(150, 0, 0), "ModelColor_3"); modelColor[4] = CnfThawDWORD(RGB( 0, 100, 0), "ModelColor_4"); modelColor[5] = CnfThawDWORD(RGB( 0, 80, 80), "ModelColor_5"); modelColor[6] = CnfThawDWORD(RGB( 0, 0, 130), "ModelColor_6"); modelColor[7] = CnfThawDWORD(RGB( 80, 0, 80), "ModelColor_7"); // Light intensities lightIntensity[0] = ((int)CnfThawDWORD( 700, "LightIntensity_0"))/1000.0; lightIntensity[1] = ((int)CnfThawDWORD( 400, "LightIntensity_1"))/1000.0; // Light positions lightDir[0].x = ((int)CnfThawDWORD(-500, "LightDir_0_Right" ))/1000.0; lightDir[0].y = ((int)CnfThawDWORD( 500, "LightDir_0_Up" ))/1000.0; lightDir[0].z = ((int)CnfThawDWORD( 0, "LightDir_0_Forward" ))/1000.0; lightDir[1].x = ((int)CnfThawDWORD( 500, "LightDir_1_Right" ))/1000.0; lightDir[1].y = ((int)CnfThawDWORD( 0, "LightDir_1_Up" ))/1000.0; lightDir[1].z = ((int)CnfThawDWORD( 0, "LightDir_1_Forward" ))/1000.0; // Mesh tolerance meshTol = ((int)CnfThawDWORD(1000, "MeshTolerance"))/1000.0; // Recent files menus for(i = 0; i < MAX_RECENT; i++) { char name[100]; sprintf(name, "RecentFile_%d", i); strcpy(RecentFile[i], ""); CnfThawString(RecentFile[i], MAX_PATH, name); } RefreshRecentMenus(); // Start with either an empty file, or the file specified on the // command line. NewFile(); AfterNewFile(); if(strlen(cmdLine) != 0) { if(LoadFromFile(cmdLine)) { strcpy(saveFile, cmdLine); } else { NewFile(); } } AfterNewFile(); } void SolveSpace::Exit(void) { int i; char name[100]; // Recent files for(i = 0; i < MAX_RECENT; i++) { sprintf(name, "RecentFile_%d", i); CnfFreezeString(RecentFile[i], name); } // Model colors for(i = 0; i < MODEL_COLORS; i++) { sprintf(name, "ModelColor_%d", i); CnfFreezeDWORD(modelColor[i], name); } // Light intensities CnfFreezeDWORD((int)(lightIntensity[0]*1000), "LightIntensity_0"); CnfFreezeDWORD((int)(lightIntensity[1]*1000), "LightIntensity_1"); // Light directions CnfFreezeDWORD((int)(lightDir[0].x*1000), "LightDir_0_Right"); CnfFreezeDWORD((int)(lightDir[0].y*1000), "LightDir_0_Up"); CnfFreezeDWORD((int)(lightDir[0].z*1000), "LightDir_0_Forward"); CnfFreezeDWORD((int)(lightDir[1].x*1000), "LightDir_1_Right"); CnfFreezeDWORD((int)(lightDir[1].y*1000), "LightDir_1_Up"); CnfFreezeDWORD((int)(lightDir[1].z*1000), "LightDir_1_Forward"); // Mesh tolerance CnfFreezeDWORD((int)(meshTol*1000), "MeshTolerance"); ExitNow(); } void SolveSpace::DoLater(void) { if(later.generateAll) GenerateAll(); if(later.showTW) TW.Show(); ZERO(&later); } int SolveSpace::CircleSides(double r) { int s = 7 + (int)(sqrt(r*SS.GW.scale/meshTol)); return min(s, 40); } void SolveSpace::AfterNewFile(void) { ReloadAllImported(); GenerateAll(-1, -1); TW.Init(); GW.Init(); unsaved = false; int w, h; GetGraphicsWindowSize(&w, &h); GW.width = w; GW.height = h; GW.ZoomToFit(); GenerateAll(0, INT_MAX); later.showTW = true; } void SolveSpace::MarkGroupDirtyByEntity(hEntity he) { Entity *e = SS.GetEntity(he); MarkGroupDirty(e->group); } void SolveSpace::MarkGroupDirty(hGroup hg) { int i; bool go = false; for(i = 0; i < group.n; i++) { Group *g = &(group.elem[i]); if(g->h.v == hg.v) { go = true; } if(go) { g->clean = false; } } unsaved = true; } bool SolveSpace::PruneOrphans(void) { int i; for(i = 0; i < request.n; i++) { Request *r = &(request.elem[i]); if(GroupExists(r->group)) continue; (deleted.requests)++; request.RemoveById(r->h); return true; } for(i = 0; i < constraint.n; i++) { Constraint *c = &(constraint.elem[i]); if(GroupExists(c->group)) continue; (deleted.constraints)++; constraint.RemoveById(c->h); return true; } return false; } bool SolveSpace::GroupsInOrder(hGroup before, hGroup after) { if(before.v == 0) return true; if(after.v == 0) return true; int beforep = -1, afterp = -1; int i; for(i = 0; i < group.n; i++) { Group *g = &(group.elem[i]); if(g->h.v == before.v) beforep = i; if(g->h.v == after.v) afterp = i; } if(beforep < 0 || afterp < 0) return false; if(beforep >= afterp) return false; return true; } bool SolveSpace::GroupExists(hGroup hg) { // A nonexistent group is not acceptable return group.FindByIdNoOops(hg) ? true : false; } bool SolveSpace::EntityExists(hEntity he) { // A nonexstient entity is acceptable, though, usually just means it // doesn't apply. if(he.v == Entity::NO_ENTITY.v) return true; return entity.FindByIdNoOops(he) ? true : false; } bool SolveSpace::PruneGroups(hGroup hg) { Group *g = GetGroup(hg); if(GroupsInOrder(g->opA, hg) && EntityExists(g->predef.origin) && EntityExists(g->predef.entityB) && EntityExists(g->predef.entityC)) { return false; } (deleted.groups)++; group.RemoveById(g->h); return true; } bool SolveSpace::PruneRequests(hGroup hg) { int i; for(i = 0; i < entity.n; i++) { Entity *e = &(entity.elem[i]); if(e->group.v != hg.v) continue; if(EntityExists(e->workplane)) continue; if(!e->h.isFromRequest()) oops(); (deleted.requests)++; request.RemoveById(e->h.request()); return true; } return false; } bool SolveSpace::PruneConstraints(hGroup hg) { int i; for(i = 0; i < constraint.n; i++) { Constraint *c = &(constraint.elem[i]); if(c->group.v != hg.v) continue; if(EntityExists(c->workplane) && EntityExists(c->ptA) && EntityExists(c->ptB) && EntityExists(c->ptC) && EntityExists(c->entityA) && EntityExists(c->entityB)) { continue; } (deleted.constraints)++; constraint.RemoveById(c->h); return true; } return false; } void SolveSpace::GenerateAll(void) { int i; int firstDirty = INT_MAX, lastVisible = 0; // Start from the first dirty group, and solve until the active group, // since all groups after the active group are hidden. for(i = 0; i < group.n; i++) { Group *g = &(group.elem[i]); if((!g->clean) || (g->solved.how != Group::SOLVED_OKAY)) { firstDirty = min(firstDirty, i); } if(g->h.v == SS.GW.activeGroup.v) { lastVisible = i; } } if(firstDirty == INT_MAX || lastVisible == 0) { // All clean; so just regenerate the entities, and don't solve anything. GenerateAll(-1, -1); } else { GenerateAll(firstDirty, lastVisible); } } void SolveSpace::GenerateAll(int first, int last) { int i, j; while(PruneOrphans()) ; // Don't lose our numerical guesses when we regenerate. IdList prev; param.MoveSelfInto(&prev); entity.Clear(); for(i = 0; i < group.n; i++) { Group *g = &(group.elem[i]); // The group may depend on entities or other groups, to define its // workplane geometry or for its operands. Those must already exist // in a previous group, so check them before generating. if(PruneGroups(g->h)) goto pruned; for(j = 0; j < request.n; j++) { Request *r = &(request.elem[j]); if(r->group.v != g->h.v) continue; r->Generate(&entity, ¶m); } g->Generate(&entity, ¶m); // The requests and constraints depend on stuff in this or the // previous group, so check them after generating. if(PruneRequests(g->h) || PruneConstraints(g->h)) goto pruned; // Use the previous values for params that we've seen before, as // initial guesses for the solver. for(j = 0; j < param.n; j++) { Param *newp = &(param.elem[j]); if(newp->known) continue; Param *prevp = prev.FindByIdNoOops(newp->h); if(prevp) newp->val = prevp->val; } if(g->h.v == Group::HGROUP_REFERENCES.v) { ForceReferences(); g->solved.how = Group::SOLVED_OKAY; g->clean = true; } else { if(i >= first && i <= last) { // The group falls inside the range, so really solve it, // and then regenerate the mesh based on the solved stuff. SolveGroup(g->h); g->GeneratePolygon(); g->GenerateMesh(); g->clean = true; } else { // The group falls outside the range, so just assume that // it's good wherever we left it. The mesh is unchanged, // and the parameters must be marked as known. for(j = 0; j < param.n; j++) { Param *newp = &(param.elem[j]); Param *prevp = prev.FindByIdNoOops(newp->h); if(prevp) newp->known = true; } } } } // And update any reference dimensions with their new values for(i = 0; i < constraint.n; i++) { Constraint *c = &(constraint.elem[i]); if(c->reference) { c->ModifyToSatisfy(); } } prev.Clear(); InvalidateGraphics(); // Remove nonexistent selection items, for same reason we waited till // the end to put up a dialog box. GW.ClearNonexistentSelectionItems(); if(deleted.requests > 0 || deleted.constraints > 0 || deleted.groups > 0) { // All sorts of interesting things could have happened; for example, // the active group or active workplane could have been deleted. So // clear all that out. if(deleted.groups > 0) { SS.TW.ClearSuper(); } later.showTW = true; GW.ClearSuper(); // Don't display any errors until we've regenerated fully. The // sketch is not necessarily in a consistent state until we've // pruned any orphaned etc. objects, and the message loop for the // messagebox could allow us to repaint and crash. But now we must // be fine. Error("Additional sketch elements were deleted, because they depend " "on the element that was just deleted explicitly. These " "include: \r\n" " %d request%s\r\n" " %d constraint%s\r\n" " %d group%s\r\n\r\n" "Choose Edit -> Undo to undelete all elements.", deleted.requests, deleted.requests == 1 ? "" : "s", deleted.constraints, deleted.constraints == 1 ? "" : "s", deleted.groups, deleted.groups == 1 ? "" : "s"); memset(&deleted, 0, sizeof(deleted)); } return; pruned: // Restore the numerical guesses param.Clear(); prev.MoveSelfInto(¶m); // Try again GenerateAll(first, last); } void SolveSpace::ForceReferences(void) { // Force the values of the paramters that define the three reference // coordinate systems. static const struct { hRequest hr; Quaternion q; } Quat[] = { { Request::HREQUEST_REFERENCE_XY, { 1, 0, 0, 0, } }, { Request::HREQUEST_REFERENCE_YZ, { 0.5, 0.5, 0.5, 0.5, } }, { Request::HREQUEST_REFERENCE_ZX, { 0.5, -0.5, -0.5, -0.5, } }, }; for(int i = 0; i < 3; i++) { hRequest hr = Quat[i].hr; Entity *wrkpl = GetEntity(hr.entity(0)); // The origin for our coordinate system, always zero Entity *origin = GetEntity(wrkpl->point[0]); origin->PointForceTo(Vector::From(0, 0, 0)); GetParam(origin->param[0])->known = true; GetParam(origin->param[1])->known = true; GetParam(origin->param[2])->known = true; // The quaternion that defines the rotation, from the table. Entity *normal = GetEntity(wrkpl->normal); normal->NormalForceTo(Quat[i].q); GetParam(normal->param[0])->known = true; GetParam(normal->param[1])->known = true; GetParam(normal->param[2])->known = true; GetParam(normal->param[3])->known = true; } } void SolveSpace::SolveGroup(hGroup hg) { int i; // Clear out the system to be solved. sys.entity.Clear(); sys.param.Clear(); sys.eq.Clear(); // And generate all the params for requests in this group for(i = 0; i < request.n; i++) { Request *r = &(request.elem[i]); if(r->group.v != hg.v) continue; r->Generate(&(sys.entity), &(sys.param)); } // And for the group itself Group *g = SS.GetGroup(hg); g->Generate(&(sys.entity), &(sys.param)); // Set the initial guesses for all the params for(i = 0; i < sys.param.n; i++) { Param *p = &(sys.param.elem[i]); p->known = false; p->val = GetParam(p->h)->val; } sys.Solve(g); FreeAllTemporary(); } void SolveSpace::RemoveFromRecentList(char *file) { int src, dest; dest = 0; for(src = 0; src < MAX_RECENT; src++) { if(strcmp(file, RecentFile[src]) != 0) { if(src != dest) strcpy(RecentFile[dest], RecentFile[src]); dest++; } } while(dest < MAX_RECENT) strcpy(RecentFile[dest++], ""); RefreshRecentMenus(); } void SolveSpace::AddToRecentList(char *file) { RemoveFromRecentList(file); int src; for(src = MAX_RECENT - 2; src >= 0; src--) { strcpy(RecentFile[src+1], RecentFile[src]); } strcpy(RecentFile[0], file); RefreshRecentMenus(); } bool SolveSpace::GetFilenameAndSave(bool saveAs) { char newFile[MAX_PATH]; strcpy(newFile, saveFile); if(saveAs || strlen(newFile)==0) { if(!GetSaveFile(newFile, SLVS_EXT, SLVS_PATTERN)) return false; } if(SaveToFile(newFile)) { AddToRecentList(newFile); strcpy(saveFile, newFile); unsaved = false; return true; } else { return false; } } bool SolveSpace::OkayToStartNewFile(void) { if(!unsaved) return true; switch(SaveFileYesNoCancel()) { case IDYES: return GetFilenameAndSave(false); case IDNO: return true; case IDCANCEL: return false; default: oops(); } } void SolveSpace::MenuFile(int id) { if(id >= RECENT_OPEN && id < (RECENT_OPEN+MAX_RECENT)) { char newFile[MAX_PATH]; strcpy(newFile, RecentFile[id-RECENT_OPEN]); RemoveFromRecentList(newFile); if(SS.LoadFromFile(newFile)) { strcpy(SS.saveFile, newFile); AddToRecentList(newFile); } else { strcpy(SS.saveFile, ""); SS.NewFile(); } SS.AfterNewFile(); return; } switch(id) { case GraphicsWindow::MNU_NEW: if(!SS.OkayToStartNewFile()) break; strcpy(SS.saveFile, ""); SS.NewFile(); SS.AfterNewFile(); break; case GraphicsWindow::MNU_OPEN: { if(!SS.OkayToStartNewFile()) break; char newFile[MAX_PATH] = ""; if(GetOpenFile(newFile, SLVS_EXT, SLVS_PATTERN)) { if(SS.LoadFromFile(newFile)) { strcpy(SS.saveFile, newFile); AddToRecentList(newFile); } else { strcpy(SS.saveFile, ""); SS.NewFile(); } SS.AfterNewFile(); } break; } case GraphicsWindow::MNU_SAVE: SS.GetFilenameAndSave(false); break; case GraphicsWindow::MNU_SAVE_AS: SS.GetFilenameAndSave(true); break; case GraphicsWindow::MNU_EXIT: if(!SS.OkayToStartNewFile()) break; SS.Exit(); break; default: oops(); } }