Split ratpoly.cpp; now that contains only the mathematical stuff,

and curve.cpp and surface.cpp contain the rest.

Also get rid of the meshError stuff; will just use the nakedEdges
mechanism for that. And I won't run the interference test
continuously, have added a menu item for that.

[git-p4: depot-paths = "//depot/solvespace/": change = 1934]
solver
Jonathan Westhues 2009-03-28 22:05:28 -08:00
parent 7f3dd91bd9
commit 71adc0bf54
12 changed files with 775 additions and 788 deletions

View File

@ -40,6 +40,8 @@ SSOBJS = $(OBJDIR)\solvespace.obj \
$(OBJDIR)\export.obj \ $(OBJDIR)\export.obj \
SRFOBJS = $(OBJDIR)\ratpoly.obj \ SRFOBJS = $(OBJDIR)\ratpoly.obj \
$(OBJDIR)\curve.obj \
$(OBJDIR)\surface.obj \
$(OBJDIR)\triangulate.obj \ $(OBJDIR)\triangulate.obj \
$(OBJDIR)\boolean.obj \ $(OBJDIR)\boolean.obj \
$(OBJDIR)\surfinter.obj \ $(OBJDIR)\surfinter.obj \
@ -53,7 +55,7 @@ LIBS = user32.lib gdi32.lib comctl32.lib advapi32.lib shell32.lib opengl32.lib g
all: $(OBJDIR)/solvespace.exe all: $(OBJDIR)/solvespace.exe
@cp $(OBJDIR)/solvespace.exe . @cp $(OBJDIR)/solvespace.exe .
solvespace tttt.slvs solvespace t7.slvs
clean: clean:
rm -f obj/* rm -f obj/*

View File

@ -116,9 +116,9 @@ void SolveSpace::ExportViewTo(char *filename) {
} }
if(SS.GW.showEdges) { if(SS.GW.showEdges) {
SEdgeList *emph = &((SS.GetGroup(SS.GW.activeGroup))->emphEdges); SEdgeList *selr = &((SS.GetGroup(SS.GW.activeGroup))->runningEdges);
SEdge *se; SEdge *se;
for(se = emph->l.First(); se; se = emph->l.NextAfter(se)) { for(se = selr->l.First(); se; se = selr->l.NextAfter(se)) {
edges.AddEdge(se->a, se->b); edges.AddEdge(se->a, se->b);
} }
} }

View File

@ -105,6 +105,7 @@ const GraphicsWindow::MenuEntry GraphicsWindow::menu[] = {
{ 0, "&Analyze", 0, NULL }, { 0, "&Analyze", 0, NULL },
{ 1, "Measure &Volume\tCtrl+Shift+V", MNU_VOLUME, 'V'|S|C,mAna }, { 1, "Measure &Volume\tCtrl+Shift+V", MNU_VOLUME, 'V'|S|C,mAna },
{ 1, "Show &Interfering Parts\tCtrl+Shift+I", MNU_INTERFERENCE, 'I'|S|C,mAna },
{ 1, "Show &Naked Edges\tCtrl+Shift+N", MNU_NAKED_EDGES, 'N'|S|C,mAna }, { 1, "Show &Naked Edges\tCtrl+Shift+N", MNU_NAKED_EDGES, 'N'|S|C,mAna },
{ 1, NULL, 0, NULL }, { 1, NULL, 0, NULL },
{ 1, "Show Degrees of &Freedom\tCtrl+Shift+F", MNU_SHOW_DOF, 'F'|S|C,mAna }, { 1, "Show Degrees of &Freedom\tCtrl+Shift+F", MNU_SHOW_DOF, 'F'|S|C,mAna },

View File

@ -227,33 +227,20 @@ void Group::GenerateShellAndMesh(void) {
// So our group's mesh appears in thisMesh. Combine this with the previous // So our group's mesh appears in thisMesh. Combine this with the previous
// group's mesh, using the requested operation. // group's mesh, using the requested operation.
bool prevMeshError = meshError.yes;
meshError.yes = false;
meshError.interferesAt.Clear();
SShell *a = PreviousGroupShell(); SShell *a = PreviousGroupShell();
if(meshCombine == COMBINE_AS_UNION) { if(meshCombine == COMBINE_AS_UNION) {
runningShell.MakeFromUnionOf(a, &thisShell); runningShell.MakeFromUnionOf(a, &thisShell);
} else if(meshCombine == COMBINE_AS_DIFFERENCE) { } else if(meshCombine == COMBINE_AS_DIFFERENCE) {
runningShell.MakeFromDifferenceOf(a, &thisShell); runningShell.MakeFromDifferenceOf(a, &thisShell);
} else { } else {
if(0) //&(meshError.interferesAt) // TODO, assembly
{
meshError.yes = true;
// And the list of failed triangles goes in meshError.interferesAt
}
}
if(prevMeshError != meshError.yes) {
// The error is reported in the text window for the group.
SS.later.showTW = true;
} }
done: done:
runningMesh.Clear(); runningMesh.Clear();
runningShell.TriangulateInto(&runningMesh); runningShell.TriangulateInto(&runningMesh);
emphEdges.Clear(); runningEdges.Clear();
runningShell.MakeEdgesInto(&emphEdges); runningShell.MakeEdgesInto(&runningEdges);
} }
SShell *Group::PreviousGroupShell(void) { SShell *Group::PreviousGroupShell(void) {
@ -303,24 +290,7 @@ void Group::Draw(void) {
glxColor3d(REDf (SS.edgeColor), glxColor3d(REDf (SS.edgeColor),
GREENf(SS.edgeColor), GREENf(SS.edgeColor),
BLUEf (SS.edgeColor)); BLUEf (SS.edgeColor));
glxDrawEdges(&emphEdges); glxDrawEdges(&runningEdges);
}
if(meshError.yes) {
// Draw the error triangles in bright red stripes, with no Z buffering
GLubyte mask[32*32/8];
memset(mask, 0xf0, sizeof(mask));
glPolygonStipple(mask);
int specColor = 0;
glDisable(GL_DEPTH_TEST);
glColor3d(0, 0, 0);
glxFillMesh(0, &meshError.interferesAt, 0, 0, 0);
glEnable(GL_POLYGON_STIPPLE);
glColor3d(1, 0, 0);
glxFillMesh(0, &meshError.interferesAt, 0, 0, 0);
glEnable(GL_DEPTH_TEST);
glDisable(GL_POLYGON_STIPPLE);
} }
if(SS.GW.showMesh) glxDebugMesh(&runningMesh); if(SS.GW.showMesh) glxDebugMesh(&runningMesh);

View File

@ -150,12 +150,9 @@ public:
SShell thisShell; SShell thisShell;
SShell runningShell; SShell runningShell;
SMesh runningMesh; SMesh runningMesh;
struct { SEdgeList runningEdges;
SMesh interferesAt;
bool yes;
} meshError;
SEdgeList emphEdges;
static const int COMBINE_AS_UNION = 0; static const int COMBINE_AS_UNION = 0;
static const int COMBINE_AS_DIFFERENCE = 1; static const int COMBINE_AS_DIFFERENCE = 1;

View File

@ -500,6 +500,9 @@ void SolveSpace::MenuAnalyze(int id) {
break; break;
} }
case GraphicsWindow::MNU_INTERFERENCE:
break;
case GraphicsWindow::MNU_SHOW_DOF: case GraphicsWindow::MNU_SHOW_DOF:
// This works like a normal solve, except that it calculates // This works like a normal solve, except that it calculates
// which variables are free/bound at the same time. // which variables are free/bound at the same time.

290
srf/curve.cpp Normal file
View File

@ -0,0 +1,290 @@
//-----------------------------------------------------------------------------
// Anything involving curves and sets of curves (except for the real math,
// which is in ratpoly.cpp).
//-----------------------------------------------------------------------------
#include "../solvespace.h"
SBezier SBezier::From(Vector p0, Vector p1) {
SBezier ret;
ZERO(&ret);
ret.deg = 1;
ret.weight[0] = ret.weight[1] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
return ret;
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2) {
SBezier ret;
ZERO(&ret);
ret.deg = 2;
ret.weight[0] = ret.weight[1] = ret.weight[2] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
return ret;
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2, Vector p3) {
SBezier ret;
ZERO(&ret);
ret.deg = 3;
ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
ret.ctrl[3] = p3;
return ret;
}
Vector SBezier::Start(void) {
return ctrl[0];
}
Vector SBezier::Finish(void) {
return ctrl[deg];
}
void SBezier::Reverse(void) {
int i;
for(i = 0; i < (deg+1)/2; i++) {
SWAP(Vector, ctrl[i], ctrl[deg-i]);
SWAP(double, weight[i], weight[deg-i]);
}
}
void SBezier::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
int i;
for(i = 0; i <= deg; i++) {
double ut = ((ctrl[i]).Minus(orig)).Dot(u);
if(ut < *umin) *umin = ut;
if(ut > *umax) *umax = ut;
}
}
SBezier SBezier::TransformedBy(Vector t, Quaternion q) {
SBezier ret = *this;
int i;
for(i = 0; i <= deg; i++) {
ret.ctrl[i] = (q.Rotate(ret.ctrl[i])).Plus(t);
}
return ret;
}
bool SBezier::Equals(SBezier *b) {
// We just test of identical degree and control points, even though two
// curves could still be coincident (even sharing endpoints).
if(deg != b->deg) return false;
int i;
for(i = 0; i <= deg; i++) {
if(!(ctrl[i]).Equals(b->ctrl[i])) return false;
if(fabs(weight[i] - b->weight[i]) > LENGTH_EPS) return false;
}
return true;
}
void SBezierList::Clear(void) {
l.Clear();
}
SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl,
bool *allClosed, SEdge *errorAt)
{
SBezierLoop loop;
ZERO(&loop);
if(sbl->l.n < 1) return loop;
sbl->l.ClearTags();
SBezier *first = &(sbl->l.elem[0]);
first->tag = 1;
loop.l.Add(first);
Vector start = first->Start();
Vector hanging = first->Finish();
sbl->l.RemoveTagged();
while(sbl->l.n > 0 && !hanging.Equals(start)) {
int i;
bool foundNext = false;
for(i = 0; i < sbl->l.n; i++) {
SBezier *test = &(sbl->l.elem[i]);
if((test->Finish()).Equals(hanging)) {
test->Reverse();
// and let the next test catch it
}
if((test->Start()).Equals(hanging)) {
test->tag = 1;
loop.l.Add(test);
hanging = test->Finish();
sbl->l.RemoveTagged();
foundNext = true;
break;
}
}
if(!foundNext) {
// The loop completed without finding the hanging edge, so
// it's an open loop
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
return loop;
}
}
if(hanging.Equals(start)) {
*allClosed = true;
} else {
// We ran out of edges without forming a closed loop.
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
}
return loop;
}
void SBezierLoop::Reverse(void) {
l.Reverse();
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
// If we didn't reverse each curve, then the next curve in list would
// share your start, not your finish.
sb->Reverse();
}
}
void SBezierLoop::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
sb->GetBoundingProjd(u, orig, umin, umax);
}
}
void SBezierLoop::MakePwlInto(SContour *sc) {
List<Vector> lv;
ZERO(&lv);
int i, j;
for(i = 0; i < l.n; i++) {
SBezier *sb = &(l.elem[i]);
sb->MakePwlInto(&lv);
// Each curve's piecewise linearization includes its endpoints,
// which we don't want to duplicate (creating zero-len edges).
for(j = (i == 0 ? 0 : 1); j < lv.n; j++) {
sc->AddPoint(lv.elem[j]);
}
lv.Clear();
}
// Ensure that it's exactly closed, not just within a numerical tolerance.
sc->l.elem[sc->l.n - 1] = sc->l.elem[0];
}
SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly,
bool *allClosed, SEdge *errorAt)
{
int i;
SBezierLoopSet ret;
ZERO(&ret);
while(sbl->l.n > 0) {
bool thisClosed;
SBezierLoop loop;
loop = SBezierLoop::FromCurves(sbl, &thisClosed, errorAt);
if(!thisClosed) {
ret.Clear();
*allClosed = false;
return ret;
}
ret.l.Add(&loop);
poly->AddEmptyContour();
loop.MakePwlInto(&(poly->l.elem[poly->l.n-1]));
}
poly->normal = poly->ComputeNormal();
ret.normal = poly->normal;
if(poly->l.n > 0) {
ret.point = poly->AnyPoint();
} else {
ret.point = Vector::From(0, 0, 0);
}
poly->FixContourDirections();
for(i = 0; i < poly->l.n; i++) {
if(poly->l.elem[i].tag) {
// We had to reverse this contour in order to fix the poly
// contour directions; so need to do the same with the curves.
ret.l.elem[i].Reverse();
}
}
*allClosed = true;
return ret;
}
void SBezierLoopSet::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezierLoop *sbl;
for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
sbl->GetBoundingProjd(u, orig, umin, umax);
}
}
void SBezierLoopSet::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).Clear();
}
l.Clear();
}
SCurve SCurve::FromTransformationOf(SCurve *a, Vector t, Quaternion q) {
SCurve ret;
ZERO(&ret);
ret.h = a->h;
ret.isExact = a->isExact;
ret.exact = (a->exact).TransformedBy(t, q);
ret.surfA = a->surfA;
ret.surfB = a->surfB;
Vector *p;
for(p = a->pts.First(); p; p = a->pts.NextAfter(p)) {
Vector pp = (q.Rotate(*p)).Plus(t);
ret.pts.Add(&pp);
}
return ret;
}
void SCurve::Clear(void) {
pts.Clear();
}
STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool backwards) {
STrimBy stb;
ZERO(&stb);
stb.curve = hsc;
SCurve *sc = shell->curve.FindById(hsc);
if(backwards) {
stb.finish = sc->pts.elem[0];
stb.start = sc->pts.elem[sc->pts.n - 1];
stb.backwards = true;
} else {
stb.start = sc->pts.elem[0];
stb.finish = sc->pts.elem[sc->pts.n - 1];
stb.backwards = false;
}
return stb;
}

View File

@ -1,3 +1,8 @@
//-----------------------------------------------------------------------------
// Math on rational polynomial surfaces and curves, typically in Bezier
// form. Evaluate, root-find (by Newton's methods), evaluate derivatives,
// and so on.
//-----------------------------------------------------------------------------
#include "../solvespace.h" #include "../solvespace.h"
// Converge it to better than LENGTH_EPS; we want two points, each // Converge it to better than LENGTH_EPS; we want two points, each
@ -88,47 +93,6 @@ double BernsteinDerivative(int k, int deg, double t)
oops(); oops();
} }
SBezier SBezier::From(Vector p0, Vector p1) {
SBezier ret;
ZERO(&ret);
ret.deg = 1;
ret.weight[0] = ret.weight[1] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
return ret;
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2) {
SBezier ret;
ZERO(&ret);
ret.deg = 2;
ret.weight[0] = ret.weight[1] = ret.weight[2] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
return ret;
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2, Vector p3) {
SBezier ret;
ZERO(&ret);
ret.deg = 3;
ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
ret.ctrl[3] = p3;
return ret;
}
Vector SBezier::Start(void) {
return ctrl[0];
}
Vector SBezier::Finish(void) {
return ctrl[deg];
}
Vector SBezier::PointAt(double t) { Vector SBezier::PointAt(double t) {
Vector pt = Vector::From(0, 0, 0); Vector pt = Vector::From(0, 0, 0);
double d = 0; double d = 0;
@ -172,394 +136,6 @@ void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb) {
} }
} }
void SBezier::Reverse(void) {
int i;
for(i = 0; i < (deg+1)/2; i++) {
SWAP(Vector, ctrl[i], ctrl[deg-i]);
SWAP(double, weight[i], weight[deg-i]);
}
}
void SBezier::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
int i;
for(i = 0; i <= deg; i++) {
double ut = ((ctrl[i]).Minus(orig)).Dot(u);
if(ut < *umin) *umin = ut;
if(ut > *umax) *umax = ut;
}
}
SBezier SBezier::TransformedBy(Vector t, Quaternion q) {
SBezier ret = *this;
int i;
for(i = 0; i <= deg; i++) {
ret.ctrl[i] = (q.Rotate(ret.ctrl[i])).Plus(t);
}
return ret;
}
bool SBezier::Equals(SBezier *b) {
// We just test of identical degree and control points, even though two
// curves could still be coincident (even sharing endpoints).
if(deg != b->deg) return false;
int i;
for(i = 0; i <= deg; i++) {
if(!(ctrl[i]).Equals(b->ctrl[i])) return false;
if(fabs(weight[i] - b->weight[i]) > LENGTH_EPS) return false;
}
return true;
}
void SBezierList::Clear(void) {
l.Clear();
}
SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl,
bool *allClosed, SEdge *errorAt)
{
SBezierLoop loop;
ZERO(&loop);
if(sbl->l.n < 1) return loop;
sbl->l.ClearTags();
SBezier *first = &(sbl->l.elem[0]);
first->tag = 1;
loop.l.Add(first);
Vector start = first->Start();
Vector hanging = first->Finish();
sbl->l.RemoveTagged();
while(sbl->l.n > 0 && !hanging.Equals(start)) {
int i;
bool foundNext = false;
for(i = 0; i < sbl->l.n; i++) {
SBezier *test = &(sbl->l.elem[i]);
if((test->Finish()).Equals(hanging)) {
test->Reverse();
// and let the next test catch it
}
if((test->Start()).Equals(hanging)) {
test->tag = 1;
loop.l.Add(test);
hanging = test->Finish();
sbl->l.RemoveTagged();
foundNext = true;
break;
}
}
if(!foundNext) {
// The loop completed without finding the hanging edge, so
// it's an open loop
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
return loop;
}
}
if(hanging.Equals(start)) {
*allClosed = true;
} else {
// We ran out of edges without forming a closed loop.
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
}
return loop;
}
void SBezierLoop::Reverse(void) {
l.Reverse();
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
// If we didn't reverse each curve, then the next curve in list would
// share your start, not your finish.
sb->Reverse();
}
}
void SBezierLoop::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
sb->GetBoundingProjd(u, orig, umin, umax);
}
}
void SBezierLoop::MakePwlInto(SContour *sc) {
List<Vector> lv;
ZERO(&lv);
int i, j;
for(i = 0; i < l.n; i++) {
SBezier *sb = &(l.elem[i]);
sb->MakePwlInto(&lv);
// Each curve's piecewise linearization includes its endpoints,
// which we don't want to duplicate (creating zero-len edges).
for(j = (i == 0 ? 0 : 1); j < lv.n; j++) {
sc->AddPoint(lv.elem[j]);
}
lv.Clear();
}
// Ensure that it's exactly closed, not just within a numerical tolerance.
sc->l.elem[sc->l.n - 1] = sc->l.elem[0];
}
SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly,
bool *allClosed, SEdge *errorAt)
{
int i;
SBezierLoopSet ret;
ZERO(&ret);
while(sbl->l.n > 0) {
bool thisClosed;
SBezierLoop loop;
loop = SBezierLoop::FromCurves(sbl, &thisClosed, errorAt);
if(!thisClosed) {
ret.Clear();
*allClosed = false;
return ret;
}
ret.l.Add(&loop);
poly->AddEmptyContour();
loop.MakePwlInto(&(poly->l.elem[poly->l.n-1]));
}
poly->normal = poly->ComputeNormal();
ret.normal = poly->normal;
if(poly->l.n > 0) {
ret.point = poly->AnyPoint();
} else {
ret.point = Vector::From(0, 0, 0);
}
poly->FixContourDirections();
for(i = 0; i < poly->l.n; i++) {
if(poly->l.elem[i].tag) {
// We had to reverse this contour in order to fix the poly
// contour directions; so need to do the same with the curves.
ret.l.elem[i].Reverse();
}
}
*allClosed = true;
return ret;
}
void SBezierLoopSet::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezierLoop *sbl;
for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
sbl->GetBoundingProjd(u, orig, umin, umax);
}
}
void SBezierLoopSet::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).Clear();
}
l.Clear();
}
SCurve SCurve::FromTransformationOf(SCurve *a, Vector t, Quaternion q) {
SCurve ret;
ZERO(&ret);
ret.h = a->h;
ret.isExact = a->isExact;
ret.exact = (a->exact).TransformedBy(t, q);
ret.surfA = a->surfA;
ret.surfB = a->surfB;
Vector *p;
for(p = a->pts.First(); p; p = a->pts.NextAfter(p)) {
Vector pp = (q.Rotate(*p)).Plus(t);
ret.pts.Add(&pp);
}
return ret;
}
void SCurve::Clear(void) {
pts.Clear();
}
STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool backwards) {
STrimBy stb;
ZERO(&stb);
stb.curve = hsc;
SCurve *sc = shell->curve.FindById(hsc);
if(backwards) {
stb.finish = sc->pts.elem[0];
stb.start = sc->pts.elem[sc->pts.n - 1];
stb.backwards = true;
} else {
stb.start = sc->pts.elem[0];
stb.finish = sc->pts.elem[sc->pts.n - 1];
stb.backwards = false;
}
return stb;
}
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
SSurface ret;
ZERO(&ret);
ret.degm = sb->deg;
ret.degn = 1;
int i;
for(i = 0; i <= ret.degm; i++) {
ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0);
ret.weight[i][0] = sb->weight[i];
ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1);
ret.weight[i][1] = sb->weight[i];
}
return ret;
}
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
int i;
if(degn != 1) return false;
Vector along = (ctrl[0][1]).Minus(ctrl[0][0]);
for(i = 0; i <= degm; i++) {
if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) &&
((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along))
{
continue;
}
return false;
}
// yes, we are a surface of extrusion; copy the original curve and return
if(of) {
for(i = 0; i <= degm; i++) {
of->weight[i] = weight[i][0];
of->ctrl[i] = ctrl[i][0];
}
of->deg = degm;
*alongp = along;
}
return true;
}
bool SSurface::IsCylinder(Vector *center, Vector *axis, double *r,
Vector *start, Vector *finish)
{
SBezier sb;
if(!IsExtrusion(&sb, axis)) return false;
if(sb.deg != 2) return false;
Vector t0 = (sb.ctrl[0]).Minus(sb.ctrl[1]),
t2 = (sb.ctrl[2]).Minus(sb.ctrl[1]),
r0 = axis->Cross(t0),
r2 = axis->Cross(t2);
*center = Vector::AtIntersectionOfLines(sb.ctrl[0], (sb.ctrl[0]).Plus(r0),
sb.ctrl[2], (sb.ctrl[2]).Plus(r2),
NULL, NULL, NULL);
double rd0 = center->Minus(sb.ctrl[0]).Magnitude(),
rd2 = center->Minus(sb.ctrl[2]).Magnitude();
if(fabs(rd0 - rd2) > LENGTH_EPS) {
return false;
}
*r = rd0;
Vector u = r0.WithMagnitude(1),
v = (axis->Cross(u)).WithMagnitude(1);
Point2d c2 = center->Project2d(u, v),
pa2 = (sb.ctrl[0]).Project2d(u, v).Minus(c2),
pb2 = (sb.ctrl[2]).Project2d(u, v).Minus(c2);
double thetaa = atan2(pa2.y, pa2.x), // in fact always zero due to csys
thetab = atan2(pb2.y, pb2.x),
dtheta = WRAP_NOT_0(thetab - thetaa, 2*PI);
if(dtheta > PI) {
// Not possible with a second order Bezier arc; so we must have
// the points backwards.
dtheta = 2*PI - dtheta;
}
if(fabs(sb.weight[1] - cos(dtheta/2)) > LENGTH_EPS) {
return false;
}
*start = sb.ctrl[0];
*finish = sb.ctrl[2];
return true;
}
SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) {
SSurface ret;
ZERO(&ret);
ret.degm = 1;
ret.degn = 1;
ret.weight[0][0] = ret.weight[0][1] = 1;
ret.weight[1][0] = ret.weight[1][1] = 1;
ret.ctrl[0][0] = pt;
ret.ctrl[0][1] = pt.Plus(u);
ret.ctrl[1][0] = pt.Plus(v);
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
return ret;
}
SSurface SSurface::FromTransformationOf(SSurface *a, Vector t, Quaternion q,
bool includingTrims)
{
SSurface ret;
ZERO(&ret);
ret.h = a->h;
ret.color = a->color;
ret.face = a->face;
ret.degm = a->degm;
ret.degn = a->degn;
int i, j;
for(i = 0; i <= 3; i++) {
for(j = 0; j <= 3; j++) {
ret.ctrl[i][j] = (q.Rotate(a->ctrl[i][j])).Plus(t);
ret.weight[i][j] = a->weight[i][j];
}
}
if(includingTrims) {
STrimBy *stb;
for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
STrimBy n = *stb;
n.start = (q.Rotate(n.start)) .Plus(t);
n.finish = (q.Rotate(n.finish)).Plus(t);
ret.trim.Add(&n);
}
}
return ret;
}
Vector SSurface::PointAt(double u, double v) { Vector SSurface::PointAt(double u, double v) {
Vector num = Vector::From(0, 0, 0); Vector num = Vector::From(0, 0, 0);
double den = 0; double den = 0;
@ -752,313 +328,3 @@ void SSurface::PointOnSurfaces(SSurface *s1, SSurface *s2,
dbp("didn't converge (three surfaces intersecting)"); dbp("didn't converge (three surfaces intersecting)");
} }
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
(ctrl[i][j]).MakeMaxMin(ptMax, ptMin);
}
}
}
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) {
Vector amax, amin;
GetAxisAlignedBounding(&amax, &amin);
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, segment)) {
// The line segment could fail to intersect the bbox, but lie entirely
// within it and intersect the surface.
if(a.OutsideAndNotOn(amax, amin) && b.OutsideAndNotOn(amax, amin)) {
return true;
}
}
return false;
}
void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv,
SShell *useCurvesFrom) {
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
// We have the option to use the curves from another shell; this
// is relevant when generating the coincident edges while doing the
// Booleans, since the curves from the output shell will be split
// against any intersecting surfaces (and the originals aren't).
if(useCurvesFrom) {
sc = useCurvesFrom->curve.FindById(sc->newH);
}
Vector prev, prevuv, ptuv;
bool inCurve = false, empty = true;
double u = 0, v = 0;
int i, first, last, increment;
if(stb->backwards) {
first = sc->pts.n - 1;
last = 0;
increment = -1;
} else {
first = 0;
last = sc->pts.n - 1;
increment = 1;
}
for(i = first; i != (last + increment); i += increment) {
Vector *pt = &(sc->pts.elem[i]);
if(asUv) {
ClosestPointTo(*pt, &u, &v);
ptuv = Vector::From(u, v, 0);
if(inCurve) {
sel->AddEdge(prevuv, ptuv, sc->h.v, stb->backwards);
empty = false;
}
prevuv = ptuv;
} else {
if(inCurve) {
sel->AddEdge(prev, *pt, sc->h.v, stb->backwards);
empty = false;
}
prev = *pt;
}
if(pt->Equals(stb->start)) inCurve = true;
if(pt->Equals(stb->finish)) inCurve = false;
}
if(inCurve) dbp("trim was unterminated");
if(empty) dbp("trim was empty");
}
}
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
SEdgeList el;
ZERO(&el);
MakeEdgesInto(shell, &el, true);
SPolygon poly;
ZERO(&poly);
if(el.AssemblePolygon(&poly, NULL, true)) {
int i, start = sm->l.n;
// Curved surfaces are triangulated in such a way as to minimize
// deviation between edges and surface; but doesn't matter for planes.
poly.UvTriangulateInto(sm, (degm == 1 && degn == 1) ? NULL : this);
STriMeta meta = { face, color };
for(i = start; i < sm->l.n; i++) {
STriangle *st = &(sm->l.elem[i]);
st->meta = meta;
st->an = NormalAt(st->a.x, st->a.y);
st->bn = NormalAt(st->b.x, st->b.y);
st->cn = NormalAt(st->c.x, st->c.y);
st->a = PointAt(st->a.x, st->a.y);
st->b = PointAt(st->b.x, st->b.y);
st->c = PointAt(st->c.x, st->c.y);
// Works out that my chosen contour direction is inconsistent with
// the triangle direction, sigh.
st->FlipNormal();
}
} else {
dbp("failed to assemble polygon to trim nurbs surface in uv space");
}
el.Clear();
poly.Clear();
}
//-----------------------------------------------------------------------------
// Reverse the parametrisation of one of our dimensions, which flips the
// normal. We therefore must reverse all our trim curves too. The uv
// coordinates change, but trim curves are stored as xyz so nothing happens
//-----------------------------------------------------------------------------
void SSurface::Reverse(void) {
int i, j;
for(i = 0; i < (degm+1)/2; i++) {
for(j = 0; j <= degn; j++) {
SWAP(Vector, ctrl[i][j], ctrl[degm-i][j]);
SWAP(double, weight[i][j], weight[degm-i][j]);
}
}
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
stb->backwards = !stb->backwards;
SWAP(Vector, stb->start, stb->finish);
}
}
void SSurface::Clear(void) {
trim.Clear();
}
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
int color)
{
ZERO(this);
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
SWAP(Vector, t0, t1);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = 1e-10, umin = 1e10;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = 1e-10, vmin = 1e10;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the top and bottom surfaces of the extrusion,
// planes within a translated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
s0.color = color;
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
s1.color = color;
hSSurface hs0 = surface.AddAndAssignId(&s0),
hs1 = surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
typedef struct {
hSCurve hc;
hSSurface hs;
} TrimLine;
List<TrimLine> trimLines;
ZERO(&trimLines);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
ss.color = color;
hSSurface hsext = surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc;
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs0;
sc.surfB = hsext;
hSCurve hc0 = curve.AddAndAssignId(&sc);
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1;
sc.surfB = hsext;
hSCurve hc1 = curve.AddAndAssignId(&sc);
STrimBy stb0, stb1;
// The translated curves trim the flat top and bottom surfaces.
stb0 = STrimBy::EntireCurve(this, hc0, false);
stb1 = STrimBy::EntireCurve(this, hc1, true);
(surface.FindById(hs0))->trim.Add(&stb0);
(surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
stb0 = STrimBy::EntireCurve(this, hc0, true);
stb1 = STrimBy::EntireCurve(this, hc1, false);
(surface.FindById(hsext))->trim.Add(&stb0);
(surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
ZERO(&sc);
sc.isExact = true;
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
(sc.exact).MakePwlInto(&(sc.pts));
hSCurve hl = curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.hc = hl;
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines.elem[i]);
SSurface *ss = surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]);
STrimBy stb;
stb = STrimBy::EntireCurve(this, tl->hc, true);
ss->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, tlp->hc, false);
ss->trim.Add(&stb);
(curve.FindById(tl->hc))->surfA = ss->h;
(curve.FindById(tlp->hc))->surfB = ss->h;
}
trimLines.Clear();
}
}
void SShell::MakeFromCopyOf(SShell *a) {
MakeFromTransformationOf(a, Vector::From(0, 0, 0), Quaternion::IDENTITY);
}
void SShell::MakeFromTransformationOf(SShell *a, Vector t, Quaternion q) {
SSurface *s;
for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) {
SSurface n;
n = SSurface::FromTransformationOf(s, t, q, true);
surface.Add(&n); // keeping the old ID
}
SCurve *c;
for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) {
SCurve n;
n = SCurve::FromTransformationOf(c, t, q);
curve.Add(&n); // keeping the old ID
}
}
void SShell::MakeEdgesInto(SEdgeList *sel) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->MakeEdgesInto(this, sel, false);
}
}
void SShell::TriangulateInto(SMesh *sm) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->TriangulateInto(this, sm);
}
}
void SShell::Clear(void) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->Clear();
}
surface.Clear();
SCurve *c;
for(c = curve.First(); c; c = curve.NextAfter(c)) {
c->Clear();
}
curve.Clear();
}

462
srf/surface.cpp Normal file
View File

@ -0,0 +1,462 @@
//-----------------------------------------------------------------------------
// Anything involving surfaces and sets of surfaces (i.e., shells); except
// for the real math, which is in ratpoly.cpp.
//-----------------------------------------------------------------------------
#include "../solvespace.h"
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
SSurface ret;
ZERO(&ret);
ret.degm = sb->deg;
ret.degn = 1;
int i;
for(i = 0; i <= ret.degm; i++) {
ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0);
ret.weight[i][0] = sb->weight[i];
ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1);
ret.weight[i][1] = sb->weight[i];
}
return ret;
}
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
int i;
if(degn != 1) return false;
Vector along = (ctrl[0][1]).Minus(ctrl[0][0]);
for(i = 0; i <= degm; i++) {
if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) &&
((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along))
{
continue;
}
return false;
}
// yes, we are a surface of extrusion; copy the original curve and return
if(of) {
for(i = 0; i <= degm; i++) {
of->weight[i] = weight[i][0];
of->ctrl[i] = ctrl[i][0];
}
of->deg = degm;
*alongp = along;
}
return true;
}
bool SSurface::IsCylinder(Vector *center, Vector *axis, double *r,
Vector *start, Vector *finish)
{
SBezier sb;
if(!IsExtrusion(&sb, axis)) return false;
if(sb.deg != 2) return false;
Vector t0 = (sb.ctrl[0]).Minus(sb.ctrl[1]),
t2 = (sb.ctrl[2]).Minus(sb.ctrl[1]),
r0 = axis->Cross(t0),
r2 = axis->Cross(t2);
*center = Vector::AtIntersectionOfLines(sb.ctrl[0], (sb.ctrl[0]).Plus(r0),
sb.ctrl[2], (sb.ctrl[2]).Plus(r2),
NULL, NULL, NULL);
double rd0 = center->Minus(sb.ctrl[0]).Magnitude(),
rd2 = center->Minus(sb.ctrl[2]).Magnitude();
if(fabs(rd0 - rd2) > LENGTH_EPS) {
return false;
}
*r = rd0;
Vector u = r0.WithMagnitude(1),
v = (axis->Cross(u)).WithMagnitude(1);
Point2d c2 = center->Project2d(u, v),
pa2 = (sb.ctrl[0]).Project2d(u, v).Minus(c2),
pb2 = (sb.ctrl[2]).Project2d(u, v).Minus(c2);
double thetaa = atan2(pa2.y, pa2.x), // in fact always zero due to csys
thetab = atan2(pb2.y, pb2.x),
dtheta = WRAP_NOT_0(thetab - thetaa, 2*PI);
if(dtheta > PI) {
// Not possible with a second order Bezier arc; so we must have
// the points backwards.
dtheta = 2*PI - dtheta;
}
if(fabs(sb.weight[1] - cos(dtheta/2)) > LENGTH_EPS) {
return false;
}
*start = sb.ctrl[0];
*finish = sb.ctrl[2];
return true;
}
SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) {
SSurface ret;
ZERO(&ret);
ret.degm = 1;
ret.degn = 1;
ret.weight[0][0] = ret.weight[0][1] = 1;
ret.weight[1][0] = ret.weight[1][1] = 1;
ret.ctrl[0][0] = pt;
ret.ctrl[0][1] = pt.Plus(u);
ret.ctrl[1][0] = pt.Plus(v);
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
return ret;
}
SSurface SSurface::FromTransformationOf(SSurface *a, Vector t, Quaternion q,
bool includingTrims)
{
SSurface ret;
ZERO(&ret);
ret.h = a->h;
ret.color = a->color;
ret.face = a->face;
ret.degm = a->degm;
ret.degn = a->degn;
int i, j;
for(i = 0; i <= 3; i++) {
for(j = 0; j <= 3; j++) {
ret.ctrl[i][j] = (q.Rotate(a->ctrl[i][j])).Plus(t);
ret.weight[i][j] = a->weight[i][j];
}
}
if(includingTrims) {
STrimBy *stb;
for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
STrimBy n = *stb;
n.start = (q.Rotate(n.start)) .Plus(t);
n.finish = (q.Rotate(n.finish)).Plus(t);
ret.trim.Add(&n);
}
}
return ret;
}
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
(ctrl[i][j]).MakeMaxMin(ptMax, ptMin);
}
}
}
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) {
Vector amax, amin;
GetAxisAlignedBounding(&amax, &amin);
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, segment)) {
// The line segment could fail to intersect the bbox, but lie entirely
// within it and intersect the surface.
if(a.OutsideAndNotOn(amax, amin) && b.OutsideAndNotOn(amax, amin)) {
return true;
}
}
return false;
}
void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv,
SShell *useCurvesFrom)
{
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
// We have the option to use the curves from another shell; this
// is relevant when generating the coincident edges while doing the
// Booleans, since the curves from the output shell will be split
// against any intersecting surfaces (and the originals aren't).
if(useCurvesFrom) {
sc = useCurvesFrom->curve.FindById(sc->newH);
}
Vector prev, prevuv, ptuv;
bool inCurve = false, empty = true;
double u = 0, v = 0;
int i, first, last, increment;
if(stb->backwards) {
first = sc->pts.n - 1;
last = 0;
increment = -1;
} else {
first = 0;
last = sc->pts.n - 1;
increment = 1;
}
for(i = first; i != (last + increment); i += increment) {
Vector *pt = &(sc->pts.elem[i]);
if(asUv) {
ClosestPointTo(*pt, &u, &v);
ptuv = Vector::From(u, v, 0);
if(inCurve) {
sel->AddEdge(prevuv, ptuv, sc->h.v, stb->backwards);
empty = false;
}
prevuv = ptuv;
} else {
if(inCurve) {
sel->AddEdge(prev, *pt, sc->h.v, stb->backwards);
empty = false;
}
prev = *pt;
}
if(pt->Equals(stb->start)) inCurve = true;
if(pt->Equals(stb->finish)) inCurve = false;
}
if(inCurve) dbp("trim was unterminated");
if(empty) dbp("trim was empty");
}
}
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
SEdgeList el;
ZERO(&el);
MakeEdgesInto(shell, &el, true);
SPolygon poly;
ZERO(&poly);
if(el.AssemblePolygon(&poly, NULL, true)) {
int i, start = sm->l.n;
// Curved surfaces are triangulated in such a way as to minimize
// deviation between edges and surface; but doesn't matter for planes.
poly.UvTriangulateInto(sm, (degm == 1 && degn == 1) ? NULL : this);
STriMeta meta = { face, color };
for(i = start; i < sm->l.n; i++) {
STriangle *st = &(sm->l.elem[i]);
st->meta = meta;
st->an = NormalAt(st->a.x, st->a.y);
st->bn = NormalAt(st->b.x, st->b.y);
st->cn = NormalAt(st->c.x, st->c.y);
st->a = PointAt(st->a.x, st->a.y);
st->b = PointAt(st->b.x, st->b.y);
st->c = PointAt(st->c.x, st->c.y);
// Works out that my chosen contour direction is inconsistent with
// the triangle direction, sigh.
st->FlipNormal();
}
} else {
dbp("failed to assemble polygon to trim nurbs surface in uv space");
}
el.Clear();
poly.Clear();
}
//-----------------------------------------------------------------------------
// Reverse the parametrisation of one of our dimensions, which flips the
// normal. We therefore must reverse all our trim curves too. The uv
// coordinates change, but trim curves are stored as xyz so nothing happens
//-----------------------------------------------------------------------------
void SSurface::Reverse(void) {
int i, j;
for(i = 0; i < (degm+1)/2; i++) {
for(j = 0; j <= degn; j++) {
SWAP(Vector, ctrl[i][j], ctrl[degm-i][j]);
SWAP(double, weight[i][j], weight[degm-i][j]);
}
}
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
stb->backwards = !stb->backwards;
SWAP(Vector, stb->start, stb->finish);
}
}
void SSurface::Clear(void) {
trim.Clear();
}
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
int color)
{
ZERO(this);
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
SWAP(Vector, t0, t1);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = 1e-10, umin = 1e10;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = 1e-10, vmin = 1e10;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the top and bottom surfaces of the extrusion,
// planes within a translated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
s0.color = color;
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
s1.color = color;
hSSurface hs0 = surface.AddAndAssignId(&s0),
hs1 = surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
typedef struct {
hSCurve hc;
hSSurface hs;
} TrimLine;
List<TrimLine> trimLines;
ZERO(&trimLines);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
ss.color = color;
hSSurface hsext = surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc;
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs0;
sc.surfB = hsext;
hSCurve hc0 = curve.AddAndAssignId(&sc);
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1;
sc.surfB = hsext;
hSCurve hc1 = curve.AddAndAssignId(&sc);
STrimBy stb0, stb1;
// The translated curves trim the flat top and bottom surfaces.
stb0 = STrimBy::EntireCurve(this, hc0, false);
stb1 = STrimBy::EntireCurve(this, hc1, true);
(surface.FindById(hs0))->trim.Add(&stb0);
(surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
stb0 = STrimBy::EntireCurve(this, hc0, true);
stb1 = STrimBy::EntireCurve(this, hc1, false);
(surface.FindById(hsext))->trim.Add(&stb0);
(surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
ZERO(&sc);
sc.isExact = true;
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
(sc.exact).MakePwlInto(&(sc.pts));
hSCurve hl = curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.hc = hl;
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines.elem[i]);
SSurface *ss = surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]);
STrimBy stb;
stb = STrimBy::EntireCurve(this, tl->hc, true);
ss->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, tlp->hc, false);
ss->trim.Add(&stb);
(curve.FindById(tl->hc))->surfA = ss->h;
(curve.FindById(tlp->hc))->surfB = ss->h;
}
trimLines.Clear();
}
}
void SShell::MakeFromCopyOf(SShell *a) {
MakeFromTransformationOf(a, Vector::From(0, 0, 0), Quaternion::IDENTITY);
}
void SShell::MakeFromTransformationOf(SShell *a, Vector t, Quaternion q) {
SSurface *s;
for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) {
SSurface n;
n = SSurface::FromTransformationOf(s, t, q, true);
surface.Add(&n); // keeping the old ID
}
SCurve *c;
for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) {
SCurve n;
n = SCurve::FromTransformationOf(c, t, q);
curve.Add(&n); // keeping the old ID
}
}
void SShell::MakeEdgesInto(SEdgeList *sel) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->MakeEdgesInto(this, sel, false);
}
}
void SShell::TriangulateInto(SMesh *sm) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->TriangulateInto(this, sm);
}
}
void SShell::Clear(void) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->Clear();
}
surface.Clear();
SCurve *c;
for(c = curve.First(); c; c = curve.NextAfter(c)) {
c->Clear();
}
curve.Clear();
}

View File

@ -424,9 +424,6 @@ void TextWindow::ShowGroupInfo(void) {
(asy || !asa ? "" : "assemble"), (asy && asa ? "assemble" : "")); (asy || !asa ? "" : "assemble"), (asy && asa ? "assemble" : ""));
} }
if(g->type == Group::IMPORTED) { if(g->type == Group::IMPORTED) {
if(g->meshError.yes) {
Printf(false, "%Fx the parts interfere!");
}
bool sup = g->suppress; bool sup = g->suppress;
Printf(false, "%FtSUPPRESS%E %Fh%f%Ll%s%E%Fs%s%E / %Fh%f%Ll%s%E%Fs%s%E", Printf(false, "%FtSUPPRESS%E %Fh%f%Ll%s%E%Fs%s%E / %Fh%f%Ll%s%E%Fs%s%E",
&TextWindow::ScreenChangeSuppress, &TextWindow::ScreenChangeSuppress,

1
ui.h
View File

@ -246,6 +246,7 @@ public:
MNU_COMMENT, MNU_COMMENT,
// Analyze // Analyze
MNU_VOLUME, MNU_VOLUME,
MNU_INTERFERENCE,
MNU_NAKED_EDGES, MNU_NAKED_EDGES,
MNU_SHOW_DOF, MNU_SHOW_DOF,
MNU_TRACE_PT, MNU_TRACE_PT,

View File

@ -53,8 +53,7 @@ void SolveSpace::PushFromCurrentOnto(UndoStack *uk) {
ZERO(&(dest.runningMesh)); ZERO(&(dest.runningMesh));
ZERO(&(dest.thisShell)); ZERO(&(dest.thisShell));
ZERO(&(dest.runningShell)); ZERO(&(dest.runningShell));
ZERO(&(dest.meshError)); ZERO(&(dest.runningEdges));
ZERO(&(dest.emphEdges));
ZERO(&(dest.remap)); ZERO(&(dest.remap));
src->remap.DeepCopyInto(&(dest.remap)); src->remap.DeepCopyInto(&(dest.remap));
@ -96,8 +95,7 @@ void SolveSpace::PopOntoCurrentFrom(UndoStack *uk) {
g->runningMesh.Clear(); g->runningMesh.Clear();
g->thisShell.Clear(); g->thisShell.Clear();
g->runningShell.Clear(); g->runningShell.Clear();
g->meshError.interferesAt.Clear(); g->runningEdges.Clear();
g->emphEdges.Clear();
g->remap.Clear(); g->remap.Clear();
g->impMesh.Clear(); g->impMesh.Clear();
g->impEntity.Clear(); g->impEntity.Clear();