A previous attempt to fix this was done in 0128b8679. However, it was
not rigorous. The added offset was dependent on font size and it
introduced an error into edit control positioning. Further, it is
irrelevant to non-workplanes.
After this commit, the workplane drawing code adds a fixed offset
instead. Also, the "tab" is enlarged to not overlap with #XY etc.
Without this, if we have e.g.:
* a/x.slvs
* a/y.slvs importing a/x.slvs
and copy a/ to b/, then loading b/y.slvs would load a/x.slvs, which
is rather surprising.
Before this commit, e.g. a 120° angle could be exported as its
supplementary 60° angle but it would still say 120° in the label.
After this commit, the right angle is selected in DXF-based software.
Similarly, it roundtrips through SolveSpace correctly.
This hint is not recommended for direct use by applications, and for
a good reason: it's very annoying. Moreover, what we want is not
"keep above" but rather "keep on the same layer as graphics window",
which is already achieved by setting window type to "utility"
on GNOME and Unity WMs, and by setting the transient window hint
for the text window on KDE WM.
This screws up window managers like fvwm, which don't respect
the ICCCM "Keep Above" flag. I don't remember why it's there and
it doesn't appear that removing it has any ill effect.
This is good practice and helps to catch bugs. Several changes
were made to accomodate the newly enabled warnings:
* -Wunused-function:
* in exposed/, static functions that were supposed to be inlined
were explicitly marked as inline;
* some actually unused functions were removed;
* -Wsign-compare: explicit conversions were added, and in
the future we should find a nicer way than aux* fields;
* -Wmissing-field-initializers: added initializers;
* -Wreorder: reordered properly;
* -Wunused-but-set-variable: remove variable.
-Wunused-parameter was turned off as enabling it would result in
massive amount of churn in UI code. Despite that, we should enable
it at some point as it has a fairly high SNR otherwise.
This is done because a meaningful union extrusion is almost never
a meaningful difference extrusion, and saves a bunch of common
manual work.
To avoid creating invalid sketches this isn't done when there are any
constraints.
Specifically:
* touchscreen devices are now supported;
* rotation is now more like what SolveSpace itself does.
The code is split in two parts because MSVC can't handle string
literals longer than 16Ki.
Before this commit, when exporting a vector file without the shaded
model shown, or similarly when using formats that we do not export
the mesh to, we still generate (and then discard) the mesh in paint
order. This is a waste of time.
The immediate reason for refactoring this was that the GTK port broke
after 52af7256 since config.h is not included anymore, but it was
a fragile piece of code I will shed no tears for.
While we're at it, get rid of the mutable std::string &file to be
consistent with our conventions.
config.h now includes the git hash and so, as long as it's included
in solvespace.h, any change of git HEAD will trigger a complete
recompilation, which makes bisecting especially annoying.
While we're at it, remove HAVE_STDINT_H from it, since we require
C++11 and all MSVC versions that include C++11 also include stdint.h.
Specifically:
* Group Info
* Style Info
* Assign to Style → Newly Created Custom Style...
These context actions are meaningless without viewing or manipulating
text window.
Before this commit, the initial state allCoplanar=false took
precedence over allNonZeroLen=false, since detecting a zero-length
edge short-circuits AssembleLoops.
Grid fitting is performed only on glyph boundaries, since glyphs
include curves converted to pwl, which would be mangled by per-point
grid fitting.
Grid fitting is only performed when the plane in which text is
laid out is parallel to the viewing plane.
Grid fitting is only performed when rendering for display; there
are no devices with dpi low enough for grid fitting to become
profitable, and in any case we cannot predict what the dpi would
be anyway.
First, a larger origin offset is applied in ssglWriteText. This moves
the text so that it doesn't overlap the workplane boundary.
Second, a different offset is applied in ssglWriteTextRefCenter.
After this, the middle stroke of "E" is vertically aligned with
the reference point, and the overall label is horizontally aligned
with the reference point more precisely.