#ifndef __POLYGON_H #define __POLYGON_H class SPolygon; class SContour; class SMesh; class SBsp3; template class SList { public: T *elem; int n; int elemsAllocated; void Add(T *t) { if(n >= elemsAllocated) { elemsAllocated = (elemsAllocated + 32)*2; elem = (T *)MemRealloc(elem, elemsAllocated*sizeof(elem[0])); } elem[n++] = *t; } void ClearTags(void) { int i; for(i = 0; i < n; i++) { elem[i].tag = 0; } } void Clear(void) { if(elem) MemFree(elem); elem = NULL; n = elemsAllocated = 0; } void RemoveTagged(void) { int src, dest; dest = 0; for(src = 0; src < n; src++) { if(elem[src].tag) { // this item should be deleted } else { if(src != dest) { elem[dest] = elem[src]; } dest++; } } n = dest; // and elemsAllocated is untouched, because we didn't resize } }; class SEdge { public: int tag; Vector a, b; static SEdge From(Vector a, Vector b); }; class SEdgeList { public: SList l; void Clear(void); void AddEdge(Vector a, Vector b); bool AssemblePolygon(SPolygon *dest, SEdge *errorAt); bool AssembleContour(Vector first, Vector last, SContour *dest, SEdge *errorAt); }; class SPoint { public: int tag; Vector p; }; class SContour { public: SList l; void AddPoint(Vector p); void MakeEdgesInto(SEdgeList *el); void Reverse(void); Vector ComputeNormal(void); bool IsClockwiseProjdToNormal(Vector n); bool ContainsPointProjdToNormal(Vector n, Vector p); bool AllPointsInPlane(Vector n, double d, Vector *notCoplanarAt); }; typedef struct { DWORD face; int color; } STriMeta; class SPolygon { public: SList l; Vector normal; Vector ComputeNormal(void); void AddEmptyContour(void); int WindingNumberForPoint(Vector p); bool ContainsPoint(Vector p); void MakeEdgesInto(SEdgeList *el); void FixContourDirections(void); void TriangulateInto(SMesh *m); void TriangulateInto(SMesh *m, STriMeta meta); void Clear(void); bool AllPointsInPlane(Vector *notCoplanarAt); bool IsEmpty(void); Vector AnyPoint(void); }; class STriangle { public: int tag; STriMeta meta; Vector a, b, c; static STriangle From(STriMeta meta, Vector a, Vector b, Vector c); Vector Normal(void); void FlipNormal(void); int WindingNumberForPoint(Vector p); bool ContainsPoint(Vector p); bool ContainsPointProjd(Vector n, Vector p); }; class SBsp2 { public: Vector np; // normal to the plane Vector no; // outer normal to the edge double d; SEdge edge; SBsp2 *pos; SBsp2 *neg; SBsp2 *more; static const int POS = 100, NEG = 101, COPLANAR = 200; void InsertTriangleHow(int how, STriangle *tr, SMesh *m, SBsp3 *bsp3); void InsertTriangle(STriangle *tr, SMesh *m, SBsp3 *bsp3); Vector IntersectionWith(Vector a, Vector b); SBsp2 *InsertEdge(SEdge *nedge, Vector nnp, Vector out); static SBsp2 *Alloc(void); void DebugDraw(Vector n, double d); }; class SBsp3 { public: Vector n; double d; STriangle tri; SBsp3 *pos; SBsp3 *neg; SBsp3 *more; SBsp2 *edges; static SBsp3 *Alloc(void); static SBsp3 *FromMesh(SMesh *m); Vector IntersectionWith(Vector a, Vector b); static const int POS = 100, NEG = 101, COPLANAR = 200; void InsertHow(int how, STriangle *str, SMesh *instead); SBsp3 *Insert(STriangle *str, SMesh *instead); void InsertConvexHow(int how, STriMeta meta, Vector *vertex, int n, SMesh *instead); SBsp3 *InsertConvex(STriMeta meta, Vector *vertex, int n, SMesh *instead); void InsertInPlane(bool pos2, STriangle *tr, SMesh *m); void DebugDraw(void); }; class SMesh { public: SList l; bool flipNormal; bool keepCoplanar; bool atLeastOneDiscarded; void Clear(void); void AddTriangle(STriangle *st); void AddTriangle(STriMeta meta, Vector a, Vector b, Vector c); void AddTriangle(STriMeta meta, Vector n, Vector a, Vector b, Vector c); void DoBounding(Vector v, Vector *vmax, Vector *vmin); void GetBounding(Vector *vmax, Vector *vmin); void Simplify(int start); void AddAgainstBsp(SMesh *srcm, SBsp3 *bsp3); void MakeFromUnion(SMesh *a, SMesh *b); void MakeFromDifference(SMesh *a, SMesh *b); bool MakeFromInterferenceCheck(SMesh *srca, SMesh *srcb, SMesh *errorAt); DWORD FirstIntersectionWith(Point2d mp); }; // A linked list of triangles class STriangleLl { public: int tag; STriangle tri; STriangleLl *next; }; // A linked list of linked lists of triangles; extra layer of encapsulation // required because the same triangle might appear in both branches of the // tree, if it spans the split plane, and we will need to be able to split // the triangle into multiple pieces as we remove T intersections. class STriangleLl2 { public: STriangleLl *trl; STriangleLl2 *next; }; class SKdTree { public: static const int BY_X = 0; static const int BY_Y = 1; static const int BY_Z = 2; int which; double c; SKdTree *gt; SKdTree *lt; STriangleLl2 *tris; }; #endif