Early attempts at rational polynomial surfaces. I can create one

from an extrusion, with piecewise linear trim curves for everything
(that are shared, so that they appear only once for the two
surfaces that each trims). No Boolean operations on them, and the
triangulation is bad, because gl seems to merge collinear edges.

So before going further, I seem to need my own triangulation code.
I have not had great luck in the past, but I can't live without it
now.

[git-p4: depot-paths = "//depot/solvespace/": change = 1899]
solver
Jonathan Westhues 2009-01-19 02:37:10 -08:00
parent 25ed4e1ef1
commit ebca6130ec
14 changed files with 423 additions and 34 deletions

View File

@ -40,6 +40,7 @@ SSOBJS = $(OBJDIR)\solvespace.obj \
$(OBJDIR)\export.obj \
SRFOBJS = $(OBJDIR)\ratpoly.obj \
$(OBJDIR)\triangulate.obj \
RES = $(OBJDIR)\resource.res
@ -55,7 +56,7 @@ all: $(OBJDIR)/solvespace.exe
clean:
rm -f obj/*
$(OBJDIR)/solvespace.exe: $(SSOBJS) $(SRFOBJS) $(W32OBJS) $(FREEZE) $(RES)
$(OBJDIR)/solvespace.exe: $(SRFOBJS) $(SSOBJS) $(W32OBJS) $(FREEZE) $(RES)
@$(CC) $(DEFINES) $(CFLAGS) -Fe$(OBJDIR)/solvespace.exe $(SSOBJS) $(SRFOBJS) $(W32OBJS) $(FREEZE) $(RES) $(LIBS)
editbin /nologo /STACK:8388608 $(OBJDIR)/solvespace.exe
@echo solvespace.exe

18
dsc.h
View File

@ -105,6 +105,15 @@ public:
elem[n++] = *t;
}
T *First(void) {
return (n == 0) ? NULL : &(elem[0]);
}
T *NextAfter(T *prev) {
if(!prev) return NULL;
if(prev - elem == (n - 1)) return NULL;
return prev + 1;
}
void ClearTags(void) {
int i;
for(i = 0; i < n; i++) {
@ -218,6 +227,15 @@ public:
return NULL;
}
T *First(void) {
return (n == 0) ? NULL : &(elem[0]);
}
T *NextAfter(T *prev) {
if(!prev) return NULL;
if(prev - elem == (n - 1)) return NULL;
return prev + 1;
}
void ClearTags(void) {
int i;
for(i = 0; i < n; i++) {

View File

@ -166,8 +166,6 @@ void glxFillMesh(int specColor, SMesh *m, DWORD h, DWORD s1, DWORD s2)
glBegin(GL_TRIANGLES);
for(int i = 0; i < m->l.n; i++) {
STriangle *tr = &(m->l.elem[i]);
Vector n = tr->Normal();
glNormal3d(n.x, n.y, n.z);
int color;
if(specColor < 0) {
@ -183,9 +181,24 @@ void glxFillMesh(int specColor, SMesh *m, DWORD h, DWORD s1, DWORD s2)
glBegin(GL_TRIANGLES);
}
glxVertex3v(tr->a);
glxVertex3v(tr->b);
glxVertex3v(tr->c);
if(tr->an.EqualsExactly(Vector::From(0, 0, 0))) {
// Compute the normal from the vertices
Vector n = tr->Normal();
glNormal3d(n.x, n.y, n.z);
glxVertex3v(tr->a);
glxVertex3v(tr->b);
glxVertex3v(tr->c);
} else {
// Use the exact normals that are specified
glNormal3d((tr->an).x, (tr->an).y, (tr->an).z);
glxVertex3v(tr->a);
glNormal3d((tr->bn).x, (tr->bn).y, (tr->bn).z);
glxVertex3v(tr->b);
glNormal3d((tr->cn).x, (tr->cn).y, (tr->cn).z);
glxVertex3v(tr->c);
}
if((s1 != 0 && tr->meta.face == s1) ||
(s2 != 0 && tr->meta.face == s2))

View File

@ -105,6 +105,7 @@ const GraphicsWindow::MenuEntry GraphicsWindow::menu[] = {
{ 0, "&Analyze", 0, NULL },
{ 1, "Measure &Volume\tCtrl+Shift+V", MNU_VOLUME, 'V'|S|C,mAna },
{ 1, "Show &Naked Edges\tCtrl+Shift+N", MNU_NAKED_EDGES, 'N'|S|C,mAna },
{ 1, NULL, 0, NULL },
{ 1, "Show Degrees of &Freedom\tCtrl+Shift+F", MNU_SHOW_DOF, 'F'|S|C,mAna },
{ 1, NULL, 0, NULL },

View File

@ -140,6 +140,7 @@ void Group::GenerateMeshForStepAndRepeat(void) {
void Group::GenerateMesh(void) {
thisMesh.Clear();
thisShell.Clear();
STriMeta meta = { 0, color };
if(type == TRANSLATE || type == ROTATE) {
@ -160,6 +161,10 @@ void Group::GenerateMesh(void) {
} else {
tbot = translate.ScaledBy(-1); ttop = translate.ScaledBy(1);
}
thisShell = SShell::FromExtrusionOf(&(src->bezierLoopSet), tbot, ttop);
thisShell.TriangulateInto(&thisMesh);
/*
bool flipBottom = translate.Dot(src->poly.normal) > 0;
// Get a triangulation of the source poly; this is not a closed mesh.
@ -221,7 +226,7 @@ void Group::GenerateMesh(void) {
thisMesh.AddTriangle(meta, bbot, btop, atop);
}
}
edges.Clear();
edges.Clear(); */
} else if(type == LATHE) {
SEdgeList edges;
ZERO(&edges);
@ -291,6 +296,7 @@ void Group::GenerateMesh(void) {
}
runningMesh.Clear();
runningShell.Clear();
// If this group contributes no new mesh, then our running mesh is the
// same as last time, no combining required. Likewise if we have a mesh
@ -308,6 +314,8 @@ void Group::GenerateMesh(void) {
SMesh *a = PreviousGroupMesh();
if(meshCombine == COMBINE_AS_UNION) {
runningMesh.MakeFromUnion(a, &thisMesh);
runningMesh = thisMesh;
ZERO(&thisMesh);
} else if(meshCombine == COMBINE_AS_DIFFERENCE) {
runningMesh.MakeFromDifference(a, &thisMesh);
} else {

View File

@ -39,10 +39,16 @@ bool STriangle::ContainsPointProjd(Vector n, Vector p) {
void STriangle::FlipNormal(void) {
SWAP(Vector, a, b);
SWAP(Vector, an, bn);
}
STriangle STriangle::From(STriMeta meta, Vector a, Vector b, Vector c) {
STriangle tr = { 0, meta, a, b, c };
STriangle tr;
ZERO(&tr);
tr.meta = meta;
tr.a = a;
tr.b = b;
tr.c = c;
return tr;
}

View File

@ -77,6 +77,7 @@ public:
int tag;
STriMeta meta;
Vector a, b, c;
Vector an, bn, cn;
static STriangle From(STriMeta meta, Vector a, Vector b, Vector c);
Vector Normal(void);

View File

@ -154,6 +154,8 @@ public:
bool yes;
} meshError;
SEdgeList emphEdges;
SShell thisShell;
SShell runningShell;
static const int COMBINE_AS_UNION = 0;
static const int COMBINE_AS_DIFFERENCE = 1;

View File

@ -399,6 +399,10 @@ void SolveSpace::MenuAnalyze(int id) {
}
break;
case GraphicsWindow::MNU_NAKED_EDGES: {
break;
}
case GraphicsWindow::MNU_VOLUME: {
SMesh *m = &(SS.GetGroup(SS.GW.activeGroup)->runningMesh);

View File

@ -2,7 +2,13 @@
double Bernstein(int k, int deg, double t)
{
if(k > deg || k < 0) return 0;
switch(deg) {
case 0:
return 1;
break;
case 1:
if(k == 0) {
return (1 - t);
@ -36,6 +42,11 @@ double Bernstein(int k, int deg, double t)
oops();
}
double BernsteinDerivative(int k, int deg, double t)
{
return deg*(Bernstein(k-1, deg-1, t) - Bernstein(k, deg-1, t));
}
SBezier SBezier::From(Vector p0, Vector p1) {
SBezier ret;
ZERO(&ret);
@ -92,11 +103,15 @@ Vector SBezier::PointAt(double t) {
}
void SBezier::MakePwlInto(List<Vector> *l) {
l->Add(&(ctrl[0]));
MakePwlWorker(l, 0.0, 1.0);
MakePwlInto(l, Vector::From(0, 0, 0));
}
void SBezier::MakePwlInto(List<Vector> *l, Vector offset) {
Vector p = (ctrl[0]).Plus(offset);
l->Add(&p);
void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb) {
MakePwlWorker(l, 0.0, 1.0, offset);
}
void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb, Vector off) {
Vector pa = PointAt(ta);
Vector pb = PointAt(tb);
@ -115,11 +130,12 @@ void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb) {
double step = 1.0/SS.maxSegments;
if((tb - ta) < step || d < tol) {
// A previous call has already added the beginning of our interval.
pb = pb.Plus(off);
l->Add(&pb);
} else {
double tm = (ta + tb) / 2;
MakePwlWorker(l, ta, tm);
MakePwlWorker(l, tm, tb);
MakePwlWorker(l, ta, tm, off);
MakePwlWorker(l, tm, tb, off);
}
}
@ -131,10 +147,12 @@ void SBezier::Reverse(void) {
}
}
void SBezierList::Clear(void) {
l.Clear();
}
SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl,
bool *allClosed, SEdge *errorAt)
{
@ -194,6 +212,12 @@ SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl,
void SBezierLoop::Reverse(void) {
l.Reverse();
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
// If we didn't reverse each curve, then the next curve in list would
// share your start, not your finish.
sb->Reverse();
}
}
void SBezierLoop::MakePwlInto(SContour *sc) {
@ -216,6 +240,7 @@ void SBezierLoop::MakePwlInto(SContour *sc) {
sc->l.elem[sc->l.n - 1] = sc->l.elem[0];
}
SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly,
bool *allClosed, SEdge *errorAt)
{
@ -240,6 +265,11 @@ SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly,
poly->normal = poly->ComputeNormal();
ret.normal = poly->normal;
if(poly->l.n > 0) {
ret.point = poly->AnyPoint();
} else {
ret.point = Vector::From(0, 0, 0);
}
poly->FixContourDirections();
for(i = 0; i < poly->l.n; i++) {
@ -262,6 +292,21 @@ void SBezierLoopSet::Clear(void) {
l.Clear();
}
void SCurve::Clear(void) {
pts.Clear();
}
STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc) {
STrimBy stb;
ZERO(&stb);
stb.curve = hsc;
SCurve *sc = shell->curve.FindById(hsc);
stb.start = sc->pts.elem[0];
stb.finish = sc->pts.elem[sc->pts.n - 1];
return stb;
}
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
SSurface ret;
ZERO(&ret);
@ -281,25 +326,293 @@ SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
return ret;
}
SShell SShell::FromExtrusionOf(SBezierList *sbl, Vector t0, Vector t1) {
SShell ret;
SSurface SSurface::FromPlane(Vector pt, Vector n) {
SSurface ret;
ZERO(&ret);
// Group the input curves into loops, not necessarily in the right order.
ret.degm = 1;
ret.degn = 1;
Vector u = n.Normal(0), v = n.Normal(1);
// Find the plane that contains our input section.
ret.weight[0][0] = ret.weight[0][1] = 1;
ret.weight[1][0] = ret.weight[1][1] = 1;
// Generate a polygon from the curves, and use this to test how many
// times each loop is enclosed. Then set the direction (cw/ccw) to
// be correct for outlines/holes, so that we generate correct normals.
// Now generate all the surfaces, top/bottom planes plus extrusions.
// And now all the curves, trimming the top and bottom and their extrusion
// And the lines, trimming adjacent extrusion surfaces.
ret.ctrl[0][0] = pt;
ret.ctrl[0][1] = pt.Plus(u);
ret.ctrl[1][0] = pt.Plus(v);
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
return ret;
}
Vector SSurface::PointAt(double u, double v) {
Vector num = Vector::From(0, 0, 0);
double den = 0;
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double Bi = Bernstein(i, degm, u),
Bj = Bernstein(j, degn, v);
num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j]));
den += weight[i][j]*Bi*Bj;
}
}
num = num.ScaledBy(1.0/den);
return num;
}
void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) {
Vector num = Vector::From(0, 0, 0),
num_u = Vector::From(0, 0, 0),
num_v = Vector::From(0, 0, 0);
double den = 0,
den_u = 0,
den_v = 0;
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double Bi = Bernstein(i, degm, u),
Bj = Bernstein(j, degn, v),
Bip = BernsteinDerivative(i, degm, u),
Bjp = BernsteinDerivative(j, degn, v);
num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j]));
den += weight[i][j]*Bi*Bj;
num_u = num_u.Plus(ctrl[i][j].ScaledBy(Bip*Bj*weight[i][j]));
den_u += weight[i][j]*Bip*Bj;
num_v = num_v.Plus(ctrl[i][j].ScaledBy(Bi*Bjp*weight[i][j]));
den_v += weight[i][j]*Bi*Bjp;
}
}
// Quotient rule; f(t) = n(t)/d(t), so f' = (n'*d - n*d')/(d^2)
*tu = ((num_u.ScaledBy(den)).Minus(num.ScaledBy(den_u)));
*tu = tu->ScaledBy(1.0/(den*den));
*tv = ((num_v.ScaledBy(den)).Minus(num.ScaledBy(den_v)));
*tv = tv->ScaledBy(1.0/(den*den));
}
Vector SSurface::NormalAt(double u, double v) {
Vector tu, tv;
TangentsAt(u, v, &tu, &tv);
return tu.Cross(tv);
}
void SSurface::ClosestPointTo(Vector p, double *u, double *v) {
int i, j;
double minDist = 1e10;
double res = 7.0;
for(i = 0; i < (int)res; i++) {
for(j = 0; j <= (int)res; j++) {
double tryu = (i/res), tryv = (j/res);
Vector tryp = PointAt(tryu, tryv);
double d = (tryp.Minus(p)).Magnitude();
if(d < minDist) {
*u = tryu;
*v = tryv;
minDist = d;
}
}
}
// Initial guess is in u, v
Vector p0;
for(i = 0; i < 50; i++) {
p0 = PointAt(*u, *v);
if(p0.Equals(p)) {
return;
}
Vector tu, tv;
TangentsAt(*u, *v, &tu, &tv);
// Project the point into a plane through p0, with basis tu, tv; a
// second-order thing would converge faster but needs second
// derivatives.
Vector dp = p.Minus(p0);
double du = dp.Dot(tu), dv = dp.Dot(tv);
*u += du / (tu.MagSquared());
*v += dv / (tu.MagSquared());
}
dbp("didn't converge");
dbp("have %.3f %.3f %.3f", CO(p0));
dbp("want %.3f %.3f %.3f", CO(p));
if(isnan(*u) || isnan(*v)) {
*u = *v = 0;
}
}
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
SEdgeList el;
ZERO(&el);
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
Vector prevuv, ptuv;
bool inCurve = false;
Vector *pt;
double u = 0, v = 0;
for(pt = sc->pts.First(); pt; pt = sc->pts.NextAfter(pt)) {
ClosestPointTo(*pt, &u, &v);
ptuv = Vector::From(u, v, 0);
if(inCurve) {
el.AddEdge(prevuv, ptuv);
}
prevuv = ptuv;
if(pt->EqualsExactly(stb->start)) inCurve = true;
if(pt->EqualsExactly(stb->finish)) inCurve = false;
}
}
SPolygon poly;
ZERO(&poly);
if(!el.AssemblePolygon(&poly, NULL)) {
dbp("failed to assemble polygon to trim nurbs surface in uv space");
}
int i, start = sm->l.n;
STriMeta meta = { 0, 0x888888 };
poly.normal = Vector::From(0, 0, 1);
poly.TriangulateInto(sm, meta);
for(i = start; i < sm->l.n; i++) {
STriangle *st = &(sm->l.elem[i]);
st->an = NormalAt(st->a.x, st->a.y);
st->bn = NormalAt(st->b.x, st->b.y);
st->cn = NormalAt(st->c.x, st->c.y);
st->a = PointAt(st->a.x, st->a.y);
st->b = PointAt(st->b.x, st->b.y);
st->c = PointAt(st->c.x, st->c.y);
if((st->Normal()).Dot(st->an) < 0) {
// Have to get the vertices in the right order
st->FlipNormal();
}
}
el.Clear();
poly.Clear();
}
void SSurface::Clear(void) {
trim.Clear();
}
SShell SShell::FromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1) {
SShell ret;
ZERO(&ret);
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
SWAP(Vector, t0, t1);
}
// First, generate the top and bottom surfaces of the extrusion; just
// planes.
SSurface s0, s1;
s0 = SSurface::FromPlane(sbls->point.Plus(t0), sbls->normal.ScaledBy(-1));
s1 = SSurface::FromPlane(sbls->point.Plus(t1), sbls->normal.ScaledBy( 1));
hSSurface hs0 = ret.surface.AddAndAssignId(&s0),
hs1 = ret.surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
typedef struct {
STrimBy trim;
hSSurface hs;
} TrimLine;
List<TrimLine> trimLines;
ZERO(&trimLines);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
hSSurface hsext = ret.surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc;
ZERO(&sc);
sb->MakePwlInto(&(sc.pts), t0);
hSCurve hc0 = ret.curve.AddAndAssignId(&sc);
STrimBy stb0 = STrimBy::EntireCurve(&ret, hc0);
ZERO(&sc);
sb->MakePwlInto(&(sc.pts), t1);
hSCurve hc1 = ret.curve.AddAndAssignId(&sc);
STrimBy stb1 = STrimBy::EntireCurve(&ret, hc1);
// The translated curves trim the flat top and bottom surfaces.
(ret.surface.FindById(hs0))->trim.Add(&stb0);
(ret.surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
(ret.surface.FindById(hsext))->trim.Add(&stb0);
(ret.surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
Vector p0 = pt.Plus(t0), p1 = pt.Plus(t1);
ZERO(&sc);
sc.pts.Add(&p0);
sc.pts.Add(&p1);
hSCurve hl = ret.curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.trim = STrimBy::EntireCurve(&ret, hl);
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines.elem[i]);
SSurface *ss = ret.surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]);
ss->trim.Add(&(tl->trim));
ss->trim.Add(&(tlp->trim));
}
trimLines.Clear();
}
return ret;
}
void SShell::TriangulateInto(SMesh *sm) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->TriangulateInto(this, sm);
}
}
void SShell::Clear(void) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->Clear();
}
surface.Clear();
SCurve *c;
for(c = curve.First(); c; c = curve.NextAfter(c)) {
c->Clear();
}
curve.Clear();
}

View File

@ -6,6 +6,8 @@
double Bernstein(int k, int deg, double t);
double BernsteinDerivative(int k, int deg, double t);
class SShell;
class hSSurface {
public:
DWORD v;
@ -29,7 +31,8 @@ public:
Vector Start(void);
Vector Finish(void);
void MakePwlInto(List<Vector> *l);
void MakePwlWorker(List<Vector> *l, double ta, double tb);
void MakePwlInto(List<Vector> *l, Vector offset);
void MakePwlWorker(List<Vector> *l, double ta, double tb, Vector offset);
void Reverse(void);
@ -61,6 +64,7 @@ class SBezierLoopSet {
public:
List<SBezierLoop> l;
Vector normal;
Vector point;
static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly,
bool *allClosed, SEdge *errorAt);
@ -73,10 +77,12 @@ class SCurve {
public:
hSCurve h;
SBezier exact; // or deg = 0 if we don't know the exact form
bool isExact;
SBezier exact;
List<Vector> pts;
hSSurface srfA;
hSSurface srfB;
void Clear(void);
};
// A segment of a curve by which a surface is trimmed: indicates which curve,
@ -89,8 +95,11 @@ public:
Vector start;
Vector finish;
Vector out;
static STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc);
};
// A rational polynomial surface in Bezier form.
class SSurface {
public:
hSSurface h;
@ -102,14 +111,16 @@ public:
List<STrimBy> trim;
static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1);
static SSurface FromPlane(Vector pt, Vector n);
void ClosestPointTo(Vector p, double *u, double *v);
Vector PointAt(double u, double v);
Vector TangentWrtUAt(double u, double v);
Vector TangentWrtVAt(double u, double v);
void TangentsAt(double u, double v, Vector *tu, Vector *tv);
Vector NormalAt(double u, double v);
void TriangulateInto(SMesh *sm);
void TriangulateInto(SShell *shell, SMesh *sm);
void Clear(void);
};
class SShell {
@ -117,9 +128,12 @@ public:
IdList<SCurve,hSCurve> curve;
IdList<SSurface,hSSurface> surface;
static SShell FromExtrusionOf(SBezierList *spcl, Vector t0, Vector t1);
static SShell FromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1);
static SShell FromUnionOf(SShell *a, SShell *b);
void TriangulateInto(SMesh *sm);
void Clear(void);
};
#endif

3
srf/triangulate.cpp Normal file
View File

@ -0,0 +1,3 @@
#include "../solvespace.h"

1
ui.h
View File

@ -240,6 +240,7 @@ public:
MNU_COMMENT,
// Analyze
MNU_VOLUME,
MNU_NAKED_EDGES,
MNU_SHOW_DOF,
MNU_TRACE_PT,
MNU_STOP_TRACING,

View File

@ -53,6 +53,8 @@ void SolveSpace::PushFromCurrentOnto(UndoStack *uk) {
ZERO(&(dest.polyError));
ZERO(&(dest.thisMesh));
ZERO(&(dest.runningMesh));
ZERO(&(dest.thisShell));
ZERO(&(dest.runningShell));
ZERO(&(dest.meshError));
ZERO(&(dest.emphEdges));
@ -95,6 +97,8 @@ void SolveSpace::PopOntoCurrentFrom(UndoStack *uk) {
g->bezierLoopSet.Clear();
g->thisMesh.Clear();
g->runningMesh.Clear();
g->thisShell.Clear();
g->runningShell.Clear();
g->meshError.interferesAt.Clear();
g->emphEdges.Clear();
g->remap.Clear();