introduced by the bsp routines. It's usually, though not always,
possible to generate a watertight mesh. The occasions where it's
not look ugly, floating point issues, no quick fix.
And use those to generate a list of edges where two different faces
meet, which I can emphasize for cosmetic reasons (and some UI to
specify whether to do that, and with what color).
And make the right mouse button rotate the model, since that was
previously doing nothing.
[git-p4: depot-paths = "//depot/solvespace/": change = 1821]
degree angle, but shows with a right angle symbol instead of a
numerical angle you can edit.
[git-p4: depot-paths = "//depot/solvespace/": change = 1819]
version of the code from SketchFlat, with all arbitrary limits
removed.
The TTF text is its own entity, and that entity includes the
font file basename and the text. That's an extra 128 bytes in the
entity, which is around a 50% increase, kind of a shame. It was
simple, though.
[git-p4: depot-paths = "//depot/solvespace/": change = 1814]
liked, but my more parametric attempts were very difficult to use.
The pitch (both axial and radial) gets specified by typing a
distance in a textbox.
[git-p4: depot-paths = "//depot/solvespace/": change = 1804]
separate groups. The section is swept normal to the trajectory,
producing a mesh. I'm doing the triangles only now, not copying
over any entities.
Also fix a bug in the PNG export; rows are 4-aligned, so that was
breaking when the width of the image wasn't divisible by four. Also
fix a bug in lathes, where it generated overlapping triangles for
one segment.
And change the groups to record both "this mesh", the contribution
due to the extrude/lathe/whatever, and the "running mesh", that we
get after applying the requested Boolean op between "this mesh" and
the previous group's "running mesh". I'll use that to make step and
repeats step the mesh too.
[git-p4: depot-paths = "//depot/solvespace/": change = 1801]
that perspective in the gl matrices, and also everywhere that I
check mouse pointer positions against the model, and for the zoom
to fit.
[git-p4: depot-paths = "//depot/solvespace/": change = 1796]
user-visible text. And make points hoverable/selectable even when
GW.showPoints is false, and zoom to fit before regenerating on file
open, because then we're at the right zoom level (and will use the
right pwl tolerance).
[git-p4: depot-paths = "//depot/solvespace/": change = 1788]
and rotates, auto-constrain translates in active workplane, speed
up remap list search with a hash table, other stuff.
[git-p4: depot-paths = "//depot/solvespace/": change = 1786]
just the mesh, no derived entities (but I suppose that I could turn
all points into circles).
And fix some bugs where equations didn't get unique IDs, and make
it possible to lock on to the group's workplane automatically, if
you press W while free in 3d with no workplane selected.
[git-p4: depot-paths = "//depot/solvespace/": change = 1780]
and requests to a separate list. It's messy, because I have to make
a deep copy (e.g. of the remap list for the groups, or Expr *
stuff) of some things. Others (e.g. the polygon or mesh) will be
regenerated, so they should be discarded, but they must not get
double-freed.
In any case, works superficially. And fix a few memory leaks
unrelated to this, and remove some dead code.
[git-p4: depot-paths = "//depot/solvespace/": change = 1775]
becomes dirty when the user makes a change, and only the dirty
groups get solved. That's a huge effective speedup.
Also add delete function for groups. That has an interesting issue;
it actually ends up recursing on GenerateAll(), since GenerateAll()
calls ClearSuper(), ClearSuper() might need to recreate a group (if
all the groups were deleted), and that would activate the group,
which calls GenerateAll. The right solution is probably a deferred
execution mechanism, where you can schedule something to happen
before we go idle, but not do it right now.
[git-p4: depot-paths = "//depot/solvespace/": change = 1771]
in one place. And remove the ability to disable the solver, since
that's unlikely to be anything but confusing (and in any case, was
badly implemented). This is in preparation for selective solving,
of only the dirty groups.
[git-p4: depot-paths = "//depot/solvespace/": change = 1769]
solid red or yellow. And add user interface to `hide' the faces
(i.e., to make them unselectable), defaulting to hidden in
everything except extrudes or imports.
[git-p4: depot-paths = "//depot/solvespace/": change = 1768]
more starting work on the selectable faces, and fiddling in an
attempt to remove dependencies when stuff gets deleted.
[git-p4: depot-paths = "//depot/solvespace/": change = 1760]
csg ops; so the union of a red part and a blue part has both red
and blue faces. And some user interface to pick the color in the
text window.
The metadata also include a face, which will be an entity; I can
use that to constrain against. But none of that is yet implemented.
[git-p4: depot-paths = "//depot/solvespace/": change = 1757]
recently opened files, that is saved in the registry and displayed
in a separate popup menu.
[git-p4: depot-paths = "//depot/solvespace/": change = 1752]
nicely. And to do that, I've added the user interface to show an
edit control in the text window.
[git-p4: depot-paths = "//depot/solvespace/": change = 1749]
so e.g. a new extrude starts in free space, which is likely what
you want. And default to an in-workplane group, and tweak the
display of workplanes.
[git-p4: depot-paths = "//depot/solvespace/": change = 1748]
and in the case of a singular Jacobian, report which constraints
can be removed to fix it. Also a mechanism to hover and select
entities and constraints from the text window.
[git-p4: depot-paths = "//depot/solvespace/": change = 1746]
implement that. Also make solver work only between the first and
last visible group; earlier can just work from previous solve
result, and later don't matter.
There's some issues with the csg code; it will eventually produce
an open mesh, which is very bad. Not sure whether that's a logic
bug, or a numerical issue; still generating absurd triangles pretty
routinely.
[git-p4: depot-paths = "//depot/solvespace/": change = 1741]
as a constraint on the direction cosine, rather than driving the
dot product against a rotated vector to zero. The drawing is the
ugly part; to do that for skew lines, I gave up.
Also add a function to clear non-existent items on the selection
after solving, since that could have caused an oops().
[git-p4: depot-paths = "//depot/solvespace/": change = 1727]
the coordinate system (x, y, z normal vectors) in the bottom left
corner of the screen at all times, and hide group-created
workplanes except when that group is active, and activate that
workplane when the group is activated.
[git-p4: depot-paths = "//depot/solvespace/": change = 1726]
we need something to force the points into plane, and the workplane
supplies that), but otherwise straightforward. And add diameter and
equal radius constraints for the arc.
[git-p4: depot-paths = "//depot/solvespace/": change = 1718]
list, and then adding a new entity to that list, and then looking
at that pointer again. Not okay; the add operation might have
forced a realloc. I have to watch for that.
And add a "distance ratio" constraint, plus a new kind of group
that comes with its own workplane. The workplane is not solved for;
it's generated explicitly in terms of elements that are already
solved.
[git-p4: depot-paths = "//depot/solvespace/": change = 1716]
translation; or equivalently, rotation about an arbitrary axis).
Those will be important for step and repeats, and for imported
parts.
Also fix a terrible memory corruption bug: I was freeing the remap
list after I loaded it from the file, but the code that put that
into the SS.group list made only a shallow copy.
[git-p4: depot-paths = "//depot/solvespace/": change = 1715]
constraints work mod 180 degrees, so that it snaps to however the
workplane was drawn (more vertical vs. more horizontal).
[git-p4: depot-paths = "//depot/solvespace/": change = 1714]
constraints. And generate the constraint equations for entities
(e.g., that our unit quaternions have magnitude one). Numerical
troubles there, but it sort of works. Also some stuff to draw
projection lines with projected constraints, and to auto-insert
more constraints as you draw.
[git-p4: depot-paths = "//depot/solvespace/": change = 1711]
remap when I copy circle entities, in order to make the radius
numerical somehow (analogy with the POINT_ and NORMAL_XFRMD) thing.
[git-p4: depot-paths = "//depot/solvespace/": change = 1710]
segments), add the toggle construction command, and color the lines
differently depending on what group you're in.
Also change dynamic memory stuff to use a Win32 heap for everything
(no malloc), and validate that often. I think I've seen it crash,
though I can't reproduce it.
[git-p4: depot-paths = "//depot/solvespace/": change = 1708]
hadn't previously noticed, because I didn't use to have workplanes
with non-zero offsets. And clean up the interface to normals a bit.
[git-p4: depot-paths = "//depot/solvespace/": change = 1707]
vectors", represented by unit quaternions. This permits me to add
circles, where the normal defines the plane of the circle.
Still many things painful. The interface for editing normals is not
so intuitive, and it's not yet clear how I would e.g. export a
circle entity and recreate it properly, since that entity has a
param not associated with a normal or point.
And the transformed points/normals do not yet support rotations.
That will be necessary soon.
[git-p4: depot-paths = "//depot/solvespace/": change = 1705]
diagonal elements of the matrix summed to -1. Now it's ugly, but I
think that it's correct. And add a command to flip the view to the
other side, which is what started my problems. And tweak display of
H and V and M for constraints: put them in the constraint plane, so
that they're stationary as you rotate around.
[git-p4: depot-paths = "//depot/solvespace/": change = 1704]
faces of the polyhedron. And shade the faces when I draw them, and
fix up our projection matrix so that the depth testing works
properly.
[git-p4: depot-paths = "//depot/solvespace/": change = 1703]
turned out straightforward, in great part because the planes are
workplanes (6 DOF, represented by a unit quaternion and a point),
and therefore make it easy to get a vector in the plane, as well as
a normal.
And on that subject, replace the previous hack for parallel vector
constraints with a better hack: pivot on the initial numerical
guess, to choose which components of the cross product to drive to
zero. Ugly, but I think that will be as robust as I can get.
[git-p4: depot-paths = "//depot/solvespace/": change = 1699]
not have much motivation behind them, but they seem to work. And
make sure that we don't solve multiple times without repainting in
between, and tweak the text window a bit more.
[git-p4: depot-paths = "//depot/solvespace/": change = 1696]
foreground and background colours are now specified separately, and
it's possible to insert half-line spaces. So now I have a window
that lets me show/hide groups, and select the active one.
[git-p4: depot-paths = "//depot/solvespace/": change = 1695]
other entities. This requires a new point type, for a point that's
defined as a transformation of some other point. All works nicely,
I think. There's ugliness because entities are no longer guaranteed
to have a parent request.
Also speed up display of the text window, by caching brushes
instead of recreating for each character (!), and add a bit more
user interface in the text window.
[git-p4: depot-paths = "//depot/solvespace/": change = 1692]
workplane: a free constraint works in three-space (e.g. true
distance), and a constraint in a workplane works in that plane
(e.g. projected distance). And make the solver go automatically,
though solver itself has lots of pieces missing.
[git-p4: depot-paths = "//depot/solvespace/": change = 1691]
locked on to the XY plane. And simplify the handling of colors in
the text window: identify them by a character, not an integer ID,
since the character is easier to remember.
[git-p4: depot-paths = "//depot/solvespace/": change = 1687]