//-----------------------------------------------------------------------------
// The symbolic algebra system used to write our constraint equations;
// routines to build expressions in software or from a user-provided string,
// and to compute the partial derivatives that we'll use when write our
// Jacobian matrix.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
ExprVector ExprVector::From(Expr *x, Expr *y, Expr *z) {
ExprVector r = { x, y, z};
return r;
}
ExprVector ExprVector::From(Vector vn) {
ExprVector ve;
ve.x = Expr::From(vn.x);
ve.y = Expr::From(vn.y);
ve.z = Expr::From(vn.z);
return ve;
}
ExprVector ExprVector::From(hParam x, hParam y, hParam z) {
ExprVector ve;
ve.x = Expr::From(x);
ve.y = Expr::From(y);
ve.z = Expr::From(z);
return ve;
}
ExprVector ExprVector::From(double x, double y, double z) {
ExprVector ve;
ve.x = Expr::From(x);
ve.y = Expr::From(y);
ve.z = Expr::From(z);
return ve;
}
ExprVector ExprVector::Minus(ExprVector b) {
ExprVector r;
r.x = x->Minus(b.x);
r.y = y->Minus(b.y);
r.z = z->Minus(b.z);
return r;
}
ExprVector ExprVector::Plus(ExprVector b) {
ExprVector r;
r.x = x->Plus(b.x);
r.y = y->Plus(b.y);
r.z = z->Plus(b.z);
return r;
}
Expr *ExprVector::Dot(ExprVector b) {
Expr *r;
r = x->Times(b.x);
r = r->Plus(y->Times(b.y));
r = r->Plus(z->Times(b.z));
return r;
}
ExprVector ExprVector::Cross(ExprVector b) {
ExprVector r;
r.x = (y->Times(b.z))->Minus(z->Times(b.y));
r.y = (z->Times(b.x))->Minus(x->Times(b.z));
r.z = (x->Times(b.y))->Minus(y->Times(b.x));
return r;
}
ExprVector ExprVector::ScaledBy(Expr *s) {
ExprVector r;
r.x = x->Times(s);
r.y = y->Times(s);
r.z = z->Times(s);
return r;
}
ExprVector ExprVector::WithMagnitude(Expr *s) {
Expr *m = Magnitude();
return ScaledBy(s->Div(m));
}
Expr *ExprVector::Magnitude(void) {
Expr *r;
r = x->Square();
r = r->Plus(y->Square());
r = r->Plus(z->Square());
return r->Sqrt();
}
Vector ExprVector::Eval(void) {
Vector r;
r.x = x->Eval();
r.y = y->Eval();
r.z = z->Eval();
return r;
}
ExprQuaternion ExprQuaternion::From(hParam w, hParam vx, hParam vy, hParam vz) {
ExprQuaternion q;
q.w = Expr::From(w);
q.vx = Expr::From(vx);
q.vy = Expr::From(vy);
q.vz = Expr::From(vz);
return q;
}
ExprQuaternion ExprQuaternion::From(Expr *w, Expr *vx, Expr *vy, Expr *vz)
{
ExprQuaternion q;
q.w = w;
q.vx = vx;
q.vy = vy;
q.vz = vz;
return q;
}
ExprQuaternion ExprQuaternion::From(Quaternion qn) {
ExprQuaternion qe;
qe.w = Expr::From(qn.w);
qe.vx = Expr::From(qn.vx);
qe.vy = Expr::From(qn.vy);
qe.vz = Expr::From(qn.vz);
return qe;
}
ExprVector ExprQuaternion::RotationU(void) {
ExprVector u;
Expr *two = Expr::From(2);
u.x = w->Square();
u.x = (u.x)->Plus(vx->Square());
u.x = (u.x)->Minus(vy->Square());
u.x = (u.x)->Minus(vz->Square());
u.y = two->Times(w->Times(vz));
u.y = (u.y)->Plus(two->Times(vx->Times(vy)));
u.z = two->Times(vx->Times(vz));
u.z = (u.z)->Minus(two->Times(w->Times(vy)));
return u;
}
ExprVector ExprQuaternion::RotationV(void) {
ExprVector v;
Expr *two = Expr::From(2);
v.x = two->Times(vx->Times(vy));
v.x = (v.x)->Minus(two->Times(w->Times(vz)));
v.y = w->Square();
v.y = (v.y)->Minus(vx->Square());
v.y = (v.y)->Plus(vy->Square());
v.y = (v.y)->Minus(vz->Square());
v.z = two->Times(w->Times(vx));
v.z = (v.z)->Plus(two->Times(vy->Times(vz)));
return v;
}
ExprVector ExprQuaternion::RotationN(void) {
ExprVector n;
Expr *two = Expr::From(2);
n.x = two->Times( w->Times(vy));
n.x = (n.x)->Plus (two->Times(vx->Times(vz)));
n.y = two->Times(vy->Times(vz));
n.y = (n.y)->Minus(two->Times( w->Times(vx)));
n.z = w->Square();
n.z = (n.z)->Minus(vx->Square());
n.z = (n.z)->Minus(vy->Square());
n.z = (n.z)->Plus (vz->Square());
return n;
}
ExprVector ExprQuaternion::Rotate(ExprVector p) {
// Express the point in the new basis
return (RotationU().ScaledBy(p.x)).Plus(
RotationV().ScaledBy(p.y)).Plus(
RotationN().ScaledBy(p.z));
}
ExprQuaternion ExprQuaternion::Times(ExprQuaternion b) {
Expr *sa = w, *sb = b.w;
ExprVector va = { vx, vy, vz };
ExprVector vb = { b.vx, b.vy, b.vz };
ExprQuaternion r;
r.w = (sa->Times(sb))->Minus(va.Dot(vb));
ExprVector vr = vb.ScaledBy(sa).Plus(
va.ScaledBy(sb).Plus(
va.Cross(vb)));
r.vx = vr.x;
r.vy = vr.y;
r.vz = vr.z;
return r;
}
Expr *ExprQuaternion::Magnitude(void) {
return ((w ->Square())->Plus(
(vx->Square())->Plus(
(vy->Square())->Plus(
(vz->Square())))))->Sqrt();
}
Expr *Expr::From(hParam p) {
Expr *r = AllocExpr();
r->op = PARAM;
r->x.parh = p;
return r;
}
Expr *Expr::From(double v) {
// Statically allocate common constants.
// Note: this is only valid because AllocExpr() uses AllocTemporary(),
// and Expr* is never explicitly freed.
if(v == 0.0) {
static Expr zero(0.0);
return &zero;
}
if(v == 1.0) {
static Expr one(1.0);
return &one;
}
if(v == -1.0) {
static Expr mone(-1.0);
return &mone;
}
if(v == 0.5) {
static Expr half(0.5);
return ½
}
if(v == -0.5) {
static Expr mhalf(-0.5);
return &mhalf;
}
Expr *r = AllocExpr();
r->op = CONSTANT;
r->x.v = v;
return r;
}
Expr *Expr::AnyOp(int newOp, Expr *b) {
Expr *r = AllocExpr();
r->op = newOp;
r->a = this;
r->b = b;
return r;
}
int Expr::Children(void) {
switch(op) {
case PARAM:
case PARAM_PTR:
case CONSTANT:
return 0;
case PLUS:
case MINUS:
case TIMES:
case DIV:
return 2;
case NEGATE:
case SQRT:
case SQUARE:
case SIN:
case COS:
case ASIN:
case ACOS:
return 1;
default: oops();
}
}
int Expr::Nodes(void) {
switch(Children()) {
case 0: return 1;
case 1: return 1 + a->Nodes();
case 2: return 1 + a->Nodes() + b->Nodes();
default: oops();
}
}
Expr *Expr::DeepCopy(void) {
Expr *n = AllocExpr();
*n = *this;
n->marker = 0;
int c = n->Children();
if(c > 0) n->a = a->DeepCopy();
if(c > 1) n->b = b->DeepCopy();
return n;
}
Expr *Expr::DeepCopyWithParamsAsPointers(IdList *firstTry,
IdList *thenTry)
{
Expr *n = AllocExpr();
if(op == PARAM) {
// A param that is referenced by its hParam gets rewritten to go
// straight in to the parameter table with a pointer, or simply
// into a constant if it's already known.
Param *p = firstTry->FindByIdNoOops(x.parh);
if(!p) p = thenTry->FindById(x.parh);
if(p->known) {
n->op = CONSTANT;
n->x.v = p->val;
} else {
n->op = PARAM_PTR;
n->x.parp = p;
}
return n;
}
*n = *this;
int c = n->Children();
if(c > 0) n->a = a->DeepCopyWithParamsAsPointers(firstTry, thenTry);
if(c > 1) n->b = b->DeepCopyWithParamsAsPointers(firstTry, thenTry);
return n;
}
double Expr::Eval(void) {
switch(op) {
case PARAM: return SK.GetParam(x.parh)->val;
case PARAM_PTR: return (x.parp)->val;
case CONSTANT: return x.v;
case PLUS: return a->Eval() + b->Eval();
case MINUS: return a->Eval() - b->Eval();
case TIMES: return a->Eval() * b->Eval();
case DIV: return a->Eval() / b->Eval();
case NEGATE: return -(a->Eval());
case SQRT: return sqrt(a->Eval());
case SQUARE: { double r = a->Eval(); return r*r; }
case SIN: return sin(a->Eval());
case COS: return cos(a->Eval());
case ACOS: return acos(a->Eval());
case ASIN: return asin(a->Eval());
default: oops();
}
}
Expr *Expr::PartialWrt(hParam p) {
Expr *da, *db;
switch(op) {
case PARAM_PTR: return From(p.v == x.parp->h.v ? 1 : 0);
case PARAM: return From(p.v == x.parh.v ? 1 : 0);
case CONSTANT: return From(0.0);
case PLUS: return (a->PartialWrt(p))->Plus(b->PartialWrt(p));
case MINUS: return (a->PartialWrt(p))->Minus(b->PartialWrt(p));
case TIMES:
da = a->PartialWrt(p);
db = b->PartialWrt(p);
return (a->Times(db))->Plus(b->Times(da));
case DIV:
da = a->PartialWrt(p);
db = b->PartialWrt(p);
return ((da->Times(b))->Minus(a->Times(db)))->Div(b->Square());
case SQRT:
return (From(0.5)->Div(a->Sqrt()))->Times(a->PartialWrt(p));
case SQUARE:
return (From(2.0)->Times(a))->Times(a->PartialWrt(p));
case NEGATE: return (a->PartialWrt(p))->Negate();
case SIN: return (a->Cos())->Times(a->PartialWrt(p));
case COS: return ((a->Sin())->Times(a->PartialWrt(p)))->Negate();
case ASIN:
return (From(1)->Div((From(1)->Minus(a->Square()))->Sqrt()))
->Times(a->PartialWrt(p));
case ACOS:
return (From(-1)->Div((From(1)->Minus(a->Square()))->Sqrt()))
->Times(a->PartialWrt(p));
default: oops();
}
}
uint64_t Expr::ParamsUsed(void) {
uint64_t r = 0;
if(op == PARAM) r |= ((uint64_t)1 << (x.parh.v % 61));
if(op == PARAM_PTR) r |= ((uint64_t)1 << (x.parp->h.v % 61));
int c = Children();
if(c >= 1) r |= a->ParamsUsed();
if(c >= 2) r |= b->ParamsUsed();
return r;
}
bool Expr::DependsOn(hParam p) {
if(op == PARAM) return (x.parh.v == p.v);
if(op == PARAM_PTR) return (x.parp->h.v == p.v);
int c = Children();
if(c == 1) return a->DependsOn(p);
if(c == 2) return a->DependsOn(p) || b->DependsOn(p);
return false;
}
bool Expr::Tol(double a, double b) {
return fabs(a - b) < 0.001;
}
Expr *Expr::FoldConstants(void) {
Expr *n = AllocExpr();
*n = *this;
int c = Children();
if(c >= 1) n->a = a->FoldConstants();
if(c >= 2) n->b = b->FoldConstants();
switch(op) {
case PARAM_PTR:
case PARAM:
case CONSTANT:
break;
case MINUS:
case TIMES:
case DIV:
case PLUS:
// If both ops are known, then we can evaluate immediately
if(n->a->op == CONSTANT && n->b->op == CONSTANT) {
double nv = n->Eval();
n->op = CONSTANT;
n->x.v = nv;
break;
}
// x + 0 = 0 + x = x
if(op == PLUS && n->b->op == CONSTANT && Tol(n->b->x.v, 0)) {
*n = *(n->a); break;
}
if(op == PLUS && n->a->op == CONSTANT && Tol(n->a->x.v, 0)) {
*n = *(n->b); break;
}
// 1*x = x*1 = x
if(op == TIMES && n->b->op == CONSTANT && Tol(n->b->x.v, 1)) {
*n = *(n->a); break;
}
if(op == TIMES && n->a->op == CONSTANT && Tol(n->a->x.v, 1)) {
*n = *(n->b); break;
}
// 0*x = x*0 = 0
if(op == TIMES && n->b->op == CONSTANT && Tol(n->b->x.v, 0)) {
n->op = CONSTANT; n->x.v = 0; break;
}
if(op == TIMES && n->a->op == CONSTANT && Tol(n->a->x.v, 0)) {
n->op = CONSTANT; n->x.v = 0; break;
}
break;
case SQRT:
case SQUARE:
case NEGATE:
case SIN:
case COS:
case ASIN:
case ACOS:
if(n->a->op == CONSTANT) {
double nv = n->Eval();
n->op = CONSTANT;
n->x.v = nv;
}
break;
default: oops();
}
return n;
}
void Expr::Substitute(hParam oldh, hParam newh) {
if(op == PARAM_PTR) oops();
if(op == PARAM && x.parh.v == oldh.v) {
x.parh = newh;
}
int c = Children();
if(c >= 1) a->Substitute(oldh, newh);
if(c >= 2) b->Substitute(oldh, newh);
}
//-----------------------------------------------------------------------------
// If the expression references only one parameter that appears in pl, then
// return that parameter. If no param is referenced, then return NO_PARAMS.
// If multiple params are referenced, then return MULTIPLE_PARAMS.
//-----------------------------------------------------------------------------
const hParam Expr::NO_PARAMS = { 0 };
const hParam Expr::MULTIPLE_PARAMS = { 1 };
hParam Expr::ReferencedParams(ParamList *pl) {
if(op == PARAM) {
if(pl->FindByIdNoOops(x.parh)) {
return x.parh;
} else {
return NO_PARAMS;
}
}
if(op == PARAM_PTR) oops();
int c = Children();
if(c == 0) {
return NO_PARAMS;
} else if(c == 1) {
return a->ReferencedParams(pl);
} else if(c == 2) {
hParam pa, pb;
pa = a->ReferencedParams(pl);
pb = b->ReferencedParams(pl);
if(pa.v == NO_PARAMS.v) {
return pb;
} else if(pb.v == NO_PARAMS.v) {
return pa;
} else if(pa.v == pb.v) {
return pa; // either, doesn't matter
} else {
return MULTIPLE_PARAMS;
}
} else oops();
}
//-----------------------------------------------------------------------------
// Routines to pretty-print an expression. Mostly for debugging.
//-----------------------------------------------------------------------------
std::string Expr::Print(void) {
if(!this) return "0";
char c;
switch(op) {
case PARAM: return ssprintf("param(%08x)", x.parh.v);
case PARAM_PTR: return ssprintf("param(p%08x)", x.parp->h.v);
case CONSTANT: return ssprintf("%.3f", x.v);
case PLUS: c = '+'; goto p;
case MINUS: c = '-'; goto p;
case TIMES: c = '*'; goto p;
case DIV: c = '/'; goto p;
p:
return "(" + a->Print() + " " + c + " " + b->Print() + ")";
break;
case NEGATE: return "(- " + a->Print() + ")";
case SQRT: return "(sqrt " + a->Print() + ")";
case SQUARE: return "(square " + a->Print() + ")";
case SIN: return "(sin " + a->Print() + ")";
case COS: return "(cos " + a->Print() + ")";
case ASIN: return "(asin " + a->Print() + ")";
case ACOS: return "(acos " + a->Print() + ")";
default: oops();
}
}
//-----------------------------------------------------------------------------
// A parser; convert a string to an expression. Infix notation, with the
// usual shift/reduce approach. I had great hopes for user-entered eq
// constraints, but those don't seem very useful, so right now this is just
// to provide calculator type functionality wherever numbers are entered.
//-----------------------------------------------------------------------------
#define MAX_UNPARSED 1024
static Expr *Unparsed[MAX_UNPARSED];
static int UnparsedCnt, UnparsedP;
static Expr *Operands[MAX_UNPARSED];
static int OperandsP;
static Expr *Operators[MAX_UNPARSED];
static int OperatorsP;
void Expr::PushOperator(Expr *e) {
if(OperatorsP >= MAX_UNPARSED) throw "operator stack full!";
Operators[OperatorsP++] = e;
}
Expr *Expr::TopOperator(void) {
if(OperatorsP <= 0) throw "operator stack empty (get top)";
return Operators[OperatorsP-1];
}
Expr *Expr::PopOperator(void) {
if(OperatorsP <= 0) throw "operator stack empty (pop)";
return Operators[--OperatorsP];
}
void Expr::PushOperand(Expr *e) {
if(OperandsP >= MAX_UNPARSED) throw "operand stack full";
Operands[OperandsP++] = e;
}
Expr *Expr::PopOperand(void) {
if(OperandsP <= 0) throw "operand stack empty";
return Operands[--OperandsP];
}
Expr *Expr::Next(void) {
if(UnparsedP >= UnparsedCnt) return NULL;
return Unparsed[UnparsedP];
}
void Expr::Consume(void) {
if(UnparsedP >= UnparsedCnt) throw "no token to consume";
UnparsedP++;
}
int Expr::Precedence(Expr *e) {
if(e->op == ALL_RESOLVED) return -1; // never want to reduce this marker
if(e->op != BINARY_OP && e->op != UNARY_OP) oops();
switch(e->x.c) {
case 'q':
case 's':
case 'c':
case 'n': return 30;
case '*':
case '/': return 20;
case '+':
case '-': return 10;
default: oops();
}
}
void Expr::Reduce(void) {
Expr *a, *b;
Expr *op = PopOperator();
Expr *n;
int o;
switch(op->x.c) {
case '+': o = PLUS; goto c;
case '-': o = MINUS; goto c;
case '*': o = TIMES; goto c;
case '/': o = DIV; goto c;
c:
b = PopOperand();
a = PopOperand();
n = a->AnyOp(o, b);
break;
case 'n': n = PopOperand()->Negate(); break;
case 'q': n = PopOperand()->Sqrt(); break;
case 's': n = (PopOperand()->Times(Expr::From(PI/180)))->Sin(); break;
case 'c': n = (PopOperand()->Times(Expr::From(PI/180)))->Cos(); break;
default: oops();
}
PushOperand(n);
}
void Expr::ReduceAndPush(Expr *n) {
while(Precedence(n) <= Precedence(TopOperator())) {
Reduce();
}
PushOperator(n);
}
void Expr::Parse(void) {
Expr *e = AllocExpr();
e->op = ALL_RESOLVED;
PushOperator(e);
for(;;) {
Expr *n = Next();
if(!n) throw "end of expression unexpected";
if(n->op == CONSTANT) {
PushOperand(n);
Consume();
} else if(n->op == PAREN && n->x.c == '(') {
Consume();
Parse();
n = Next();
if(n->op != PAREN || n->x.c != ')') throw "expected: )";
Consume();
} else if(n->op == UNARY_OP) {
PushOperator(n);
Consume();
continue;
} else if(n->op == BINARY_OP && n->x.c == '-') {
// The minus sign is special, because it might be binary or
// unary, depending on context.
n->op = UNARY_OP;
n->x.c = 'n';
PushOperator(n);
Consume();
continue;
} else {
throw "expected expression";
}
n = Next();
if(n && n->op == BINARY_OP) {
ReduceAndPush(n);
Consume();
} else {
break;
}
}
while(TopOperator()->op != ALL_RESOLVED) {
Reduce();
}
PopOperator(); // discard the ALL_RESOLVED marker
}
void Expr::Lex(const char *in) {
while(*in) {
if(UnparsedCnt >= MAX_UNPARSED) throw "too long";
char c = *in;
if(isdigit(c) || c == '.') {
// A number literal
char number[70];
int len = 0;
while((isdigit(*in) || *in == '.') && len < 30) {
number[len++] = *in;
in++;
}
number[len++] = '\0';
Expr *e = AllocExpr();
e->op = CONSTANT;
e->x.v = atof(number);
Unparsed[UnparsedCnt++] = e;
} else if(isalpha(c) || c == '_') {
char name[70];
int len = 0;
while(isforname(*in) && len < 30) {
name[len++] = *in;
in++;
}
name[len++] = '\0';
Expr *e = AllocExpr();
if(strcmp(name, "sqrt")==0) {
e->op = UNARY_OP;
e->x.c = 'q';
} else if(strcmp(name, "cos")==0) {
e->op = UNARY_OP;
e->x.c = 'c';
} else if(strcmp(name, "sin")==0) {
e->op = UNARY_OP;
e->x.c = 's';
} else if(strcmp(name, "pi")==0) {
e->op = CONSTANT;
e->x.v = PI;
} else {
throw "unknown name";
}
Unparsed[UnparsedCnt++] = e;
} else if(strchr("+-*/()", c)) {
Expr *e = AllocExpr();
e->op = (c == '(' || c == ')') ? PAREN : BINARY_OP;
e->x.c = c;
Unparsed[UnparsedCnt++] = e;
in++;
} else if(isspace(c)) {
// Ignore whitespace
in++;
} else {
// This is a lex error.
throw "unexpected characters";
}
}
}
Expr *Expr::From(const char *in, bool popUpError) {
UnparsedCnt = 0;
UnparsedP = 0;
OperandsP = 0;
OperatorsP = 0;
Expr *r;
try {
Lex(in);
Parse();
r = PopOperand();
} catch (const char *e) {
dbp("exception: parse/lex error: %s", e);
if(popUpError) {
Error("Not a valid number or expression: '%s'", in);
}
return NULL;
}
return r;
}