Split line-surface intersection and shell raycasting stuff into its

own file.

[git-p4: depot-paths = "//depot/solvespace/": change = 1992]
solver
Jonathan Westhues 2009-06-21 01:14:49 -08:00
parent d3dcd8fb23
commit 4c8f535305
3 changed files with 618 additions and 599 deletions

View File

@ -47,6 +47,7 @@ SRFOBJS = $(OBJDIR)\ratpoly.obj \
$(OBJDIR)\triangulate.obj \ $(OBJDIR)\triangulate.obj \
$(OBJDIR)\boolean.obj \ $(OBJDIR)\boolean.obj \
$(OBJDIR)\surfinter.obj \ $(OBJDIR)\surfinter.obj \
$(OBJDIR)\raycast.obj \
$(OBJDIR)\merge.obj \ $(OBJDIR)\merge.obj \

612
srf/raycast.cpp Normal file
View File

@ -0,0 +1,612 @@
//-----------------------------------------------------------------------------
// Routines for ray-casting: intersecting a line segment or an infinite line
// with a surface or shell. Ray-casting against a shell is used for point-in-
// shell testing, and the intersection of edge line segments against surfaces
// is used to get rough surface-curve intersections, which are later refined
// numerically.
//-----------------------------------------------------------------------------
#include "solvespace.h"
// Dot product tolerance for perpendicular.
const double SShell::DOTP_TOL = 1e-3;
extern int FLAG;
double SSurface::DepartureFromCoplanar(void) {
int i, j;
int ia, ja, ib, jb, ic, jc;
double best;
// Grab three points to define a plane; first choose (0, 0) arbitrarily.
ia = ja = 0;
// Then the point farthest from pt a.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
double dist = (ctrl[i][j]).Minus(ctrl[ia][ja]).Magnitude();
if(dist > best) {
best = dist;
ib = i;
jb = j;
}
}
}
// Then biggest magnitude of ab cross ac.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
if(i == ib && j == jb) continue;
double mag =
((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[i ][j ]))).Magnitude();
if(mag > best) {
best = mag;
ic = i;
jc = j;
}
}
}
Vector n = ((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[ic][jc])));
n = n.WithMagnitude(1);
double d = (ctrl[ia][ja]).Dot(n);
// Finally, calculate the deviation from each point to the plane.
double farthest = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double dist = fabs(n.Dot(ctrl[i][j]) - d);
if(dist > farthest) {
farthest = dist;
}
}
}
return farthest;
}
void SSurface::WeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(weight[i][j]);
}
}
}
void SSurface::UnWeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(1.0/weight[i][j]);
}
}
}
void SSurface::CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij) {
if(row) {
int j;
for(j = 0; j <= degn; j++) {
ctrl [this_ij][j] = src->ctrl [src_ij][j];
weight[this_ij][j] = src->weight[src_ij][j];
}
} else {
int i;
for(i = 0; i <= degm; i++) {
ctrl [i][this_ij] = src->ctrl [i][src_ij];
weight[i][this_ij] = src->weight[i][src_ij];
}
}
}
void SSurface::BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
SSurface *b, int b_ij)
{
if(row) {
int j;
for(j = 0; j <= degn; j++) {
Vector c = (a->ctrl [a_ij][j]).Plus(b->ctrl [b_ij][j]);
double w = (a->weight[a_ij][j] + b->weight[b_ij][j]);
ctrl [this_ij][j] = c.ScaledBy(0.5);
weight[this_ij][j] = w / 2;
}
} else {
int i;
for(i = 0; i <= degm; i++) {
Vector c = (a->ctrl [i][a_ij]).Plus(b->ctrl [i][b_ij]);
double w = (a->weight[i][a_ij] + b->weight[i][b_ij]);
ctrl [i][this_ij] = c.ScaledBy(0.5);
weight[i][this_ij] = w / 2;
}
}
}
void SSurface::SplitInHalf(bool byU, SSurface *sa, SSurface *sb) {
sa->degm = sb->degm = degm;
sa->degn = sb->degn = degn;
// by de Casteljau's algorithm in a projective space; so we must work
// on points (w*x, w*y, w*z, w)
WeightControlPoints();
switch(byU ? degm : degn) {
case 1:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 1, this, 1);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 0, this, 0, this, 1);
break;
case 2:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 2, this, 2);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 1, this, 1, this, 2);
sa->BlendRowOrCol(byU, 2, sa, 1, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 1, sb, 1);
break;
case 3: {
SSurface st;
st.degm = degm; st.degn = degn;
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 3, this, 3);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 2, this, 2, this, 3);
st. BlendRowOrCol(byU, 0, this, 1, this, 2); // scratch var
sa->BlendRowOrCol(byU, 2, sa, 1, &st, 0);
sb->BlendRowOrCol(byU, 1, sb, 2, &st, 0);
sa->BlendRowOrCol(byU, 3, sa, 2, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 2, sb, 1);
break;
}
default: oops();
}
sa->UnWeightControlPoints();
sb->UnWeightControlPoints();
UnWeightControlPoints();
}
//-----------------------------------------------------------------------------
// Find all points where the indicated finite (if segment) or infinite (if not
// segment) line intersects our surface. Report them in uv space in the list.
// We first do a bounding box check; if the line doesn't intersect, then we're
// done. If it does, then we check how small our surface is. If it's big,
// then we subdivide into quarters and recurse. If it's small, then we refine
// by Newton's method and record the point.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersectingUntrimmed(Vector a, Vector b,
int *cnt, int *level,
List<Inter> *l, bool segment,
SSurface *sorig)
{
// Test if the line intersects our axis-aligned bounding box; if no, then
// no possibility of an intersection
if(LineEntirelyOutsideBbox(a, b, segment)) return;
if(*cnt > 2000) {
dbp("!!! too many subdivisions (level=%d)!", *level);
dbp("degm = %d degn = %d", degm, degn);
return;
}
(*cnt)++;
// If we might intersect, and the surface is small, then switch to Newton
// iterations.
if(DepartureFromCoplanar() < 0.2*SS.ChordTolMm()) {
Vector p = (ctrl[0 ][0 ]).Plus(
ctrl[0 ][degn]).Plus(
ctrl[degm][0 ]).Plus(
ctrl[degm][degn]).ScaledBy(0.25);
Inter inter;
sorig->ClosestPointTo(p, &(inter.p.x), &(inter.p.y), false);
if(sorig->PointIntersectingLine(a, b, &(inter.p.x), &(inter.p.y))) {
Vector p = sorig->PointAt(inter.p.x, inter.p.y);
// Debug check, verify that the point lies in both surfaces
// (which it ought to, since the surfaces should be coincident)
double u, v;
ClosestPointTo(p, &u, &v);
l->Add(&inter);
} else {
// Might not converge if line is almost tangent to surface...
}
return;
}
// But the surface is big, so split it, alternating by u and v
SSurface surf0, surf1;
SplitInHalf((*level & 1) == 0, &surf0, &surf1);
int nextLevel = (*level) + 1;
(*level) = nextLevel;
surf0.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
(*level) = nextLevel;
surf1.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
}
//-----------------------------------------------------------------------------
// Find all points where a line through a and b intersects our surface, and
// add them to the list. If seg is true then report only intersections that
// lie within the finite line segment (not including the endpoints); otherwise
// we work along the infinite line. And we report either just intersections
// inside the trim curve, or any intersection with u, v in [0, 1]. And we
// either disregard or report tangent points.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *l,
bool seg, bool trimmed, bool inclTangent)
{
if(LineEntirelyOutsideBbox(a, b, seg)) return;
Vector ba = b.Minus(a);
double bam = ba.Magnitude();
List<Inter> inters;
ZERO(&inters);
// All the intersections between the line and the surface; either special
// cases that we can quickly solve in closed form, or general numerical.
Vector center, axis, start, finish;
double radius;
if(degm == 1 && degn == 1) {
// Against a plane, easy.
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(PointAt(0, 0));
// Trim to line segment now if requested, don't generate points that
// would just get discarded later.
if(!seg ||
(n.Dot(a) > d + LENGTH_EPS && n.Dot(b) < d - LENGTH_EPS) ||
(n.Dot(b) > d + LENGTH_EPS && n.Dot(a) < d - LENGTH_EPS))
{
Vector p = Vector::AtIntersectionOfPlaneAndLine(n, d, a, b, NULL);
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else if(IsCylinder(&axis, &center, &radius, &start, &finish)) {
// This one can be solved in closed form too.
Vector ab = b.Minus(a);
if(axis.Cross(ab).Magnitude() < LENGTH_EPS) {
// edge is parallel to axis of cylinder, no intersection points
return;
}
// A coordinate system centered at the center of the circle, with
// the edge under test horizontal
Vector u, v, n = axis.WithMagnitude(1);
u = (ab.Minus(n.ScaledBy(ab.Dot(n)))).WithMagnitude(1);
v = n.Cross(u);
Point2d ap = (a.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
bp = (b.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
sp = (start. Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
fp = (finish.Minus(center)).DotInToCsys(u, v, n).ProjectXy();
double thetas = atan2(sp.y, sp.x), thetaf = atan2(fp.y, fp.x);
Point2d ip[2];
int ip_n = 0;
if(fabs(fabs(ap.y) - radius) < LENGTH_EPS) {
// tangent
if(inclTangent) {
ip[0] = Point2d::From(0, ap.y);
ip_n = 1;
}
} else if(fabs(ap.y) < radius) {
// two intersections
double xint = sqrt(radius*radius - ap.y*ap.y);
ip[0] = Point2d::From(-xint, ap.y);
ip[1] = Point2d::From( xint, ap.y);
ip_n = 2;
}
int i;
for(i = 0; i < ip_n; i++) {
double t = (ip[i].Minus(ap)).DivPivoting(bp.Minus(ap));
// This is a point on the circle; but is it on the arc?
Point2d pp = ap.Plus((bp.Minus(ap)).ScaledBy(t));
double theta = atan2(pp.y, pp.x);
double dp = WRAP_SYMMETRIC(theta - thetas, 2*PI),
df = WRAP_SYMMETRIC(thetaf - thetas, 2*PI);
double tol = LENGTH_EPS/radius;
if((df > 0 && ((dp < -tol) || (dp > df + tol))) ||
(df < 0 && ((dp > tol) || (dp < df - tol))))
{
continue;
}
Vector p = a.Plus((b.Minus(a)).ScaledBy(t));
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else {
// General numerical solution by subdivision, fallback
int cnt = 0, level = 0;
AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this);
}
// Remove duplicate intersection points
inters.ClearTags();
int i, j;
for(i = 0; i < inters.n; i++) {
for(j = i + 1; j < inters.n; j++) {
if(inters.elem[i].p.Equals(inters.elem[j].p)) {
inters.elem[j].tag = 1;
}
}
}
inters.RemoveTagged();
for(i = 0; i < inters.n; i++) {
Point2d puv = inters.elem[i].p;
// Make sure the point lies within the finite line segment
Vector pxyz = PointAt(puv.x, puv.y);
double t = (pxyz.Minus(a)).DivPivoting(ba);
if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) {
continue;
}
// And that it lies inside our trim region
Point2d dummy = { 0, 0 }, ia = { 0, 0 }, ib = { 0, 0 };
int c = bsp->ClassifyPoint(puv, dummy, &ia, &ib);
if(trimmed && c == SBspUv::OUTSIDE) {
continue;
}
// It does, so generate the intersection
SInter si;
si.p = pxyz;
si.surfNormal = NormalAt(puv.x, puv.y);
si.pinter = puv;
si.srf = this;
si.onEdge = (c != SBspUv::INSIDE);
si.edgeA = ia;
si.edgeB = ib;
l->Add(&si);
}
inters.Clear();
}
void SShell::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *il,
bool seg, bool trimmed, bool inclTangent)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->AllPointsIntersecting(a, b, il, seg, trimmed, inclTangent);
}
}
int SShell::ClassifyRegion(Vector edge_n, Vector inter_surf_n,
Vector edge_surf_n)
{
double dot = inter_surf_n.Dot(edge_n);
if(fabs(dot) < DOTP_TOL) {
// The edge's surface and the edge-on-face surface
// are coincident. Test the edge's surface normal
// to see if it's with same or opposite normals.
if(inter_surf_n.Dot(edge_surf_n) > 0) {
return COINC_SAME;
} else {
return COINC_OPP;
}
} else if(dot > 0) {
return OUTSIDE;
} else {
return INSIDE;
}
}
//-----------------------------------------------------------------------------
// Does the given point lie on our shell? There are many cases; inside and
// outside are obvious, but then there's all the edge-on-edge and edge-on-face
// possibilities.
//
// To calculate, we intersect a ray through p with our shell, and classify
// using the closest intersection point. If the ray hits a surface on edge,
// then just reattempt in a different random direction.
//-----------------------------------------------------------------------------
bool SShell::ClassifyEdge(int *indir, int *outdir,
Vector ea, Vector eb,
Vector p,
Vector edge_n_in, Vector edge_n_out, Vector surf_n)
{
List<SInter> l;
ZERO(&l);
srand(0);
// First, check for edge-on-edge
int edge_inters = 0;
Vector inter_surf_n[2], inter_edge_n[2];
SSurface *srf;
for(srf = surface.First(); srf; srf = surface.NextAfter(srf)) {
if(srf->LineEntirelyOutsideBbox(ea, eb, true)) continue;
SEdgeList *sel = &(srf->edges);
SEdge *se;
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
if((ea.Equals(se->a) && eb.Equals(se->b)) ||
(eb.Equals(se->a) && ea.Equals(se->b)) ||
p.OnLineSegment(se->a, se->b))
{
if(edge_inters < 2) {
// Edge-on-edge case
Point2d pm;
srf->ClosestPointTo(p, &pm, false);
// A vector normal to the surface, at the intersection point
inter_surf_n[edge_inters] = srf->NormalAt(pm);
// A vector normal to the intersecting edge (but within the
// intersecting surface) at the intersection point, pointing
// out.
inter_edge_n[edge_inters] =
(inter_surf_n[edge_inters]).Cross((se->b).Minus((se->a)));
}
edge_inters++;
}
}
}
if(edge_inters == 2) {
// TODO, make this use the appropriate curved normals
double dotp[2];
for(int i = 0; i < 2; i++) {
dotp[i] = edge_n_out.Dot(inter_surf_n[i]);
}
if(fabs(dotp[1]) < DOTP_TOL) {
SWAP(double, dotp[0], dotp[1]);
SWAP(Vector, inter_surf_n[0], inter_surf_n[1]);
SWAP(Vector, inter_edge_n[0], inter_edge_n[1]);
}
int coinc = (surf_n.Dot(inter_surf_n[0])) > 0 ? COINC_SAME : COINC_OPP;
if(fabs(dotp[0]) < DOTP_TOL && fabs(dotp[1]) < DOTP_TOL) {
// This is actually an edge on face case, just that the face
// is split into two pieces joining at our edge.
*indir = coinc;
*outdir = coinc;
} else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] > DOTP_TOL) {
if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
*indir = coinc;
*outdir = OUTSIDE;
} else {
*indir = INSIDE;
*outdir = coinc;
}
} else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] < -DOTP_TOL) {
if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
*indir = coinc;
*outdir = INSIDE;
} else {
*indir = OUTSIDE;
*outdir = coinc;
}
} else if(dotp[0] > DOTP_TOL && dotp[1] > DOTP_TOL) {
*indir = INSIDE;
*outdir = OUTSIDE;
} else if(dotp[0] < -DOTP_TOL && dotp[1] < -DOTP_TOL) {
*indir = OUTSIDE;
*outdir = INSIDE;
} else {
// Edge is tangent to the shell at shell's edge, so can't be
// a boundary of the surface.
return false;
}
return true;
}
if(edge_inters != 0) dbp("bad, edge_inters=%d", edge_inters);
// Next, check for edge-on-surface. The ray-casting for edge-inside-shell
// would catch this too, but test separately, for speed (since many edges
// are on surface) and for numerical stability, so we don't pick up
// the additional error from the line intersection.
for(srf = surface.First(); srf; srf = surface.NextAfter(srf)) {
if(srf->LineEntirelyOutsideBbox(ea, eb, true)) continue;
Point2d puv;
srf->ClosestPointTo(p, &(puv.x), &(puv.y), false);
Vector pp = srf->PointAt(puv);
if((pp.Minus(p)).Magnitude() > LENGTH_EPS) continue;
Point2d dummy = { 0, 0 }, ia = { 0, 0 }, ib = { 0, 0 };
int c = srf->bsp->ClassifyPoint(puv, dummy, &ia, &ib);
if(c == SBspUv::OUTSIDE) continue;
// Edge-on-face (unless edge-on-edge above superceded)
Point2d pin, pout;
srf->ClosestPointTo(p.Plus(edge_n_in), &pin, false);
srf->ClosestPointTo(p.Plus(edge_n_out), &pout, false);
Vector surf_n_in = srf->NormalAt(pin),
surf_n_out = srf->NormalAt(pout);
*indir = ClassifyRegion(edge_n_in, surf_n_in, surf_n);
*outdir = ClassifyRegion(edge_n_out, surf_n_out, surf_n);
return true;
}
// Edge is not on face or on edge; so it's either inside or outside
// the shell, and we'll determine which by raycasting.
int cnt = 0;
for(;;) {
// Cast a ray in a random direction (two-sided so that we test if
// the point lies on a surface, but use only one side for in/out
// testing)
Vector ray = Vector::From(Random(1), Random(1), Random(1));
AllPointsIntersecting(
p.Minus(ray), p.Plus(ray), &l, false, true, false);
// no intersections means it's outside
*indir = OUTSIDE;
*outdir = OUTSIDE;
double dmin = VERY_POSITIVE;
bool onEdge = false;
edge_inters = 0;
SInter *si;
for(si = l.First(); si; si = l.NextAfter(si)) {
double t = ((si->p).Minus(p)).DivPivoting(ray);
if(t*ray.Magnitude() < -LENGTH_EPS) {
// wrong side, doesn't count
continue;
}
double d = ((si->p).Minus(p)).Magnitude();
// We actually should never hit this case; it should have been
// handled above.
if(d < LENGTH_EPS && si->onEdge) {
edge_inters++;
}
if(d < dmin) {
dmin = d;
// Edge does not lie on surface; either strictly inside
// or strictly outside
if((si->surfNormal).Dot(ray) > 0) {
*indir = INSIDE;
*outdir = INSIDE;
} else {
*indir = OUTSIDE;
*outdir = OUTSIDE;
}
onEdge = si->onEdge;
}
}
l.Clear();
// If the point being tested lies exactly on an edge of the shell,
// then our ray always lies on edge, and that's okay. Otherwise
// try again in a different random direction.
if(!onEdge) break;
if(cnt++ > 5) {
dbp("can't find a ray that doesn't hit on edge!");
dbp("on edge = %d, edge_inters = %d", onEdge, edge_inters);
SS.nakedEdges.AddEdge(ea, eb);
break;
}
}
return true;
}

View File

@ -1,8 +1,10 @@
//-----------------------------------------------------------------------------
// How to intersect two surfaces, to get some type of curve. This is either
// an exact special case (e.g., two planes to make a line), or a numerical
// thing.
//-----------------------------------------------------------------------------
#include "solvespace.h" #include "solvespace.h"
// Dot product tolerance for perpendicular.
const double SShell::DOTP_TOL = 1e-3;
extern int FLAG; extern int FLAG;
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB, void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
@ -423,602 +425,6 @@ void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
} }
} }
double SSurface::DepartureFromCoplanar(void) {
int i, j;
int ia, ja, ib, jb, ic, jc;
double best;
// Grab three points to define a plane; first choose (0, 0) arbitrarily.
ia = ja = 0;
// Then the point farthest from pt a.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
double dist = (ctrl[i][j]).Minus(ctrl[ia][ja]).Magnitude();
if(dist > best) {
best = dist;
ib = i;
jb = j;
}
}
}
// Then biggest magnitude of ab cross ac.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
if(i == ib && j == jb) continue;
double mag =
((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[i ][j ]))).Magnitude();
if(mag > best) {
best = mag;
ic = i;
jc = j;
}
}
}
Vector n = ((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[ic][jc])));
n = n.WithMagnitude(1);
double d = (ctrl[ia][ja]).Dot(n);
// Finally, calculate the deviation from each point to the plane.
double farthest = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double dist = fabs(n.Dot(ctrl[i][j]) - d);
if(dist > farthest) {
farthest = dist;
}
}
}
return farthest;
}
void SSurface::WeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(weight[i][j]);
}
}
}
void SSurface::UnWeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(1.0/weight[i][j]);
}
}
}
void SSurface::CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij) {
if(row) {
int j;
for(j = 0; j <= degn; j++) {
ctrl [this_ij][j] = src->ctrl [src_ij][j];
weight[this_ij][j] = src->weight[src_ij][j];
}
} else {
int i;
for(i = 0; i <= degm; i++) {
ctrl [i][this_ij] = src->ctrl [i][src_ij];
weight[i][this_ij] = src->weight[i][src_ij];
}
}
}
void SSurface::BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
SSurface *b, int b_ij)
{
if(row) {
int j;
for(j = 0; j <= degn; j++) {
Vector c = (a->ctrl [a_ij][j]).Plus(b->ctrl [b_ij][j]);
double w = (a->weight[a_ij][j] + b->weight[b_ij][j]);
ctrl [this_ij][j] = c.ScaledBy(0.5);
weight[this_ij][j] = w / 2;
}
} else {
int i;
for(i = 0; i <= degm; i++) {
Vector c = (a->ctrl [i][a_ij]).Plus(b->ctrl [i][b_ij]);
double w = (a->weight[i][a_ij] + b->weight[i][b_ij]);
ctrl [i][this_ij] = c.ScaledBy(0.5);
weight[i][this_ij] = w / 2;
}
}
}
void SSurface::SplitInHalf(bool byU, SSurface *sa, SSurface *sb) {
sa->degm = sb->degm = degm;
sa->degn = sb->degn = degn;
// by de Casteljau's algorithm in a projective space; so we must work
// on points (w*x, w*y, w*z, w)
WeightControlPoints();
switch(byU ? degm : degn) {
case 1:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 1, this, 1);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 0, this, 0, this, 1);
break;
case 2:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 2, this, 2);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 1, this, 1, this, 2);
sa->BlendRowOrCol(byU, 2, sa, 1, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 1, sb, 1);
break;
case 3: {
SSurface st;
st.degm = degm; st.degn = degn;
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 3, this, 3);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 2, this, 2, this, 3);
st. BlendRowOrCol(byU, 0, this, 1, this, 2); // scratch var
sa->BlendRowOrCol(byU, 2, sa, 1, &st, 0);
sb->BlendRowOrCol(byU, 1, sb, 2, &st, 0);
sa->BlendRowOrCol(byU, 3, sa, 2, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 2, sb, 1);
break;
}
default: oops();
}
sa->UnWeightControlPoints();
sb->UnWeightControlPoints();
UnWeightControlPoints();
}
//-----------------------------------------------------------------------------
// Find all points where the indicated finite (if segment) or infinite (if not
// segment) line intersects our surface. Report them in uv space in the list.
// We first do a bounding box check; if the line doesn't intersect, then we're
// done. If it does, then we check how small our surface is. If it's big,
// then we subdivide into quarters and recurse. If it's small, then we refine
// by Newton's method and record the point.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersectingUntrimmed(Vector a, Vector b,
int *cnt, int *level,
List<Inter> *l, bool segment,
SSurface *sorig)
{
// Test if the line intersects our axis-aligned bounding box; if no, then
// no possibility of an intersection
if(LineEntirelyOutsideBbox(a, b, segment)) return;
if(*cnt > 2000) {
dbp("!!! too many subdivisions (level=%d)!", *level);
dbp("degm = %d degn = %d", degm, degn);
return;
}
(*cnt)++;
// If we might intersect, and the surface is small, then switch to Newton
// iterations.
if(DepartureFromCoplanar() < 0.2*SS.ChordTolMm()) {
Vector p = (ctrl[0 ][0 ]).Plus(
ctrl[0 ][degn]).Plus(
ctrl[degm][0 ]).Plus(
ctrl[degm][degn]).ScaledBy(0.25);
Inter inter;
sorig->ClosestPointTo(p, &(inter.p.x), &(inter.p.y), false);
if(sorig->PointIntersectingLine(a, b, &(inter.p.x), &(inter.p.y))) {
Vector p = sorig->PointAt(inter.p.x, inter.p.y);
// Debug check, verify that the point lies in both surfaces
// (which it ought to, since the surfaces should be coincident)
double u, v;
ClosestPointTo(p, &u, &v);
l->Add(&inter);
} else {
// Might not converge if line is almost tangent to surface...
}
return;
}
// But the surface is big, so split it, alternating by u and v
SSurface surf0, surf1;
SplitInHalf((*level & 1) == 0, &surf0, &surf1);
int nextLevel = (*level) + 1;
(*level) = nextLevel;
surf0.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
(*level) = nextLevel;
surf1.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
}
//-----------------------------------------------------------------------------
// Find all points where a line through a and b intersects our surface, and
// add them to the list. If seg is true then report only intersections that
// lie within the finite line segment (not including the endpoints); otherwise
// we work along the infinite line. And we report either just intersections
// inside the trim curve, or any intersection with u, v in [0, 1]. And we
// either disregard or report tangent points.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *l,
bool seg, bool trimmed, bool inclTangent)
{
if(LineEntirelyOutsideBbox(a, b, seg)) return;
Vector ba = b.Minus(a);
double bam = ba.Magnitude();
List<Inter> inters;
ZERO(&inters);
// All the intersections between the line and the surface; either special
// cases that we can quickly solve in closed form, or general numerical.
Vector center, axis, start, finish;
double radius;
if(degm == 1 && degn == 1) {
// Against a plane, easy.
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(PointAt(0, 0));
// Trim to line segment now if requested, don't generate points that
// would just get discarded later.
if(!seg ||
(n.Dot(a) > d + LENGTH_EPS && n.Dot(b) < d - LENGTH_EPS) ||
(n.Dot(b) > d + LENGTH_EPS && n.Dot(a) < d - LENGTH_EPS))
{
Vector p = Vector::AtIntersectionOfPlaneAndLine(n, d, a, b, NULL);
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else if(IsCylinder(&axis, &center, &radius, &start, &finish)) {
// This one can be solved in closed form too.
Vector ab = b.Minus(a);
if(axis.Cross(ab).Magnitude() < LENGTH_EPS) {
// edge is parallel to axis of cylinder, no intersection points
return;
}
// A coordinate system centered at the center of the circle, with
// the edge under test horizontal
Vector u, v, n = axis.WithMagnitude(1);
u = (ab.Minus(n.ScaledBy(ab.Dot(n)))).WithMagnitude(1);
v = n.Cross(u);
Point2d ap = (a.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
bp = (b.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
sp = (start. Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
fp = (finish.Minus(center)).DotInToCsys(u, v, n).ProjectXy();
double thetas = atan2(sp.y, sp.x), thetaf = atan2(fp.y, fp.x);
Point2d ip[2];
int ip_n = 0;
if(fabs(fabs(ap.y) - radius) < LENGTH_EPS) {
// tangent
if(inclTangent) {
ip[0] = Point2d::From(0, ap.y);
ip_n = 1;
}
} else if(fabs(ap.y) < radius) {
// two intersections
double xint = sqrt(radius*radius - ap.y*ap.y);
ip[0] = Point2d::From(-xint, ap.y);
ip[1] = Point2d::From( xint, ap.y);
ip_n = 2;
}
int i;
for(i = 0; i < ip_n; i++) {
double t = (ip[i].Minus(ap)).DivPivoting(bp.Minus(ap));
// This is a point on the circle; but is it on the arc?
Point2d pp = ap.Plus((bp.Minus(ap)).ScaledBy(t));
double theta = atan2(pp.y, pp.x);
double dp = WRAP_SYMMETRIC(theta - thetas, 2*PI),
df = WRAP_SYMMETRIC(thetaf - thetas, 2*PI);
double tol = LENGTH_EPS/radius;
if((df > 0 && ((dp < -tol) || (dp > df + tol))) ||
(df < 0 && ((dp > tol) || (dp < df - tol))))
{
continue;
}
Vector p = a.Plus((b.Minus(a)).ScaledBy(t));
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else {
// General numerical solution by subdivision, fallback
int cnt = 0, level = 0;
AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this);
}
// Remove duplicate intersection points
inters.ClearTags();
int i, j;
for(i = 0; i < inters.n; i++) {
for(j = i + 1; j < inters.n; j++) {
if(inters.elem[i].p.Equals(inters.elem[j].p)) {
inters.elem[j].tag = 1;
}
}
}
inters.RemoveTagged();
for(i = 0; i < inters.n; i++) {
Point2d puv = inters.elem[i].p;
// Make sure the point lies within the finite line segment
Vector pxyz = PointAt(puv.x, puv.y);
double t = (pxyz.Minus(a)).DivPivoting(ba);
if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) {
continue;
}
// And that it lies inside our trim region
Point2d dummy = { 0, 0 }, ia = { 0, 0 }, ib = { 0, 0 };
int c = bsp->ClassifyPoint(puv, dummy, &ia, &ib);
if(trimmed && c == SBspUv::OUTSIDE) {
continue;
}
// It does, so generate the intersection
SInter si;
si.p = pxyz;
si.surfNormal = NormalAt(puv.x, puv.y);
si.pinter = puv;
si.srf = this;
si.onEdge = (c != SBspUv::INSIDE);
si.edgeA = ia;
si.edgeB = ib;
l->Add(&si);
}
inters.Clear();
}
void SShell::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *il,
bool seg, bool trimmed, bool inclTangent)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->AllPointsIntersecting(a, b, il, seg, trimmed, inclTangent);
}
}
int SShell::ClassifyRegion(Vector edge_n, Vector inter_surf_n,
Vector edge_surf_n)
{
double dot = inter_surf_n.Dot(edge_n);
if(fabs(dot) < DOTP_TOL) {
// The edge's surface and the edge-on-face surface
// are coincident. Test the edge's surface normal
// to see if it's with same or opposite normals.
if(inter_surf_n.Dot(edge_surf_n) > 0) {
return COINC_SAME;
} else {
return COINC_OPP;
}
} else if(dot > 0) {
return OUTSIDE;
} else {
return INSIDE;
}
}
//-----------------------------------------------------------------------------
// Does the given point lie on our shell? There are many cases; inside and
// outside are obvious, but then there's all the edge-on-edge and edge-on-face
// possibilities.
//
// To calculate, we intersect a ray through p with our shell, and classify
// using the closest intersection point. If the ray hits a surface on edge,
// then just reattempt in a different random direction.
//-----------------------------------------------------------------------------
bool SShell::ClassifyEdge(int *indir, int *outdir,
Vector ea, Vector eb,
Vector p,
Vector edge_n_in, Vector edge_n_out, Vector surf_n)
{
List<SInter> l;
ZERO(&l);
srand(0);
// First, check for edge-on-edge
int edge_inters = 0;
Vector inter_surf_n[2], inter_edge_n[2];
SSurface *srf;
for(srf = surface.First(); srf; srf = surface.NextAfter(srf)) {
if(srf->LineEntirelyOutsideBbox(ea, eb, true)) continue;
SEdgeList *sel = &(srf->edges);
SEdge *se;
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
if((ea.Equals(se->a) && eb.Equals(se->b)) ||
(eb.Equals(se->a) && ea.Equals(se->b)) ||
p.OnLineSegment(se->a, se->b))
{
if(edge_inters < 2) {
// Edge-on-edge case
Point2d pm;
srf->ClosestPointTo(p, &pm, false);
// A vector normal to the surface, at the intersection point
inter_surf_n[edge_inters] = srf->NormalAt(pm);
// A vector normal to the intersecting edge (but within the
// intersecting surface) at the intersection point, pointing
// out.
inter_edge_n[edge_inters] =
(inter_surf_n[edge_inters]).Cross((se->b).Minus((se->a)));
}
edge_inters++;
}
}
}
if(edge_inters == 2) {
// TODO, make this use the appropriate curved normals
double dotp[2];
for(int i = 0; i < 2; i++) {
dotp[i] = edge_n_out.Dot(inter_surf_n[i]);
}
if(fabs(dotp[1]) < DOTP_TOL) {
SWAP(double, dotp[0], dotp[1]);
SWAP(Vector, inter_surf_n[0], inter_surf_n[1]);
SWAP(Vector, inter_edge_n[0], inter_edge_n[1]);
}
int coinc = (surf_n.Dot(inter_surf_n[0])) > 0 ? COINC_SAME : COINC_OPP;
if(fabs(dotp[0]) < DOTP_TOL && fabs(dotp[1]) < DOTP_TOL) {
// This is actually an edge on face case, just that the face
// is split into two pieces joining at our edge.
*indir = coinc;
*outdir = coinc;
} else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] > DOTP_TOL) {
if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
*indir = coinc;
*outdir = OUTSIDE;
} else {
*indir = INSIDE;
*outdir = coinc;
}
} else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] < -DOTP_TOL) {
if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
*indir = coinc;
*outdir = INSIDE;
} else {
*indir = OUTSIDE;
*outdir = coinc;
}
} else if(dotp[0] > DOTP_TOL && dotp[1] > DOTP_TOL) {
*indir = INSIDE;
*outdir = OUTSIDE;
} else if(dotp[0] < -DOTP_TOL && dotp[1] < -DOTP_TOL) {
*indir = OUTSIDE;
*outdir = INSIDE;
} else {
// Edge is tangent to the shell at shell's edge, so can't be
// a boundary of the surface.
return false;
}
return true;
}
if(edge_inters != 0) dbp("bad, edge_inters=%d", edge_inters);
// Next, check for edge-on-surface. The ray-casting for edge-inside-shell
// would catch this too, but test separately, for speed (since many edges
// are on surface) and for numerical stability, so we don't pick up
// the additional error from the line intersection.
for(srf = surface.First(); srf; srf = surface.NextAfter(srf)) {
if(srf->LineEntirelyOutsideBbox(ea, eb, true)) continue;
Point2d puv;
srf->ClosestPointTo(p, &(puv.x), &(puv.y), false);
Vector pp = srf->PointAt(puv);
if((pp.Minus(p)).Magnitude() > LENGTH_EPS) continue;
Point2d dummy = { 0, 0 }, ia = { 0, 0 }, ib = { 0, 0 };
int c = srf->bsp->ClassifyPoint(puv, dummy, &ia, &ib);
if(c == SBspUv::OUTSIDE) continue;
// Edge-on-face (unless edge-on-edge above superceded)
Point2d pin, pout;
srf->ClosestPointTo(p.Plus(edge_n_in), &pin, false);
srf->ClosestPointTo(p.Plus(edge_n_out), &pout, false);
Vector surf_n_in = srf->NormalAt(pin),
surf_n_out = srf->NormalAt(pout);
*indir = ClassifyRegion(edge_n_in, surf_n_in, surf_n);
*outdir = ClassifyRegion(edge_n_out, surf_n_out, surf_n);
return true;
}
// Edge is not on face or on edge; so it's either inside or outside
// the shell, and we'll determine which by raycasting.
int cnt = 0;
for(;;) {
// Cast a ray in a random direction (two-sided so that we test if
// the point lies on a surface, but use only one side for in/out
// testing)
Vector ray = Vector::From(Random(1), Random(1), Random(1));
AllPointsIntersecting(
p.Minus(ray), p.Plus(ray), &l, false, true, false);
// no intersections means it's outside
*indir = OUTSIDE;
*outdir = OUTSIDE;
double dmin = VERY_POSITIVE;
bool onEdge = false;
edge_inters = 0;
SInter *si;
for(si = l.First(); si; si = l.NextAfter(si)) {
double t = ((si->p).Minus(p)).DivPivoting(ray);
if(t*ray.Magnitude() < -LENGTH_EPS) {
// wrong side, doesn't count
continue;
}
double d = ((si->p).Minus(p)).Magnitude();
// We actually should never hit this case; it should have been
// handled above.
if(d < LENGTH_EPS && si->onEdge) {
edge_inters++;
}
if(d < dmin) {
dmin = d;
// Edge does not lie on surface; either strictly inside
// or strictly outside
if((si->surfNormal).Dot(ray) > 0) {
*indir = INSIDE;
*outdir = INSIDE;
} else {
*indir = OUTSIDE;
*outdir = OUTSIDE;
}
onEdge = si->onEdge;
}
}
l.Clear();
// If the point being tested lies exactly on an edge of the shell,
// then our ray always lies on edge, and that's okay. Otherwise
// try again in a different random direction.
if(!onEdge) break;
if(cnt++ > 5) {
dbp("can't find a ray that doesn't hit on edge!");
dbp("on edge = %d, edge_inters = %d", onEdge, edge_inters);
SS.nakedEdges.AddEdge(ea, eb);
break;
}
}
return true;
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Are two surfaces coincident, with the same (or with opposite) normals? // Are two surfaces coincident, with the same (or with opposite) normals?
// Currently handles planes only. // Currently handles planes only.