#ifndef __SURFACE_H #define __SURFACE_H // Utility functions, Bernstein polynomials of order 1-3 and their derivatives. double Bernstein(int k, int deg, double t); double BernsteinDerivative(int k, int deg, double t); class SSurface; // Utility data structure, a two-dimensional BSP to accelerate polygon // operations. class SBspUv { public: Point2d a, b; SBspUv *pos; SBspUv *neg; SBspUv *more; static const int INSIDE = 100; static const int OUTSIDE = 200; static const int EDGE_PARALLEL = 300; static const int EDGE_ANTIPARALLEL = 400; static const int EDGE_OTHER = 500; static SBspUv *Alloc(void); static SBspUv *From(SEdgeList *el); Point2d IntersectionWith(Point2d a, Point2d b); SBspUv *InsertEdge(Point2d a, Point2d b); int ClassifyPoint(Point2d p, Point2d eb); int ClassifyEdge(Point2d ea, Point2d eb); }; // Now the data structures to represent a shell of trimmed rational polynomial // surfaces. class SShell; class hSSurface { public: DWORD v; }; class hSCurve { public: DWORD v; }; // Stuff for rational polynomial curves, of degree one to three. These are // our inputs, and are also calculated for certain exact surface-surface // intersections. class SBezier { public: int tag; int deg; Vector ctrl[4]; double weight[4]; Vector PointAt(double t); Vector TangentAt(double t); void ClosestPointTo(Vector p, double *t); void SplitAt(double t, SBezier *bef, SBezier *aft); Vector Start(void); Vector Finish(void); bool Equals(SBezier *b); void MakePwlInto(List *l); void MakePwlWorker(List *l, double ta, double tb); void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax); void Reverse(void); bool IsCircle(Vector axis, Vector *center, double *r); bool IsRational(void); SBezier TransformedBy(Vector t, Quaternion q); SBezier InPerspective(Vector u, Vector v, Vector n, Vector origin, double cameraTan); static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3); static SBezier From(Vector p0, Vector p1, Vector p2); static SBezier From(Vector p0, Vector p1); static SBezier From(Vector4 p0, Vector4 p1, Vector4 p2, Vector4 p3); static SBezier From(Vector4 p0, Vector4 p1, Vector4 p2); static SBezier From(Vector4 p0, Vector4 p1); }; class SBezierList { public: List l; void Clear(void); void CullIdenticalBeziers(void); }; class SBezierLoop { public: List l; inline void Clear(void) { l.Clear(); } void Reverse(void); void MakePwlInto(SContour *sc); void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax); static SBezierLoop FromCurves(SBezierList *spcl, bool *allClosed, SEdge *errorAt); }; class SBezierLoopSet { public: List l; Vector normal; Vector point; static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly, bool *allClosed, SEdge *errorAt); void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax); void Clear(void); }; // Stuff for the surface trim curves: piecewise linear class SCurve { public: hSCurve h; // In a Boolean, C = A op B. The curves in A and B get copied into C, and // therefore must get new hSCurves assigned. For the curves in A and B, // we use newH to record their new handle in C. hSCurve newH; static const int FROM_A = 100; static const int FROM_B = 200; static const int FROM_INTERSECTION = 300; int source; bool isExact; SBezier exact; List pts; hSSurface surfA; hSSurface surfB; static SCurve FromTransformationOf(SCurve *a, Vector t, Quaternion q); SCurve MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB, SSurface *srfA, SSurface *srfB); void Clear(void); }; // A segment of a curve by which a surface is trimmed: indicates which curve, // by its handle, and the starting and ending points of our segment of it. // The vector out points out of the surface; it, the surface outer normal, // and a tangent to the beginning of the curve are all orthogonal. class STrimBy { public: hSCurve curve; bool backwards; // If a trim runs backwards, then start and finish still correspond to // the actual start and finish, but they appear in reverse order in // the referenced curve. Vector start; Vector finish; static STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool bkwds); }; // An intersection point between a line and a surface class SInter { public: int tag; Vector p; SSurface *srf; hSSurface hsrf; Vector surfNormal; // of the intersecting surface, at pinter bool onEdge; // pinter is on edge of trim poly }; // A rational polynomial surface in Bezier form. class SSurface { public: hSSurface h; // Same as newH for the curves; record what a surface gets renamed to // when I copy things over. hSSurface newH; int color; DWORD face; int degm, degn; Vector ctrl[4][4]; double weight[4][4]; List trim; // For testing whether a point (u, v) on the surface lies inside the trim SBspUv *bsp; static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1); static SSurface FromPlane(Vector pt, Vector u, Vector v); static SSurface FromTransformationOf(SSurface *a, Vector t, Quaternion q, bool includingTrims); SSurface MakeCopyTrimAgainst(SShell *against, SShell *parent, SShell *into, int type, bool opA); void TrimFromEdgeList(SEdgeList *el); void IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB, SShell *into); void AddExactIntersectionCurve(SBezier *sb, SSurface *srfB, SShell *agnstA, SShell *agnstB, SShell *into); typedef struct { int tag; Point2d p; } Inter; void WeightControlPoints(void); void UnWeightControlPoints(void); void CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij); void BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij, SSurface *b, int b_ij); double DepartureFromCoplanar(void); void SplitInHalf(bool byU, SSurface *sa, SSurface *sb); void AllPointsIntersecting(Vector a, Vector b, List *l, bool seg, bool trimmed, bool inclTangent); void AllPointsIntersectingUntrimmed(Vector a, Vector b, int *cnt, int *level, List *l, bool segment, SSurface *sorig); void ClosestPointTo(Vector p, double *u, double *v, bool converge=true); bool PointIntersectingLine(Vector p0, Vector p1, double *u, double *v); void PointOnSurfaces(SSurface *s1, SSurface *s2, double *u, double *v); Vector PointAt(double u, double v); void TangentsAt(double u, double v, Vector *tu, Vector *tv); Vector NormalAt(double u, double v); bool LineEntirelyOutsideBbox(Vector a, Vector b, bool segment); void GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin); bool CoincidentWithPlane(Vector n, double d); bool CoincidentWith(SSurface *ss, bool sameNormal); bool IsExtrusion(SBezier *of, Vector *along); bool IsCylinder(Vector *axis, Vector *center, double *r, Vector *start, Vector *finish); void TriangulateInto(SShell *shell, SMesh *sm); void MakeTrimEdgesInto(SEdgeList *sel, bool asUv, SCurve *sc, STrimBy *stb); void MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv, SShell *useCurvesFrom=NULL); void MakeSectionEdgesInto(SShell *shell, SEdgeList *sel, SBezierList *sbl); void MakeClassifyingBsp(SShell *shell); double ChordToleranceForEdge(Vector a, Vector b); void Reverse(void); void Clear(void); }; class SShell { public: IdList curve; IdList surface; void MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1, int color); void MakeFromUnionOf(SShell *a, SShell *b); void MakeFromDifferenceOf(SShell *a, SShell *b); static const int AS_UNION = 10; static const int AS_DIFFERENCE = 11; static const int AS_INTERSECT = 12; void MakeFromBoolean(SShell *a, SShell *b, int type); void CopyCurvesSplitAgainst(bool opA, SShell *agnst, SShell *into); void CopySurfacesTrimAgainst(SShell *against, SShell *into, int t, bool a); void MakeIntersectionCurvesAgainst(SShell *against, SShell *into); void MakeClassifyingBsps(void); void AllPointsIntersecting(Vector a, Vector b, List *il, bool seg, bool trimmed, bool inclTangent); void MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal, SEdgeList *el, SShell *useCurvesFrom); void CleanupAfterBoolean(void); static const int INSIDE = 100; static const int OUTSIDE = 200; static const int SURF_PARALLEL = 300; static const int SURF_ANTIPARALLEL = 400; static const int EDGE_PARALLEL = 500; static const int EDGE_ANTIPARALLEL = 600; static const int EDGE_TANGENT = 700; int ClassifyPoint(Vector p, Vector edge_n, Vector surf_n); void MakeFromCopyOf(SShell *a); void MakeFromTransformationOf(SShell *a, Vector trans, Quaternion q); void TriangulateInto(SMesh *sm); void MakeEdgesInto(SEdgeList *sel); void MakeSectionEdgesInto(Vector n, double d, SEdgeList *sel, SBezierList *sbl); void Clear(void); }; #endif