#ifndef __SURFACE_H #define __SURFACE_H // Utility function double Bernstein(int k, int deg, double t); class hSSurface { public: DWORD v; }; class hSCurve { public: DWORD v; }; // Stuff for rational polynomial curves, of degree one to three. These are // our inputs. class SPolyCurve { public: int tag; int deg; Vector ctrl[4]; double weight[4]; Vector EvalAt(double t); Vector Start(void); Vector Finish(void); void MakePwlInto(List *l); void MakePwlWorker(List *l, double ta, double tb); void Reverse(void); static SPolyCurve From(Vector p0, Vector p1, Vector p2, Vector p3); static SPolyCurve From(Vector p0, Vector p1, Vector p2); static SPolyCurve From(Vector p0, Vector p1); }; class SPolyCurveList { public: List l; void Clear(void); }; class SPolyCurveLoop { public: List l; bool IsClockwiseProjdToNormal(Vector n); static SPolyCurveLoop FromCurves(SPolyCurveList *spcl, bool *notClosed); }; // Stuff for the surface trim curves: piecewise linear class SCurve { public: hSCurve h; SPolyCurve exact; // or deg = 0 if we don't know the exact form List pts; hSSurface srfA; hSSurface srfB; }; // A segment of a curve by which a surface is trimmed: indicates which curve, // by its handle, and the starting and ending points of our segment of it. // The vector out points out of the surface; it, the surface outer normal, // and a tangent to the beginning of the curve are all orthogonal. class STrimBy { public: hSCurve curve; Vector start; Vector finish; Vector out; }; class SSurface { public: hSSurface h; int degm, degn; Vector ctrl[4][4]; double weight[4][4]; Vector out00; // outer normal at ctrl[0][0] List trim; static SSurface FromExtrusionOf(SPolyCurve *spc, Vector t0, Vector t1); void TriangulateInto(SMesh *sm); }; class SShell { public: IdList curve; IdList surface; static SShell FromExtrusionOf(SPolyCurveList *spcl, Vector t0, Vector t1); static SShell FromUnionOf(SShell *a, SShell *b); }; #endif