Add const qualifiers to functions where trivially possible.
This will allow us in future to accept `const T &` anywhere it's necessary to reduce the amount of copying. This commit is quite conservative: it does not attempt very hard to refactor code that performs incidental mutation. In particular dogd and caches are not marked with the `mutable` keyword. dogd will be eliminated later, opening up more opportunities to add const qualifiers. This commit also doesn't introduce any uses of the newly added const qualifers. This will be done later.pull/10/head
parent
91e18eed73
commit
20d87d93c5
12
src/bsp.cpp
12
src/bsp.cpp
|
@ -36,7 +36,7 @@ SBsp3 *SBsp3::FromMesh(SMesh *m) {
|
|||
return bsp3;
|
||||
}
|
||||
|
||||
Vector SBsp3::IntersectionWith(Vector a, Vector b) {
|
||||
Vector SBsp3::IntersectionWith(Vector a, Vector b) const {
|
||||
double da = a.Dot(n) - d;
|
||||
double db = b.Dot(n) - d;
|
||||
ssassert(da*db < 0, "Expected segment to intersect BSP node");
|
||||
|
@ -401,7 +401,7 @@ void SBsp3::Insert(STriangle *tr, SMesh *instead) {
|
|||
return;
|
||||
}
|
||||
|
||||
void SBsp3::GenerateInPaintOrder(SMesh *m) {
|
||||
void SBsp3::GenerateInPaintOrder(SMesh *m) const {
|
||||
|
||||
// Doesn't matter which branch we take if the normal has zero z
|
||||
// component, so don't need a separate case for that.
|
||||
|
@ -411,7 +411,7 @@ void SBsp3::GenerateInPaintOrder(SMesh *m) {
|
|||
if(neg) neg->GenerateInPaintOrder(m);
|
||||
}
|
||||
|
||||
SBsp3 *flip = this;
|
||||
const SBsp3 *flip = this;
|
||||
while(flip) {
|
||||
m->AddTriangle(&(flip->tri));
|
||||
flip = flip->more;
|
||||
|
@ -424,7 +424,7 @@ void SBsp3::GenerateInPaintOrder(SMesh *m) {
|
|||
}
|
||||
}
|
||||
|
||||
void SBsp3::DebugDraw() {
|
||||
void SBsp3::DebugDraw() const {
|
||||
|
||||
if(pos) pos->DebugDraw();
|
||||
Vector norm = tri.Normal();
|
||||
|
@ -468,7 +468,7 @@ void SBsp3::DebugDraw() {
|
|||
|
||||
/////////////////////////////////
|
||||
|
||||
Vector SBsp2::IntersectionWith(Vector a, Vector b) {
|
||||
Vector SBsp2::IntersectionWith(Vector a, Vector b) const {
|
||||
double da = a.Dot(no) - d;
|
||||
double db = b.Dot(no) - d;
|
||||
ssassert(da*db < 0, "Expected segment to intersect BSP node");
|
||||
|
@ -665,7 +665,7 @@ void SBsp2::InsertTriangle(STriangle *tr, SMesh *m, SBsp3 *bsp3) {
|
|||
return;
|
||||
}
|
||||
|
||||
void SBsp2::DebugDraw(Vector n, double d) {
|
||||
void SBsp2::DebugDraw(Vector n, double d) const {
|
||||
ssassert(fabs((edge.a).Dot(n) - d) < LENGTH_EPS, "Endpoint too close to BSP node plane");
|
||||
ssassert(fabs((edge.b).Dot(n) - d) < LENGTH_EPS, "Endpoint too close to BSP node plane");
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
#include "solvespace.h"
|
||||
|
||||
std::string Constraint::DescriptionString() {
|
||||
std::string Constraint::DescriptionString() const {
|
||||
const char *s;
|
||||
switch(type) {
|
||||
case POINTS_COINCIDENT: s = "pts-coincident"; break;
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
|
||||
const hConstraint ConstraintBase::NO_CONSTRAINT = { 0 };
|
||||
|
||||
bool ConstraintBase::HasLabel() {
|
||||
bool ConstraintBase::HasLabel() const {
|
||||
switch(type) {
|
||||
case PT_LINE_DISTANCE:
|
||||
case PT_PLANE_DISTANCE:
|
||||
|
@ -193,7 +193,7 @@ void ConstraintBase::ModifyToSatisfy() {
|
|||
}
|
||||
}
|
||||
|
||||
void ConstraintBase::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index)
|
||||
void ConstraintBase::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) const
|
||||
{
|
||||
Equation eq;
|
||||
eq.e = expr;
|
||||
|
@ -201,12 +201,12 @@ void ConstraintBase::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index)
|
|||
l->Add(&eq);
|
||||
}
|
||||
|
||||
void ConstraintBase::Generate(IdList<Equation,hEquation> *l) {
|
||||
void ConstraintBase::Generate(IdList<Equation,hEquation> *l) const {
|
||||
if(!reference) {
|
||||
GenerateReal(l);
|
||||
}
|
||||
}
|
||||
void ConstraintBase::GenerateReal(IdList<Equation,hEquation> *l) {
|
||||
void ConstraintBase::GenerateReal(IdList<Equation,hEquation> *l) const {
|
||||
Expr *exA = Expr::From(valA);
|
||||
|
||||
switch(type) {
|
||||
|
|
|
@ -40,7 +40,7 @@ static void LineCallback(void *fndata, Vector a, Vector b)
|
|||
c->LineDrawOrGetDistance(a, b);
|
||||
}
|
||||
|
||||
std::string Constraint::Label() {
|
||||
std::string Constraint::Label() const {
|
||||
std::string result;
|
||||
if(type == ANGLE) {
|
||||
if(valA == floor(valA)) {
|
||||
|
@ -104,7 +104,7 @@ void Constraint::DoLabel(Vector ref, Vector *labelPos, Vector gr, Vector gu) {
|
|||
|
||||
|
||||
if(dogd.drawing) {
|
||||
ssglWriteTextRefCenter(s, th, ref, gr, gu, LineCallback, this);
|
||||
ssglWriteTextRefCenter(s, th, ref, gr, gu, LineCallback, (void *)this);
|
||||
} else {
|
||||
double l = swidth/2 - sheight/2;
|
||||
l = max(l, 5/SS.GW.scale);
|
||||
|
@ -461,7 +461,7 @@ void Constraint::DoArcForAngle(Vector a0, Vector da, Vector b0, Vector db,
|
|||
Vector trans =
|
||||
(*ref).Plus(gu.ScaledBy(-1.5*ssglStrCapHeight(Style::DefaultTextHeight())));
|
||||
ssglWriteTextRefCenter("angle between skew lines", Style::DefaultTextHeight(),
|
||||
trans, gr.WithMagnitude(px), gu.WithMagnitude(px), LineCallback, this);
|
||||
trans, gr.WithMagnitude(px), gu.WithMagnitude(px), LineCallback, (void *)this);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -921,7 +921,7 @@ void Constraint::DrawOrGetDistance(Vector *labelPos) {
|
|||
|
||||
if(dogd.drawing) {
|
||||
ssglWriteTextRefCenter("T", Style::DefaultTextHeight(),
|
||||
textAt, u, v, LineCallback, this);
|
||||
textAt, u, v, LineCallback, (void *)this);
|
||||
} else {
|
||||
dogd.refp = textAt;
|
||||
Point2d ref = SS.GW.ProjectPoint(dogd.refp);
|
||||
|
@ -1105,7 +1105,7 @@ s:
|
|||
(type == AT_MIDPOINT) ? "M" : NULL));
|
||||
|
||||
ssglWriteTextRefCenter(s, Style::DefaultTextHeight(),
|
||||
m.Plus(offset), r, u, LineCallback, this);
|
||||
m.Plus(offset), r, u, LineCallback, (void *)this);
|
||||
} else {
|
||||
dogd.refp = m.Plus(offset);
|
||||
Point2d ref = SS.GW.ProjectPoint(dogd.refp);
|
||||
|
@ -1220,7 +1220,7 @@ void Constraint::GetEdges(SEdgeList *sel) {
|
|||
dogd.sel = NULL;
|
||||
}
|
||||
|
||||
bool Constraint::IsStylable() {
|
||||
bool Constraint::IsStylable() const {
|
||||
if(type == COMMENT) return true;
|
||||
return false;
|
||||
}
|
||||
|
@ -1230,7 +1230,7 @@ hStyle Constraint::GetStyle() const {
|
|||
return { Style::CONSTRAINT };
|
||||
}
|
||||
|
||||
bool Constraint::HasLabel() {
|
||||
bool Constraint::HasLabel() const {
|
||||
switch(type) {
|
||||
case COMMENT:
|
||||
case PT_PT_DISTANCE:
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
#include "solvespace.h"
|
||||
|
||||
std::string Entity::DescriptionString() {
|
||||
std::string Entity::DescriptionString() const {
|
||||
if(h.isFromRequest()) {
|
||||
Request *r = SK.GetRequest(h.request());
|
||||
return r->DescriptionString();
|
||||
|
@ -137,7 +137,6 @@ void Entity::GenerateEdges(SEdgeList *el, bool includingConstruction) {
|
|||
}
|
||||
lv.Clear();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
SBezierList *Entity::GetOrGenerateBezierCurves() {
|
||||
|
@ -211,14 +210,14 @@ Vector Entity::GetReferencePos() {
|
|||
return dogd.refp;
|
||||
}
|
||||
|
||||
bool Entity::IsStylable() {
|
||||
bool Entity::IsStylable() const {
|
||||
if(IsPoint()) return false;
|
||||
if(IsWorkplane()) return false;
|
||||
if(IsNormal()) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Entity::IsVisible() {
|
||||
bool Entity::IsVisible() const {
|
||||
Group *g = SK.GetGroup(group);
|
||||
|
||||
if(g->h.v == Group::HGROUP_REFERENCES.v && IsNormal()) {
|
||||
|
@ -271,7 +270,7 @@ void Entity::CalculateNumerical(bool forExport) {
|
|||
}
|
||||
}
|
||||
|
||||
bool Entity::PointIsFromReferences() {
|
||||
bool Entity::PointIsFromReferences() const {
|
||||
return h.request().IsFromReferences();
|
||||
}
|
||||
|
||||
|
@ -280,7 +279,7 @@ bool Entity::PointIsFromReferences() {
|
|||
// routine for periodic splines (in a loop) or open splines (with specified
|
||||
// end tangents).
|
||||
//-----------------------------------------------------------------------------
|
||||
void Entity::ComputeInterpolatingSpline(SBezierList *sbl, bool periodic) {
|
||||
void Entity::ComputeInterpolatingSpline(SBezierList *sbl, bool periodic) const {
|
||||
static const int MAX_N = BandedMatrix::MAX_UNKNOWNS;
|
||||
int ep = extraPoints;
|
||||
|
||||
|
@ -413,7 +412,7 @@ void Entity::ComputeInterpolatingSpline(SBezierList *sbl, bool periodic) {
|
|||
}
|
||||
}
|
||||
|
||||
void Entity::GenerateBezierCurves(SBezierList *sbl) {
|
||||
void Entity::GenerateBezierCurves(SBezierList *sbl) const {
|
||||
SBezier sb;
|
||||
|
||||
int i = sbl->l.n;
|
||||
|
|
118
src/dsc.h
118
src/dsc.h
|
@ -27,23 +27,23 @@ public:
|
|||
static Quaternion From(Vector u, Vector v);
|
||||
static Quaternion From(Vector axis, double dtheta);
|
||||
|
||||
Quaternion Plus(Quaternion b);
|
||||
Quaternion Minus(Quaternion b);
|
||||
Quaternion ScaledBy(double s);
|
||||
double Magnitude();
|
||||
Quaternion WithMagnitude(double s);
|
||||
Quaternion Plus(Quaternion b) const;
|
||||
Quaternion Minus(Quaternion b) const;
|
||||
Quaternion ScaledBy(double s) const;
|
||||
double Magnitude() const;
|
||||
Quaternion WithMagnitude(double s) const;
|
||||
|
||||
// Call a rotation matrix [ u' v' n' ]'; this returns the first and
|
||||
// second rows, where that matrix is generated by this quaternion
|
||||
Vector RotationU();
|
||||
Vector RotationV();
|
||||
Vector RotationN();
|
||||
Vector Rotate(Vector p);
|
||||
Vector RotationU() const;
|
||||
Vector RotationV() const;
|
||||
Vector RotationN() const;
|
||||
Vector Rotate(Vector p) const;
|
||||
|
||||
Quaternion ToThe(double p);
|
||||
Quaternion Inverse();
|
||||
Quaternion Times(Quaternion b);
|
||||
Quaternion Mirror();
|
||||
Quaternion ToThe(double p) const;
|
||||
Quaternion Inverse() const;
|
||||
Quaternion Times(Quaternion b) const;
|
||||
Quaternion Mirror() const;
|
||||
};
|
||||
|
||||
class Vector {
|
||||
|
@ -68,43 +68,43 @@ public:
|
|||
Vector pb, Vector db,
|
||||
double *ta, double *tb);
|
||||
|
||||
double Element(int i);
|
||||
bool Equals(Vector v, double tol=LENGTH_EPS);
|
||||
bool EqualsExactly(Vector v);
|
||||
Vector Plus(Vector b);
|
||||
Vector Minus(Vector b);
|
||||
Vector Negated();
|
||||
Vector Cross(Vector b);
|
||||
double DirectionCosineWith(Vector b);
|
||||
double Dot(Vector b);
|
||||
Vector Normal(int which);
|
||||
Vector RotatedAbout(Vector orig, Vector axis, double theta);
|
||||
Vector RotatedAbout(Vector axis, double theta);
|
||||
Vector DotInToCsys(Vector u, Vector v, Vector n);
|
||||
Vector ScaleOutOfCsys(Vector u, Vector v, Vector n);
|
||||
double DistanceToLine(Vector p0, Vector dp);
|
||||
bool OnLineSegment(Vector a, Vector b, double tol=LENGTH_EPS);
|
||||
Vector ClosestPointOnLine(Vector p0, Vector dp);
|
||||
double Magnitude();
|
||||
double MagSquared();
|
||||
Vector WithMagnitude(double s);
|
||||
Vector ScaledBy(double s);
|
||||
Vector ProjectInto(hEntity wrkpl);
|
||||
Vector ProjectVectorInto(hEntity wrkpl);
|
||||
double DivPivoting(Vector delta);
|
||||
Vector ClosestOrtho();
|
||||
void MakeMaxMin(Vector *maxv, Vector *minv);
|
||||
Vector ClampWithin(double minv, double maxv);
|
||||
double Element(int i) const;
|
||||
bool Equals(Vector v, double tol=LENGTH_EPS) const;
|
||||
bool EqualsExactly(Vector v) const;
|
||||
Vector Plus(Vector b) const;
|
||||
Vector Minus(Vector b) const;
|
||||
Vector Negated() const;
|
||||
Vector Cross(Vector b) const;
|
||||
double DirectionCosineWith(Vector b) const;
|
||||
double Dot(Vector b) const;
|
||||
Vector Normal(int which) const;
|
||||
Vector RotatedAbout(Vector orig, Vector axis, double theta) const;
|
||||
Vector RotatedAbout(Vector axis, double theta) const;
|
||||
Vector DotInToCsys(Vector u, Vector v, Vector n) const;
|
||||
Vector ScaleOutOfCsys(Vector u, Vector v, Vector n) const;
|
||||
double DistanceToLine(Vector p0, Vector dp) const;
|
||||
bool OnLineSegment(Vector a, Vector b, double tol=LENGTH_EPS) const;
|
||||
Vector ClosestPointOnLine(Vector p0, Vector deltal) const;
|
||||
double Magnitude() const;
|
||||
double MagSquared() const;
|
||||
Vector WithMagnitude(double s) const;
|
||||
Vector ScaledBy(double s) const;
|
||||
Vector ProjectInto(hEntity wrkpl) const;
|
||||
Vector ProjectVectorInto(hEntity wrkpl) const;
|
||||
double DivPivoting(Vector delta) const;
|
||||
Vector ClosestOrtho() const;
|
||||
void MakeMaxMin(Vector *maxv, Vector *minv) const;
|
||||
Vector ClampWithin(double minv, double maxv) const;
|
||||
static bool BoundingBoxesDisjoint(Vector amax, Vector amin,
|
||||
Vector bmax, Vector bmin);
|
||||
static bool BoundingBoxIntersectsLine(Vector amax, Vector amin,
|
||||
Vector p0, Vector p1, bool segment);
|
||||
bool OutsideAndNotOn(Vector maxv, Vector minv);
|
||||
bool OutsideAndNotOn(Vector maxv, Vector minv) const;
|
||||
Vector InPerspective(Vector u, Vector v, Vector n,
|
||||
Vector origin, double cameraTan);
|
||||
Point2d Project2d(Vector u, Vector v);
|
||||
Point2d ProjectXy();
|
||||
Vector4 Project4d();
|
||||
Vector origin, double cameraTan) const;
|
||||
Point2d Project2d(Vector u, Vector v) const;
|
||||
Point2d ProjectXy() const;
|
||||
Vector4 Project4d() const;
|
||||
};
|
||||
|
||||
class Vector4 {
|
||||
|
@ -115,10 +115,10 @@ public:
|
|||
static Vector4 From(double w, Vector v3);
|
||||
static Vector4 Blend(Vector4 a, Vector4 b, double t);
|
||||
|
||||
Vector4 Plus(Vector4 b);
|
||||
Vector4 Minus(Vector4 b);
|
||||
Vector4 ScaledBy(double s);
|
||||
Vector PerspectiveProject();
|
||||
Vector4 Plus(Vector4 b) const;
|
||||
Vector4 Minus(Vector4 b) const;
|
||||
Vector4 ScaledBy(double s) const;
|
||||
Vector PerspectiveProject() const;
|
||||
};
|
||||
|
||||
class Point2d {
|
||||
|
@ -165,12 +165,12 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
void Add(T *t) {
|
||||
void Add(const T *t) {
|
||||
AllocForOneMore();
|
||||
new(&elem[n++]) T(*t);
|
||||
}
|
||||
|
||||
void AddToBeginning(T *t) {
|
||||
void AddToBeginning(const T *t) {
|
||||
AllocForOneMore();
|
||||
new(&elem[n]) T();
|
||||
std::move_backward(elem, elem + 1, elem + n + 1);
|
||||
|
@ -181,11 +181,19 @@ public:
|
|||
T *First() {
|
||||
return (n == 0) ? NULL : &(elem[0]);
|
||||
}
|
||||
const T *First() const {
|
||||
return (n == 0) ? NULL : &(elem[0]);
|
||||
}
|
||||
T *NextAfter(T *prev) {
|
||||
if(!prev) return NULL;
|
||||
if(prev - elem == (n - 1)) return NULL;
|
||||
return prev + 1;
|
||||
}
|
||||
const T *NextAfter(const T *prev) const {
|
||||
if(!prev) return NULL;
|
||||
if(prev - elem == (n - 1)) return NULL;
|
||||
return prev + 1;
|
||||
}
|
||||
|
||||
void ClearTags() {
|
||||
int i;
|
||||
|
@ -515,12 +523,12 @@ public:
|
|||
|
||||
static BBox From(const Vector &p0, const Vector &p1);
|
||||
|
||||
Vector GetOrigin();
|
||||
Vector GetExtents();
|
||||
Vector GetOrigin() const;
|
||||
Vector GetExtents() const;
|
||||
|
||||
void Include(const Vector &v, double r = 0.0);
|
||||
bool Overlaps(BBox &b1);
|
||||
bool Contains(const Point2d &p);
|
||||
bool Overlaps(const BBox &b1) const;
|
||||
bool Contains(const Point2d &p) const;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
const hEntity EntityBase::FREE_IN_3D = { 0 };
|
||||
const hEntity EntityBase::NO_ENTITY = { 0 };
|
||||
|
||||
bool EntityBase::HasVector() {
|
||||
bool EntityBase::HasVector() const {
|
||||
switch(type) {
|
||||
case LINE_SEGMENT:
|
||||
case NORMAL_IN_3D:
|
||||
|
@ -25,7 +25,7 @@ bool EntityBase::HasVector() {
|
|||
}
|
||||
}
|
||||
|
||||
ExprVector EntityBase::VectorGetExprs() {
|
||||
ExprVector EntityBase::VectorGetExprs() const {
|
||||
switch(type) {
|
||||
case LINE_SEGMENT:
|
||||
return (SK.GetEntity(point[0])->PointGetExprs()).Minus(
|
||||
|
@ -42,7 +42,7 @@ ExprVector EntityBase::VectorGetExprs() {
|
|||
}
|
||||
}
|
||||
|
||||
Vector EntityBase::VectorGetNum() {
|
||||
Vector EntityBase::VectorGetNum() const {
|
||||
switch(type) {
|
||||
case LINE_SEGMENT:
|
||||
return (SK.GetEntity(point[0])->PointGetNum()).Minus(
|
||||
|
@ -59,7 +59,7 @@ Vector EntityBase::VectorGetNum() {
|
|||
}
|
||||
}
|
||||
|
||||
Vector EntityBase::VectorGetRefPoint() {
|
||||
Vector EntityBase::VectorGetRefPoint() const {
|
||||
switch(type) {
|
||||
case LINE_SEGMENT:
|
||||
return ((SK.GetEntity(point[0])->PointGetNum()).Plus(
|
||||
|
@ -76,7 +76,7 @@ Vector EntityBase::VectorGetRefPoint() {
|
|||
}
|
||||
}
|
||||
|
||||
Vector EntityBase::VectorGetStartPoint() {
|
||||
Vector EntityBase::VectorGetStartPoint() const {
|
||||
switch(type) {
|
||||
case LINE_SEGMENT:
|
||||
return SK.GetEntity(point[1])->PointGetNum();
|
||||
|
@ -92,11 +92,11 @@ Vector EntityBase::VectorGetStartPoint() {
|
|||
}
|
||||
}
|
||||
|
||||
bool EntityBase::IsCircle() {
|
||||
bool EntityBase::IsCircle() const {
|
||||
return (type == CIRCLE) || (type == ARC_OF_CIRCLE);
|
||||
}
|
||||
|
||||
Expr *EntityBase::CircleGetRadiusExpr() {
|
||||
Expr *EntityBase::CircleGetRadiusExpr() const {
|
||||
if(type == CIRCLE) {
|
||||
return SK.GetEntity(distance)->DistanceGetExpr();
|
||||
} else if(type == ARC_OF_CIRCLE) {
|
||||
|
@ -104,7 +104,7 @@ Expr *EntityBase::CircleGetRadiusExpr() {
|
|||
} else ssassert(false, "Unexpected entity type");
|
||||
}
|
||||
|
||||
double EntityBase::CircleGetRadiusNum() {
|
||||
double EntityBase::CircleGetRadiusNum() const {
|
||||
if(type == CIRCLE) {
|
||||
return SK.GetEntity(distance)->DistanceGetNum();
|
||||
} else if(type == ARC_OF_CIRCLE) {
|
||||
|
@ -114,7 +114,7 @@ double EntityBase::CircleGetRadiusNum() {
|
|||
} else ssassert(false, "Unexpected entity type");
|
||||
}
|
||||
|
||||
void EntityBase::ArcGetAngles(double *thetaa, double *thetab, double *dtheta) {
|
||||
void EntityBase::ArcGetAngles(double *thetaa, double *thetab, double *dtheta) const {
|
||||
ssassert(type == ARC_OF_CIRCLE, "Unexpected entity type");
|
||||
|
||||
Quaternion q = Normal()->NormalGetNum();
|
||||
|
@ -137,46 +137,46 @@ void EntityBase::ArcGetAngles(double *thetaa, double *thetab, double *dtheta) {
|
|||
while(*dtheta > (2*PI)) *dtheta -= 2*PI;
|
||||
}
|
||||
|
||||
Vector EntityBase::CubicGetStartNum() {
|
||||
Vector EntityBase::CubicGetStartNum() const {
|
||||
return SK.GetEntity(point[0])->PointGetNum();
|
||||
}
|
||||
Vector EntityBase::CubicGetFinishNum() {
|
||||
Vector EntityBase::CubicGetFinishNum() const {
|
||||
return SK.GetEntity(point[3+extraPoints])->PointGetNum();
|
||||
}
|
||||
ExprVector EntityBase::CubicGetStartTangentExprs() {
|
||||
ExprVector EntityBase::CubicGetStartTangentExprs() const {
|
||||
ExprVector pon = SK.GetEntity(point[0])->PointGetExprs(),
|
||||
poff = SK.GetEntity(point[1])->PointGetExprs();
|
||||
return (pon.Minus(poff));
|
||||
}
|
||||
ExprVector EntityBase::CubicGetFinishTangentExprs() {
|
||||
ExprVector EntityBase::CubicGetFinishTangentExprs() const {
|
||||
ExprVector pon = SK.GetEntity(point[3+extraPoints])->PointGetExprs(),
|
||||
poff = SK.GetEntity(point[2+extraPoints])->PointGetExprs();
|
||||
return (pon.Minus(poff));
|
||||
}
|
||||
Vector EntityBase::CubicGetStartTangentNum() {
|
||||
Vector EntityBase::CubicGetStartTangentNum() const {
|
||||
Vector pon = SK.GetEntity(point[0])->PointGetNum(),
|
||||
poff = SK.GetEntity(point[1])->PointGetNum();
|
||||
return (pon.Minus(poff));
|
||||
}
|
||||
Vector EntityBase::CubicGetFinishTangentNum() {
|
||||
Vector EntityBase::CubicGetFinishTangentNum() const {
|
||||
Vector pon = SK.GetEntity(point[3+extraPoints])->PointGetNum(),
|
||||
poff = SK.GetEntity(point[2+extraPoints])->PointGetNum();
|
||||
return (pon.Minus(poff));
|
||||
}
|
||||
|
||||
bool EntityBase::IsWorkplane() {
|
||||
bool EntityBase::IsWorkplane() const {
|
||||
return (type == WORKPLANE);
|
||||
}
|
||||
|
||||
ExprVector EntityBase::WorkplaneGetOffsetExprs() {
|
||||
ExprVector EntityBase::WorkplaneGetOffsetExprs() const {
|
||||
return SK.GetEntity(point[0])->PointGetExprs();
|
||||
}
|
||||
|
||||
Vector EntityBase::WorkplaneGetOffset() {
|
||||
Vector EntityBase::WorkplaneGetOffset() const {
|
||||
return SK.GetEntity(point[0])->PointGetNum();
|
||||
}
|
||||
|
||||
void EntityBase::WorkplaneGetPlaneExprs(ExprVector *n, Expr **dn) {
|
||||
void EntityBase::WorkplaneGetPlaneExprs(ExprVector *n, Expr **dn) const {
|
||||
if(type == WORKPLANE) {
|
||||
*n = Normal()->NormalExprsN();
|
||||
|
||||
|
@ -188,18 +188,18 @@ void EntityBase::WorkplaneGetPlaneExprs(ExprVector *n, Expr **dn) {
|
|||
} else ssassert(false, "Unexpected entity type");
|
||||
}
|
||||
|
||||
bool EntityBase::IsDistance() {
|
||||
bool EntityBase::IsDistance() const {
|
||||
return (type == DISTANCE) ||
|
||||
(type == DISTANCE_N_COPY);
|
||||
}
|
||||
double EntityBase::DistanceGetNum() {
|
||||
double EntityBase::DistanceGetNum() const {
|
||||
if(type == DISTANCE) {
|
||||
return SK.GetParam(param[0])->val;
|
||||
} else if(type == DISTANCE_N_COPY) {
|
||||
return numDistance;
|
||||
} else ssassert(false, "Unexpected entity type");
|
||||
}
|
||||
Expr *EntityBase::DistanceGetExpr() {
|
||||
Expr *EntityBase::DistanceGetExpr() const {
|
||||
if(type == DISTANCE) {
|
||||
return Expr::From(param[0]);
|
||||
} else if(type == DISTANCE_N_COPY) {
|
||||
|
@ -214,11 +214,11 @@ void EntityBase::DistanceForceTo(double v) {
|
|||
} else ssassert(false, "Unexpected entity type");
|
||||
}
|
||||
|
||||
EntityBase *EntityBase::Normal() {
|
||||
EntityBase *EntityBase::Normal() const {
|
||||
return SK.GetEntity(normal);
|
||||
}
|
||||
|
||||
bool EntityBase::IsPoint() {
|
||||
bool EntityBase::IsPoint() const {
|
||||
switch(type) {
|
||||
case POINT_IN_3D:
|
||||
case POINT_IN_2D:
|
||||
|
@ -233,7 +233,7 @@ bool EntityBase::IsPoint() {
|
|||
}
|
||||
}
|
||||
|
||||
bool EntityBase::IsNormal() {
|
||||
bool EntityBase::IsNormal() const {
|
||||
switch(type) {
|
||||
case NORMAL_IN_3D:
|
||||
case NORMAL_IN_2D:
|
||||
|
@ -246,7 +246,7 @@ bool EntityBase::IsNormal() {
|
|||
}
|
||||
}
|
||||
|
||||
Quaternion EntityBase::NormalGetNum() {
|
||||
Quaternion EntityBase::NormalGetNum() const {
|
||||
Quaternion q;
|
||||
switch(type) {
|
||||
case NORMAL_IN_3D:
|
||||
|
@ -310,27 +310,27 @@ void EntityBase::NormalForceTo(Quaternion q) {
|
|||
}
|
||||
}
|
||||
|
||||
Vector EntityBase::NormalU() {
|
||||
Vector EntityBase::NormalU() const {
|
||||
return NormalGetNum().RotationU();
|
||||
}
|
||||
Vector EntityBase::NormalV() {
|
||||
Vector EntityBase::NormalV() const {
|
||||
return NormalGetNum().RotationV();
|
||||
}
|
||||
Vector EntityBase::NormalN() {
|
||||
Vector EntityBase::NormalN() const {
|
||||
return NormalGetNum().RotationN();
|
||||
}
|
||||
|
||||
ExprVector EntityBase::NormalExprsU() {
|
||||
ExprVector EntityBase::NormalExprsU() const {
|
||||
return NormalGetExprs().RotationU();
|
||||
}
|
||||
ExprVector EntityBase::NormalExprsV() {
|
||||
ExprVector EntityBase::NormalExprsV() const {
|
||||
return NormalGetExprs().RotationV();
|
||||
}
|
||||
ExprVector EntityBase::NormalExprsN() {
|
||||
ExprVector EntityBase::NormalExprsN() const {
|
||||
return NormalGetExprs().RotationN();
|
||||
}
|
||||
|
||||
ExprQuaternion EntityBase::NormalGetExprs() {
|
||||
ExprQuaternion EntityBase::NormalGetExprs() const {
|
||||
ExprQuaternion q;
|
||||
switch(type) {
|
||||
case NORMAL_IN_3D:
|
||||
|
@ -430,7 +430,7 @@ void EntityBase::PointForceTo(Vector p) {
|
|||
}
|
||||
}
|
||||
|
||||
Vector EntityBase::PointGetNum() {
|
||||
Vector EntityBase::PointGetNum() const {
|
||||
Vector p;
|
||||
switch(type) {
|
||||
case POINT_IN_3D:
|
||||
|
@ -479,7 +479,7 @@ Vector EntityBase::PointGetNum() {
|
|||
return p;
|
||||
}
|
||||
|
||||
ExprVector EntityBase::PointGetExprs() {
|
||||
ExprVector EntityBase::PointGetExprs() const {
|
||||
ExprVector r;
|
||||
switch(type) {
|
||||
case POINT_IN_3D:
|
||||
|
@ -528,7 +528,7 @@ ExprVector EntityBase::PointGetExprs() {
|
|||
return r;
|
||||
}
|
||||
|
||||
void EntityBase::PointGetExprsInWorkplane(hEntity wrkpl, Expr **u, Expr **v) {
|
||||
void EntityBase::PointGetExprsInWorkplane(hEntity wrkpl, Expr **u, Expr **v) const {
|
||||
if(type == POINT_IN_2D && workplane.v == wrkpl.v) {
|
||||
// They want our coordinates in the form that we've written them,
|
||||
// very nice.
|
||||
|
@ -559,7 +559,7 @@ void EntityBase::PointForceQuaternionTo(Quaternion q) {
|
|||
SK.GetParam(param[6])->val = q.vz;
|
||||
}
|
||||
|
||||
Quaternion EntityBase::GetAxisAngleQuaternion(int param0) {
|
||||
Quaternion EntityBase::GetAxisAngleQuaternion(int param0) const {
|
||||
Quaternion q;
|
||||
double theta = timesApplied*SK.GetParam(param[param0+0])->val;
|
||||
double s = sin(theta), c = cos(theta);
|
||||
|
@ -570,7 +570,7 @@ Quaternion EntityBase::GetAxisAngleQuaternion(int param0) {
|
|||
return q;
|
||||
}
|
||||
|
||||
ExprQuaternion EntityBase::GetAxisAngleQuaternionExprs(int param0) {
|
||||
ExprQuaternion EntityBase::GetAxisAngleQuaternionExprs(int param0) const {
|
||||
ExprQuaternion q;
|
||||
|
||||
Expr *theta = Expr::From(timesApplied)->Times(
|
||||
|
@ -583,7 +583,7 @@ ExprQuaternion EntityBase::GetAxisAngleQuaternionExprs(int param0) {
|
|||
return q;
|
||||
}
|
||||
|
||||
Quaternion EntityBase::PointGetQuaternion() {
|
||||
Quaternion EntityBase::PointGetQuaternion() const {
|
||||
Quaternion q;
|
||||
|
||||
if(type == POINT_N_ROT_AA) {
|
||||
|
@ -595,7 +595,7 @@ Quaternion EntityBase::PointGetQuaternion() {
|
|||
return q;
|
||||
}
|
||||
|
||||
bool EntityBase::IsFace() {
|
||||
bool EntityBase::IsFace() const {
|
||||
switch(type) {
|
||||
case FACE_NORMAL_PT:
|
||||
case FACE_XPROD:
|
||||
|
@ -608,7 +608,7 @@ bool EntityBase::IsFace() {
|
|||
}
|
||||
}
|
||||
|
||||
ExprVector EntityBase::FaceGetNormalExprs() {
|
||||
ExprVector EntityBase::FaceGetNormalExprs() const {
|
||||
ExprVector r;
|
||||
if(type == FACE_NORMAL_PT) {
|
||||
Vector v = Vector::From(numNormal.vx, numNormal.vy, numNormal.vz);
|
||||
|
@ -637,7 +637,7 @@ ExprVector EntityBase::FaceGetNormalExprs() {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector EntityBase::FaceGetNormalNum() {
|
||||
Vector EntityBase::FaceGetNormalNum() const {
|
||||
Vector r;
|
||||
if(type == FACE_NORMAL_PT) {
|
||||
r = Vector::From(numNormal.vx, numNormal.vy, numNormal.vz);
|
||||
|
@ -660,7 +660,7 @@ Vector EntityBase::FaceGetNormalNum() {
|
|||
return r.WithMagnitude(1);
|
||||
}
|
||||
|
||||
ExprVector EntityBase::FaceGetPointExprs() {
|
||||
ExprVector EntityBase::FaceGetPointExprs() const {
|
||||
ExprVector r;
|
||||
if(type == FACE_NORMAL_PT) {
|
||||
r = SK.GetEntity(point[0])->PointGetExprs();
|
||||
|
@ -689,7 +689,7 @@ ExprVector EntityBase::FaceGetPointExprs() {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector EntityBase::FaceGetPointNum() {
|
||||
Vector EntityBase::FaceGetPointNum() const {
|
||||
Vector r;
|
||||
if(type == FACE_NORMAL_PT) {
|
||||
r = SK.GetEntity(point[0])->PointGetNum();
|
||||
|
@ -714,12 +714,12 @@ Vector EntityBase::FaceGetPointNum() {
|
|||
return r;
|
||||
}
|
||||
|
||||
bool EntityBase::HasEndpoints() {
|
||||
bool EntityBase::HasEndpoints() const {
|
||||
return (type == LINE_SEGMENT) ||
|
||||
(type == CUBIC) ||
|
||||
(type == ARC_OF_CIRCLE);
|
||||
}
|
||||
Vector EntityBase::EndpointStart() {
|
||||
Vector EntityBase::EndpointStart() const {
|
||||
if(type == LINE_SEGMENT) {
|
||||
return SK.GetEntity(point[0])->PointGetNum();
|
||||
} else if(type == CUBIC) {
|
||||
|
@ -728,7 +728,7 @@ Vector EntityBase::EndpointStart() {
|
|||
return SK.GetEntity(point[1])->PointGetNum();
|
||||
} else ssassert(false, "Unexpected entity type");
|
||||
}
|
||||
Vector EntityBase::EndpointFinish() {
|
||||
Vector EntityBase::EndpointFinish() const {
|
||||
if(type == LINE_SEGMENT) {
|
||||
return SK.GetEntity(point[1])->PointGetNum();
|
||||
} else if(type == CUBIC) {
|
||||
|
@ -738,14 +738,14 @@ Vector EntityBase::EndpointFinish() {
|
|||
} else ssassert(false, "Unexpected entity type");
|
||||
}
|
||||
|
||||
void EntityBase::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) {
|
||||
void EntityBase::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) const {
|
||||
Equation eq;
|
||||
eq.e = expr;
|
||||
eq.h = h.equation(index);
|
||||
l->Add(&eq);
|
||||
}
|
||||
|
||||
void EntityBase::GenerateEquations(IdList<Equation,hEquation> *l) {
|
||||
void EntityBase::GenerateEquations(IdList<Equation,hEquation> *l) const {
|
||||
switch(type) {
|
||||
case NORMAL_IN_3D: {
|
||||
ExprQuaternion q = NormalGetExprs();
|
||||
|
|
|
@ -235,9 +235,9 @@ void SolveSpaceUI::ExportWireframeCurves(SEdgeList *sel, SBezierList *sbl,
|
|||
}
|
||||
|
||||
void SolveSpaceUI::ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
|
||||
Vector u, Vector v, Vector n,
|
||||
Vector origin, double cameraTan,
|
||||
VectorFileWriter *out)
|
||||
Vector u, Vector v, Vector n,
|
||||
Vector origin, double cameraTan,
|
||||
VectorFileWriter *out)
|
||||
{
|
||||
double s = 1.0 / SS.exportScale;
|
||||
|
||||
|
|
48
src/expr.cpp
48
src/expr.cpp
|
@ -37,7 +37,7 @@ ExprVector ExprVector::From(double x, double y, double z) {
|
|||
return ve;
|
||||
}
|
||||
|
||||
ExprVector ExprVector::Minus(ExprVector b) {
|
||||
ExprVector ExprVector::Minus(ExprVector b) const {
|
||||
ExprVector r;
|
||||
r.x = x->Minus(b.x);
|
||||
r.y = y->Minus(b.y);
|
||||
|
@ -45,7 +45,7 @@ ExprVector ExprVector::Minus(ExprVector b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
ExprVector ExprVector::Plus(ExprVector b) {
|
||||
ExprVector ExprVector::Plus(ExprVector b) const {
|
||||
ExprVector r;
|
||||
r.x = x->Plus(b.x);
|
||||
r.y = y->Plus(b.y);
|
||||
|
@ -53,7 +53,7 @@ ExprVector ExprVector::Plus(ExprVector b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Expr *ExprVector::Dot(ExprVector b) {
|
||||
Expr *ExprVector::Dot(ExprVector b) const {
|
||||
Expr *r;
|
||||
r = x->Times(b.x);
|
||||
r = r->Plus(y->Times(b.y));
|
||||
|
@ -61,7 +61,7 @@ Expr *ExprVector::Dot(ExprVector b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
ExprVector ExprVector::Cross(ExprVector b) {
|
||||
ExprVector ExprVector::Cross(ExprVector b) const {
|
||||
ExprVector r;
|
||||
r.x = (y->Times(b.z))->Minus(z->Times(b.y));
|
||||
r.y = (z->Times(b.x))->Minus(x->Times(b.z));
|
||||
|
@ -69,7 +69,7 @@ ExprVector ExprVector::Cross(ExprVector b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
ExprVector ExprVector::ScaledBy(Expr *s) {
|
||||
ExprVector ExprVector::ScaledBy(Expr *s) const {
|
||||
ExprVector r;
|
||||
r.x = x->Times(s);
|
||||
r.y = y->Times(s);
|
||||
|
@ -77,12 +77,12 @@ ExprVector ExprVector::ScaledBy(Expr *s) {
|
|||
return r;
|
||||
}
|
||||
|
||||
ExprVector ExprVector::WithMagnitude(Expr *s) {
|
||||
ExprVector ExprVector::WithMagnitude(Expr *s) const {
|
||||
Expr *m = Magnitude();
|
||||
return ScaledBy(s->Div(m));
|
||||
}
|
||||
|
||||
Expr *ExprVector::Magnitude() {
|
||||
Expr *ExprVector::Magnitude() const {
|
||||
Expr *r;
|
||||
r = x->Square();
|
||||
r = r->Plus(y->Square());
|
||||
|
@ -90,7 +90,7 @@ Expr *ExprVector::Magnitude() {
|
|||
return r->Sqrt();
|
||||
}
|
||||
|
||||
Vector ExprVector::Eval() {
|
||||
Vector ExprVector::Eval() const {
|
||||
Vector r;
|
||||
r.x = x->Eval();
|
||||
r.y = y->Eval();
|
||||
|
@ -126,7 +126,7 @@ ExprQuaternion ExprQuaternion::From(Quaternion qn) {
|
|||
return qe;
|
||||
}
|
||||
|
||||
ExprVector ExprQuaternion::RotationU() {
|
||||
ExprVector ExprQuaternion::RotationU() const {
|
||||
ExprVector u;
|
||||
Expr *two = Expr::From(2);
|
||||
|
||||
|
@ -144,7 +144,7 @@ ExprVector ExprQuaternion::RotationU() {
|
|||
return u;
|
||||
}
|
||||
|
||||
ExprVector ExprQuaternion::RotationV() {
|
||||
ExprVector ExprQuaternion::RotationV() const {
|
||||
ExprVector v;
|
||||
Expr *two = Expr::From(2);
|
||||
|
||||
|
@ -162,7 +162,7 @@ ExprVector ExprQuaternion::RotationV() {
|
|||
return v;
|
||||
}
|
||||
|
||||
ExprVector ExprQuaternion::RotationN() {
|
||||
ExprVector ExprQuaternion::RotationN() const {
|
||||
ExprVector n;
|
||||
Expr *two = Expr::From(2);
|
||||
|
||||
|
@ -180,14 +180,14 @@ ExprVector ExprQuaternion::RotationN() {
|
|||
return n;
|
||||
}
|
||||
|
||||
ExprVector ExprQuaternion::Rotate(ExprVector p) {
|
||||
ExprVector ExprQuaternion::Rotate(ExprVector p) const {
|
||||
// Express the point in the new basis
|
||||
return (RotationU().ScaledBy(p.x)).Plus(
|
||||
RotationV().ScaledBy(p.y)).Plus(
|
||||
RotationN().ScaledBy(p.z));
|
||||
}
|
||||
|
||||
ExprQuaternion ExprQuaternion::Times(ExprQuaternion b) {
|
||||
ExprQuaternion ExprQuaternion::Times(ExprQuaternion b) const {
|
||||
Expr *sa = w, *sb = b.w;
|
||||
ExprVector va = { vx, vy, vz };
|
||||
ExprVector vb = { b.vx, b.vy, b.vz };
|
||||
|
@ -203,7 +203,7 @@ ExprQuaternion ExprQuaternion::Times(ExprQuaternion b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Expr *ExprQuaternion::Magnitude() {
|
||||
Expr *ExprQuaternion::Magnitude() const {
|
||||
return ((w ->Square())->Plus(
|
||||
(vx->Square())->Plus(
|
||||
(vy->Square())->Plus(
|
||||
|
@ -262,7 +262,7 @@ Expr *Expr::AnyOp(int newOp, Expr *b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
int Expr::Children() {
|
||||
int Expr::Children() const {
|
||||
switch(op) {
|
||||
case PARAM:
|
||||
case PARAM_PTR:
|
||||
|
@ -288,7 +288,7 @@ int Expr::Children() {
|
|||
}
|
||||
}
|
||||
|
||||
int Expr::Nodes() {
|
||||
int Expr::Nodes() const {
|
||||
switch(Children()) {
|
||||
case 0: return 1;
|
||||
case 1: return 1 + a->Nodes();
|
||||
|
@ -297,7 +297,7 @@ int Expr::Nodes() {
|
|||
}
|
||||
}
|
||||
|
||||
Expr *Expr::DeepCopy() {
|
||||
Expr *Expr::DeepCopy() const {
|
||||
Expr *n = AllocExpr();
|
||||
*n = *this;
|
||||
int c = n->Children();
|
||||
|
@ -307,7 +307,7 @@ Expr *Expr::DeepCopy() {
|
|||
}
|
||||
|
||||
Expr *Expr::DeepCopyWithParamsAsPointers(IdList<Param,hParam> *firstTry,
|
||||
IdList<Param,hParam> *thenTry)
|
||||
IdList<Param,hParam> *thenTry) const
|
||||
{
|
||||
Expr *n = AllocExpr();
|
||||
if(op == PARAM) {
|
||||
|
@ -333,7 +333,7 @@ Expr *Expr::DeepCopyWithParamsAsPointers(IdList<Param,hParam> *firstTry,
|
|||
return n;
|
||||
}
|
||||
|
||||
double Expr::Eval() {
|
||||
double Expr::Eval() const {
|
||||
switch(op) {
|
||||
case PARAM: return SK.GetParam(parh)->val;
|
||||
case PARAM_PTR: return parp->val;
|
||||
|
@ -357,7 +357,7 @@ double Expr::Eval() {
|
|||
}
|
||||
}
|
||||
|
||||
Expr *Expr::PartialWrt(hParam p) {
|
||||
Expr *Expr::PartialWrt(hParam p) const {
|
||||
Expr *da, *db;
|
||||
|
||||
switch(op) {
|
||||
|
@ -400,7 +400,7 @@ Expr *Expr::PartialWrt(hParam p) {
|
|||
}
|
||||
}
|
||||
|
||||
uint64_t Expr::ParamsUsed() {
|
||||
uint64_t Expr::ParamsUsed() const {
|
||||
uint64_t r = 0;
|
||||
if(op == PARAM) r |= ((uint64_t)1 << (parh.v % 61));
|
||||
if(op == PARAM_PTR) r |= ((uint64_t)1 << (parp->h.v % 61));
|
||||
|
@ -411,7 +411,7 @@ uint64_t Expr::ParamsUsed() {
|
|||
return r;
|
||||
}
|
||||
|
||||
bool Expr::DependsOn(hParam p) {
|
||||
bool Expr::DependsOn(hParam p) const {
|
||||
if(op == PARAM) return (parh.v == p.v);
|
||||
if(op == PARAM_PTR) return (parp->h.v == p.v);
|
||||
|
||||
|
@ -510,7 +510,7 @@ void Expr::Substitute(hParam oldh, hParam newh) {
|
|||
//-----------------------------------------------------------------------------
|
||||
const hParam Expr::NO_PARAMS = { 0 };
|
||||
const hParam Expr::MULTIPLE_PARAMS = { 1 };
|
||||
hParam Expr::ReferencedParams(ParamList *pl) {
|
||||
hParam Expr::ReferencedParams(ParamList *pl) const {
|
||||
if(op == PARAM) {
|
||||
if(pl->FindByIdNoOops(parh)) {
|
||||
return parh;
|
||||
|
@ -546,7 +546,7 @@ hParam Expr::ReferencedParams(ParamList *pl) {
|
|||
// Routines to pretty-print an expression. Mostly for debugging.
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
std::string Expr::Print() {
|
||||
std::string Expr::Print() const {
|
||||
|
||||
char c;
|
||||
switch(op) {
|
||||
|
|
48
src/expr.h
48
src/expr.h
|
@ -80,33 +80,33 @@ public:
|
|||
inline Expr *ASin () { return AnyOp(ASIN, NULL); }
|
||||
inline Expr *ACos () { return AnyOp(ACOS, NULL); }
|
||||
|
||||
Expr *PartialWrt(hParam p);
|
||||
double Eval();
|
||||
uint64_t ParamsUsed();
|
||||
bool DependsOn(hParam p);
|
||||
Expr *PartialWrt(hParam p) const;
|
||||
double Eval() const;
|
||||
uint64_t ParamsUsed() const;
|
||||
bool DependsOn(hParam p) const;
|
||||
static bool Tol(double a, double b);
|
||||
Expr *FoldConstants();
|
||||
void Substitute(hParam oldh, hParam newh);
|
||||
|
||||
static const hParam NO_PARAMS, MULTIPLE_PARAMS;
|
||||
hParam ReferencedParams(ParamList *pl);
|
||||
hParam ReferencedParams(ParamList *pl) const;
|
||||
|
||||
void ParamsToPointers();
|
||||
|
||||
std::string Print();
|
||||
std::string Print() const;
|
||||
|
||||
// number of child nodes: 0 (e.g. constant), 1 (sqrt), or 2 (+)
|
||||
int Children();
|
||||
int Children() const;
|
||||
// total number of nodes in the tree
|
||||
int Nodes();
|
||||
int Nodes() const;
|
||||
|
||||
// Make a simple copy
|
||||
Expr *DeepCopy();
|
||||
Expr *DeepCopy() const;
|
||||
// Make a copy, with the parameters (usually referenced by hParam)
|
||||
// resolved to pointers to the actual value. This speeds things up
|
||||
// considerably.
|
||||
Expr *DeepCopyWithParamsAsPointers(IdList<Param,hParam> *firstTry,
|
||||
IdList<Param,hParam> *thenTry);
|
||||
IdList<Param,hParam> *thenTry) const;
|
||||
|
||||
static Expr *From(const char *in, bool popUpError);
|
||||
static void Lex(const char *in);
|
||||
|
@ -136,15 +136,15 @@ public:
|
|||
static ExprVector From(hParam x, hParam y, hParam z);
|
||||
static ExprVector From(double x, double y, double z);
|
||||
|
||||
ExprVector Plus(ExprVector b);
|
||||
ExprVector Minus(ExprVector b);
|
||||
Expr *Dot(ExprVector b);
|
||||
ExprVector Cross(ExprVector b);
|
||||
ExprVector ScaledBy(Expr *s);
|
||||
ExprVector WithMagnitude(Expr *s);
|
||||
Expr *Magnitude();
|
||||
ExprVector Plus(ExprVector b) const;
|
||||
ExprVector Minus(ExprVector b) const;
|
||||
Expr *Dot(ExprVector b) const;
|
||||
ExprVector Cross(ExprVector b) const;
|
||||
ExprVector ScaledBy(Expr *s) const;
|
||||
ExprVector WithMagnitude(Expr *s) const;
|
||||
Expr *Magnitude() const;
|
||||
|
||||
Vector Eval();
|
||||
Vector Eval() const;
|
||||
};
|
||||
|
||||
class ExprQuaternion {
|
||||
|
@ -155,14 +155,14 @@ public:
|
|||
static ExprQuaternion From(Quaternion qn);
|
||||
static ExprQuaternion From(hParam w, hParam vx, hParam vy, hParam vz);
|
||||
|
||||
ExprVector RotationU();
|
||||
ExprVector RotationV();
|
||||
ExprVector RotationN();
|
||||
ExprVector RotationU() const;
|
||||
ExprVector RotationV() const;
|
||||
ExprVector RotationN() const;
|
||||
|
||||
ExprVector Rotate(ExprVector p);
|
||||
ExprQuaternion Times(ExprQuaternion b);
|
||||
ExprVector Rotate(ExprVector p) const;
|
||||
ExprQuaternion Times(ExprQuaternion b) const;
|
||||
|
||||
Expr *Magnitude();
|
||||
Expr *Magnitude() const;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
30
src/mesh.cpp
30
src/mesh.cpp
|
@ -33,12 +33,12 @@ void SMesh::AddTriangle(STriMeta meta, Vector a, Vector b, Vector c) {
|
|||
t.c = c;
|
||||
AddTriangle(&t);
|
||||
}
|
||||
void SMesh::AddTriangle(STriangle *st) {
|
||||
void SMesh::AddTriangle(const STriangle *st) {
|
||||
if(st->meta.color.alpha != 255) isTransparent = true;
|
||||
l.Add(st);
|
||||
}
|
||||
|
||||
void SMesh::DoBounding(Vector v, Vector *vmax, Vector *vmin) {
|
||||
void SMesh::DoBounding(Vector v, Vector *vmax, Vector *vmin) const {
|
||||
vmax->x = max(vmax->x, v.x);
|
||||
vmax->y = max(vmax->y, v.y);
|
||||
vmax->z = max(vmax->z, v.z);
|
||||
|
@ -47,7 +47,7 @@ void SMesh::DoBounding(Vector v, Vector *vmax, Vector *vmin) {
|
|||
vmin->y = min(vmin->y, v.y);
|
||||
vmin->z = min(vmin->z, v.z);
|
||||
}
|
||||
void SMesh::GetBounding(Vector *vmax, Vector *vmin) {
|
||||
void SMesh::GetBounding(Vector *vmax, Vector *vmin) const {
|
||||
int i;
|
||||
*vmin = Vector::From( 1e12, 1e12, 1e12);
|
||||
*vmax = Vector::From(-1e12, -1e12, -1e12);
|
||||
|
@ -302,8 +302,8 @@ void SMesh::MakeFromAssemblyOf(SMesh *a, SMesh *b) {
|
|||
MakeFromCopyOf(b);
|
||||
}
|
||||
|
||||
void SMesh::MakeFromTransformationOf(SMesh *a,
|
||||
Vector trans, Quaternion q, double scale)
|
||||
void SMesh::MakeFromTransformationOf(SMesh *a, Vector trans,
|
||||
Quaternion q, double scale)
|
||||
{
|
||||
STriangle *tr;
|
||||
for(tr = a->l.First(); tr; tr = a->l.NextAfter(tr)) {
|
||||
|
@ -322,11 +322,11 @@ void SMesh::MakeFromTransformationOf(SMesh *a,
|
|||
}
|
||||
}
|
||||
|
||||
bool SMesh::IsEmpty() {
|
||||
bool SMesh::IsEmpty() const {
|
||||
return (l.n == 0);
|
||||
}
|
||||
|
||||
uint32_t SMesh::FirstIntersectionWith(Point2d mp) {
|
||||
uint32_t SMesh::FirstIntersectionWith(Point2d mp) const {
|
||||
Vector p0 = Vector::From(mp.x, mp.y, 0);
|
||||
Vector gn = Vector::From(0, 0, 1);
|
||||
|
||||
|
@ -487,7 +487,7 @@ leaf:
|
|||
return ret;
|
||||
}
|
||||
|
||||
void SKdNode::ClearTags() {
|
||||
void SKdNode::ClearTags() const {
|
||||
if(gt && lt) {
|
||||
gt->ClearTags();
|
||||
lt->ClearTags();
|
||||
|
@ -524,7 +524,7 @@ void SKdNode::AddTriangle(STriangle *tr) {
|
|||
}
|
||||
}
|
||||
|
||||
void SKdNode::MakeMeshInto(SMesh *m) {
|
||||
void SKdNode::MakeMeshInto(SMesh *m) const {
|
||||
if(gt) gt->MakeMeshInto(m);
|
||||
if(lt) lt->MakeMeshInto(m);
|
||||
|
||||
|
@ -537,7 +537,7 @@ void SKdNode::MakeMeshInto(SMesh *m) {
|
|||
}
|
||||
}
|
||||
|
||||
void SKdNode::ListTrianglesInto(std::vector<STriangle *> *tl) {
|
||||
void SKdNode::ListTrianglesInto(std::vector<STriangle *> *tl) const {
|
||||
if(gt) gt->ListTrianglesInto(tl);
|
||||
if(lt) lt->ListTrianglesInto(tl);
|
||||
|
||||
|
@ -654,7 +654,7 @@ void SKdNode::SnapToMesh(SMesh *m) {
|
|||
// them for occlusion. Keep only the visible segments. sel is both our input
|
||||
// and our output.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SKdNode::SplitLinesAgainstTriangle(SEdgeList *sel, STriangle *tr, bool removeHidden) {
|
||||
void SKdNode::SplitLinesAgainstTriangle(SEdgeList *sel, STriangle *tr, bool removeHidden) const {
|
||||
SEdgeList seln = {};
|
||||
|
||||
Vector tn = tr->Normal().WithMagnitude(1);
|
||||
|
@ -767,7 +767,7 @@ void SKdNode::SplitLinesAgainstTriangle(SEdgeList *sel, STriangle *tr, bool remo
|
|||
// Given an edge orig, occlusion test it against our mesh. We output an edge
|
||||
// list in sel, containing the visible portions of that edge.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SKdNode::OcclusionTestLine(SEdge orig, SEdgeList *sel, int cnt, bool removeHidden) {
|
||||
void SKdNode::OcclusionTestLine(SEdge orig, SEdgeList *sel, int cnt, bool removeHidden) const {
|
||||
if(gt && lt) {
|
||||
double ac = (orig.a).Element(which),
|
||||
bc = (orig.b).Element(which);
|
||||
|
@ -808,7 +808,7 @@ void SKdNode::OcclusionTestLine(SEdge orig, SEdgeList *sel, int cnt, bool remove
|
|||
// with a triangle in the mesh, otherwise not.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SKdNode::FindEdgeOn(Vector a, Vector b, int cnt, bool coplanarIsInter,
|
||||
EdgeOnInfo *info)
|
||||
EdgeOnInfo *info) const
|
||||
{
|
||||
if(gt && lt) {
|
||||
double ac = a.Element(which),
|
||||
|
@ -925,7 +925,7 @@ static bool CheckAndAddTrianglePair(std::set<std::pair<STriangle *, STriangle *>
|
|||
// a triangle from a different face)
|
||||
//-----------------------------------------------------------------------------
|
||||
void SKdNode::MakeCertainEdgesInto(SEdgeList *sel, int how, bool coplanarIsInter,
|
||||
bool *inter, bool *leaky, int auxA)
|
||||
bool *inter, bool *leaky, int auxA) const
|
||||
{
|
||||
if(inter) *inter = false;
|
||||
if(leaky) *leaky = false;
|
||||
|
@ -1022,7 +1022,7 @@ void SKdNode::MakeCertainEdgesInto(SEdgeList *sel, int how, bool coplanarIsInter
|
|||
}
|
||||
}
|
||||
|
||||
void SKdNode::MakeOutlinesInto(SOutlineList *sol)
|
||||
void SKdNode::MakeOutlinesInto(SOutlineList *sol) const
|
||||
{
|
||||
std::vector<STriangle *> tris;
|
||||
ClearTags();
|
||||
|
|
|
@ -5,12 +5,12 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
#include "solvespace.h"
|
||||
|
||||
Vector STriangle::Normal() {
|
||||
Vector STriangle::Normal() const {
|
||||
Vector ab = b.Minus(a), bc = c.Minus(b);
|
||||
return ab.Cross(bc);
|
||||
}
|
||||
|
||||
double STriangle::MinAltitude() {
|
||||
double STriangle::MinAltitude() const {
|
||||
double altA = a.DistanceToLine(b, c.Minus(b)),
|
||||
altB = b.DistanceToLine(c, a.Minus(c)),
|
||||
altC = c.DistanceToLine(a, b.Minus(a));
|
||||
|
@ -18,7 +18,7 @@ double STriangle::MinAltitude() {
|
|||
return min(altA, min(altB, altC));
|
||||
}
|
||||
|
||||
bool STriangle::ContainsPoint(Vector p) {
|
||||
bool STriangle::ContainsPoint(Vector p) const {
|
||||
Vector n = Normal();
|
||||
if(MinAltitude() < LENGTH_EPS) {
|
||||
// shouldn't happen; zero-area triangle
|
||||
|
@ -27,7 +27,7 @@ bool STriangle::ContainsPoint(Vector p) {
|
|||
return ContainsPointProjd(n.WithMagnitude(1), p);
|
||||
}
|
||||
|
||||
bool STriangle::ContainsPointProjd(Vector n, Vector p) {
|
||||
bool STriangle::ContainsPointProjd(Vector n, Vector p) const {
|
||||
Vector ab = b.Minus(a), bc = c.Minus(b), ca = a.Minus(c);
|
||||
|
||||
Vector no_ab = n.Cross(ab);
|
||||
|
@ -63,7 +63,7 @@ SEdge SEdge::From(Vector a, Vector b) {
|
|||
return se;
|
||||
}
|
||||
|
||||
bool SEdge::EdgeCrosses(Vector ea, Vector eb, Vector *ppi, SPointList *spl) {
|
||||
bool SEdge::EdgeCrosses(Vector ea, Vector eb, Vector *ppi, SPointList *spl) const {
|
||||
Vector d = eb.Minus(ea);
|
||||
double t_eps = LENGTH_EPS/d.Magnitude();
|
||||
|
||||
|
@ -155,7 +155,7 @@ void SEdgeList::AddEdge(Vector a, Vector b, int auxA, int auxB) {
|
|||
}
|
||||
|
||||
bool SEdgeList::AssembleContour(Vector first, Vector last, SContour *dest,
|
||||
SEdge *errorAt, bool keepDir)
|
||||
SEdge *errorAt, bool keepDir) const
|
||||
{
|
||||
int i;
|
||||
|
||||
|
@ -195,7 +195,7 @@ bool SEdgeList::AssembleContour(Vector first, Vector last, SContour *dest,
|
|||
return true;
|
||||
}
|
||||
|
||||
bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt, bool keepDir) {
|
||||
bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt, bool keepDir) const {
|
||||
dest->Clear();
|
||||
|
||||
bool allClosed = true;
|
||||
|
@ -234,11 +234,10 @@ bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt, bool keepDir) {
|
|||
// If pi is not NULL, then a crossing is returned in that.
|
||||
//-----------------------------------------------------------------------------
|
||||
int SEdgeList::AnyEdgeCrossings(Vector a, Vector b,
|
||||
Vector *ppi, SPointList *spl)
|
||||
Vector *ppi, SPointList *spl) const
|
||||
{
|
||||
int cnt = 0;
|
||||
SEdge *se;
|
||||
for(se = l.First(); se; se = l.NextAfter(se)) {
|
||||
for(const SEdge *se = l.First(); se; se = l.NextAfter(se)) {
|
||||
if(se->EdgeCrosses(a, b, ppi, spl)) {
|
||||
cnt++;
|
||||
}
|
||||
|
@ -250,16 +249,14 @@ int SEdgeList::AnyEdgeCrossings(Vector a, Vector b,
|
|||
// Returns true if the intersecting edge list contains an edge that shares
|
||||
// an endpoint with one of our edges.
|
||||
//-----------------------------------------------------------------------------
|
||||
bool SEdgeList::ContainsEdgeFrom(SEdgeList *sel) {
|
||||
SEdge *se;
|
||||
for(se = l.First(); se; se = l.NextAfter(se)) {
|
||||
bool SEdgeList::ContainsEdgeFrom(const SEdgeList *sel) const {
|
||||
for(const SEdge *se = l.First(); se; se = l.NextAfter(se)) {
|
||||
if(sel->ContainsEdge(se)) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
bool SEdgeList::ContainsEdge(SEdge *set) {
|
||||
SEdge *se;
|
||||
for(se = l.First(); se; se = l.NextAfter(se)) {
|
||||
bool SEdgeList::ContainsEdge(const SEdge *set) const {
|
||||
for(const SEdge *se = l.First(); se; se = l.NextAfter(se)) {
|
||||
if((se->a).Equals(set->a) && (se->b).Equals(set->b)) return true;
|
||||
if((se->b).Equals(set->a) && (se->a).Equals(set->b)) return true;
|
||||
}
|
||||
|
@ -395,7 +392,7 @@ SKdNodeEdges *SKdNodeEdges::From(SEdgeLl *sell) {
|
|||
}
|
||||
|
||||
int SKdNodeEdges::AnyEdgeCrossings(Vector a, Vector b, int cnt,
|
||||
Vector *pi, SPointList *spl)
|
||||
Vector *pi, SPointList *spl) const
|
||||
{
|
||||
int inters = 0;
|
||||
if(gt && lt) {
|
||||
|
@ -462,11 +459,11 @@ void SPointList::Clear() {
|
|||
l.Clear();
|
||||
}
|
||||
|
||||
bool SPointList::ContainsPoint(Vector pt) {
|
||||
bool SPointList::ContainsPoint(Vector pt) const {
|
||||
return (IndexForPoint(pt) >= 0);
|
||||
}
|
||||
|
||||
int SPointList::IndexForPoint(Vector pt) {
|
||||
int SPointList::IndexForPoint(Vector pt) const {
|
||||
int i;
|
||||
for(i = 0; i < l.n; i++) {
|
||||
SPoint *p = &(l.elem[i]);
|
||||
|
@ -506,31 +503,29 @@ void SContour::AddPoint(Vector p) {
|
|||
l.Add(&sp);
|
||||
}
|
||||
|
||||
void SContour::MakeEdgesInto(SEdgeList *el) {
|
||||
void SContour::MakeEdgesInto(SEdgeList *el) const {
|
||||
int i;
|
||||
for(i = 0; i < (l.n - 1); i++) {
|
||||
el->AddEdge(l.elem[i].p, l.elem[i+1].p);
|
||||
}
|
||||
}
|
||||
|
||||
void SContour::CopyInto(SContour *dest) {
|
||||
SPoint *sp;
|
||||
for(sp = l.First(); sp; sp = l.NextAfter(sp)) {
|
||||
void SContour::CopyInto(SContour *dest) const {
|
||||
for(const SPoint *sp = l.First(); sp; sp = l.NextAfter(sp)) {
|
||||
dest->AddPoint(sp->p);
|
||||
}
|
||||
}
|
||||
|
||||
void SContour::FindPointWithMinX() {
|
||||
SPoint *sp;
|
||||
xminPt = Vector::From(1e10, 1e10, 1e10);
|
||||
for(sp = l.First(); sp; sp = l.NextAfter(sp)) {
|
||||
for(const SPoint *sp = l.First(); sp; sp = l.NextAfter(sp)) {
|
||||
if(sp->p.x < xminPt.x) {
|
||||
xminPt = sp->p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Vector SContour::ComputeNormal() {
|
||||
Vector SContour::ComputeNormal() const {
|
||||
Vector n = Vector::From(0, 0, 0);
|
||||
|
||||
for(int i = 0; i < l.n - 2; i++) {
|
||||
|
@ -544,12 +539,12 @@ Vector SContour::ComputeNormal() {
|
|||
return n.WithMagnitude(1);
|
||||
}
|
||||
|
||||
Vector SContour::AnyEdgeMidpoint() {
|
||||
Vector SContour::AnyEdgeMidpoint() const {
|
||||
ssassert(l.n >= 2, "Need two points to find a midpoint");
|
||||
return ((l.elem[0].p).Plus(l.elem[1].p)).ScaledBy(0.5);
|
||||
}
|
||||
|
||||
bool SContour::IsClockwiseProjdToNormal(Vector n) {
|
||||
bool SContour::IsClockwiseProjdToNormal(Vector n) const {
|
||||
// Degenerate things might happen as we draw; doesn't really matter
|
||||
// what we do then.
|
||||
if(n.Magnitude() < 0.01) return true;
|
||||
|
@ -557,7 +552,7 @@ bool SContour::IsClockwiseProjdToNormal(Vector n) {
|
|||
return (SignedAreaProjdToNormal(n) < 0);
|
||||
}
|
||||
|
||||
double SContour::SignedAreaProjdToNormal(Vector n) {
|
||||
double SContour::SignedAreaProjdToNormal(Vector n) const {
|
||||
// An arbitrary 2d coordinate system that has n as its normal
|
||||
Vector u = n.Normal(0);
|
||||
Vector v = n.Normal(1);
|
||||
|
@ -574,7 +569,7 @@ double SContour::SignedAreaProjdToNormal(Vector n) {
|
|||
return area;
|
||||
}
|
||||
|
||||
bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) {
|
||||
bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) const {
|
||||
Vector u = n.Normal(0);
|
||||
Vector v = n.Normal(1);
|
||||
|
||||
|
@ -618,7 +613,7 @@ void SPolygon::AddEmptyContour() {
|
|||
l.Add(&c);
|
||||
}
|
||||
|
||||
void SPolygon::MakeEdgesInto(SEdgeList *el) {
|
||||
void SPolygon::MakeEdgesInto(SEdgeList *el) const {
|
||||
int i;
|
||||
for(i = 0; i < l.n; i++) {
|
||||
(l.elem[i]).MakeEdgesInto(el);
|
||||
|
@ -630,22 +625,21 @@ Vector SPolygon::ComputeNormal() {
|
|||
return (l.elem[0]).ComputeNormal();
|
||||
}
|
||||
|
||||
double SPolygon::SignedArea() {
|
||||
SContour *sc;
|
||||
double SPolygon::SignedArea() const {
|
||||
double area = 0;
|
||||
// This returns the true area only if the contours are all oriented
|
||||
// correctly, with the holes backwards from the outer contours.
|
||||
for(sc = l.First(); sc; sc = l.NextAfter(sc)) {
|
||||
for(const SContour *sc = l.First(); sc; sc = l.NextAfter(sc)) {
|
||||
area += sc->SignedAreaProjdToNormal(normal);
|
||||
}
|
||||
return area;
|
||||
}
|
||||
|
||||
bool SPolygon::ContainsPoint(Vector p) {
|
||||
bool SPolygon::ContainsPoint(Vector p) const {
|
||||
return (WindingNumberForPoint(p) % 2) == 1;
|
||||
}
|
||||
|
||||
int SPolygon::WindingNumberForPoint(Vector p) {
|
||||
int SPolygon::WindingNumberForPoint(Vector p) const {
|
||||
int winding = 0;
|
||||
int i;
|
||||
for(i = 0; i < l.n; i++) {
|
||||
|
@ -690,17 +684,17 @@ void SPolygon::FixContourDirections() {
|
|||
}
|
||||
}
|
||||
|
||||
bool SPolygon::IsEmpty() {
|
||||
bool SPolygon::IsEmpty() const {
|
||||
if(l.n == 0 || l.elem[0].l.n == 0) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
Vector SPolygon::AnyPoint() {
|
||||
Vector SPolygon::AnyPoint() const {
|
||||
ssassert(!IsEmpty(), "Need at least one point");
|
||||
return l.elem[0].l.elem[0].p;
|
||||
}
|
||||
|
||||
bool SPolygon::SelfIntersecting(Vector *intersectsAt) {
|
||||
bool SPolygon::SelfIntersecting(Vector *intersectsAt) const {
|
||||
SEdgeList el = {};
|
||||
MakeEdgesInto(&el);
|
||||
SKdNodeEdges *kdtree = SKdNodeEdges::From(&el);
|
||||
|
@ -728,7 +722,7 @@ bool SPolygon::SelfIntersecting(Vector *intersectsAt) {
|
|||
// polygon is in the xy plane, and the contours all go in the right direction
|
||||
// with respect to normal (0, 0, -1).
|
||||
//-----------------------------------------------------------------------------
|
||||
void SPolygon::OffsetInto(SPolygon *dest, double r) {
|
||||
void SPolygon::OffsetInto(SPolygon *dest, double r) const {
|
||||
int i;
|
||||
dest->Clear();
|
||||
for(i = 0; i < l.n; i++) {
|
||||
|
@ -781,7 +775,7 @@ static bool IntersectionOfLines(double x0A, double y0A, double dxA, double dyA,
|
|||
|
||||
return true;
|
||||
}
|
||||
void SContour::OffsetInto(SContour *dest, double r) {
|
||||
void SContour::OffsetInto(SContour *dest, double r) const {
|
||||
int i;
|
||||
|
||||
for(i = 0; i < l.n; i++) {
|
||||
|
|
108
src/polygon.h
108
src/polygon.h
|
@ -22,7 +22,7 @@ public:
|
|||
Vector a, b;
|
||||
|
||||
static SEdge From(Vector a, Vector b);
|
||||
bool EdgeCrosses(Vector a, Vector b, Vector *pi=NULL, SPointList *spl=NULL);
|
||||
bool EdgeCrosses(Vector a, Vector b, Vector *pi=NULL, SPointList *spl=NULL) const;
|
||||
};
|
||||
|
||||
class SEdgeList {
|
||||
|
@ -31,13 +31,13 @@ public:
|
|||
|
||||
void Clear();
|
||||
void AddEdge(Vector a, Vector b, int auxA=0, int auxB=0);
|
||||
bool AssemblePolygon(SPolygon *dest, SEdge *errorAt, bool keepDir=false);
|
||||
bool AssemblePolygon(SPolygon *dest, SEdge *errorAt, bool keepDir=false) const;
|
||||
bool AssembleContour(Vector first, Vector last, SContour *dest,
|
||||
SEdge *errorAt, bool keepDir);
|
||||
SEdge *errorAt, bool keepDir) const;
|
||||
int AnyEdgeCrossings(Vector a, Vector b,
|
||||
Vector *pi=NULL, SPointList *spl=NULL);
|
||||
bool ContainsEdgeFrom(SEdgeList *sel);
|
||||
bool ContainsEdge(SEdge *se);
|
||||
Vector *pi=NULL, SPointList *spl=NULL) const;
|
||||
bool ContainsEdgeFrom(const SEdgeList *sel) const;
|
||||
bool ContainsEdge(const SEdge *se) const;
|
||||
void CullExtraneousEdges();
|
||||
void MergeCollinearSegments(Vector a, Vector b);
|
||||
};
|
||||
|
@ -68,7 +68,7 @@ public:
|
|||
static SKdNodeEdges *From(SEdgeLl *sell);
|
||||
static SKdNodeEdges *Alloc();
|
||||
int AnyEdgeCrossings(Vector a, Vector b, int cnt,
|
||||
Vector *pi=NULL, SPointList *spl=NULL);
|
||||
Vector *pi=NULL, SPointList *spl=NULL) const;
|
||||
};
|
||||
|
||||
class SPoint {
|
||||
|
@ -91,8 +91,8 @@ public:
|
|||
List<SPoint> l;
|
||||
|
||||
void Clear();
|
||||
bool ContainsPoint(Vector pt);
|
||||
int IndexForPoint(Vector pt);
|
||||
bool ContainsPoint(Vector pt) const;
|
||||
int IndexForPoint(Vector pt) const;
|
||||
void IncrementTagFor(Vector pt);
|
||||
void Add(Vector pt);
|
||||
};
|
||||
|
@ -105,18 +105,18 @@ public:
|
|||
List<SPoint> l;
|
||||
|
||||
void AddPoint(Vector p);
|
||||
void MakeEdgesInto(SEdgeList *el);
|
||||
void MakeEdgesInto(SEdgeList *el) const;
|
||||
void Reverse();
|
||||
Vector ComputeNormal();
|
||||
double SignedAreaProjdToNormal(Vector n);
|
||||
bool IsClockwiseProjdToNormal(Vector n);
|
||||
bool ContainsPointProjdToNormal(Vector n, Vector p);
|
||||
void OffsetInto(SContour *dest, double r);
|
||||
void CopyInto(SContour *dest);
|
||||
Vector ComputeNormal() const;
|
||||
double SignedAreaProjdToNormal(Vector n) const;
|
||||
bool IsClockwiseProjdToNormal(Vector n) const;
|
||||
bool ContainsPointProjdToNormal(Vector n, Vector p) const;
|
||||
void OffsetInto(SContour *dest, double r) const;
|
||||
void CopyInto(SContour *dest) const;
|
||||
void FindPointWithMinX();
|
||||
Vector AnyEdgeMidpoint();
|
||||
Vector AnyEdgeMidpoint() const;
|
||||
|
||||
bool IsEar(int bp, double scaledEps);
|
||||
bool IsEar(int bp, double scaledEps) const;
|
||||
bool BridgeToContour(SContour *sc, SEdgeList *el, List<Vector> *vl);
|
||||
void ClipEarInto(SMesh *m, int bp, double scaledEps);
|
||||
void UvTriangulateInto(SMesh *m, SSurface *srf);
|
||||
|
@ -134,16 +134,16 @@ public:
|
|||
|
||||
Vector ComputeNormal();
|
||||
void AddEmptyContour();
|
||||
int WindingNumberForPoint(Vector p);
|
||||
double SignedArea();
|
||||
bool ContainsPoint(Vector p);
|
||||
void MakeEdgesInto(SEdgeList *el);
|
||||
int WindingNumberForPoint(Vector p) const;
|
||||
double SignedArea() const;
|
||||
bool ContainsPoint(Vector p) const;
|
||||
void MakeEdgesInto(SEdgeList *el) const;
|
||||
void FixContourDirections();
|
||||
void Clear();
|
||||
bool SelfIntersecting(Vector *intersectsAt);
|
||||
bool IsEmpty();
|
||||
Vector AnyPoint();
|
||||
void OffsetInto(SPolygon *dest, double r);
|
||||
bool SelfIntersecting(Vector *intersectsAt) const;
|
||||
bool IsEmpty() const;
|
||||
Vector AnyPoint() const;
|
||||
void OffsetInto(SPolygon *dest, double r) const;
|
||||
void UvTriangulateInto(SMesh *m, SSurface *srf);
|
||||
void UvGridTriangulateInto(SMesh *m, SSurface *srf);
|
||||
};
|
||||
|
@ -156,12 +156,12 @@ public:
|
|||
Vector an, bn, cn;
|
||||
|
||||
static STriangle From(STriMeta meta, Vector a, Vector b, Vector c);
|
||||
Vector Normal();
|
||||
Vector Normal() const;
|
||||
void FlipNormal();
|
||||
double MinAltitude();
|
||||
int WindingNumberForPoint(Vector p);
|
||||
bool ContainsPoint(Vector p);
|
||||
bool ContainsPointProjd(Vector n, Vector p);
|
||||
double MinAltitude() const;
|
||||
int WindingNumberForPoint(Vector p) const;
|
||||
bool ContainsPoint(Vector p) const;
|
||||
bool ContainsPointProjd(Vector n, Vector p) const;
|
||||
};
|
||||
|
||||
class SBsp2 {
|
||||
|
@ -180,12 +180,13 @@ public:
|
|||
enum { POS = 100, NEG = 101, COPLANAR = 200 };
|
||||
void InsertTriangleHow(int how, STriangle *tr, SMesh *m, SBsp3 *bsp3);
|
||||
void InsertTriangle(STriangle *tr, SMesh *m, SBsp3 *bsp3);
|
||||
Vector IntersectionWith(Vector a, Vector b);
|
||||
Vector IntersectionWith(Vector a, Vector b) const;
|
||||
void InsertEdge(SEdge *nedge, Vector nnp, Vector out);
|
||||
static SBsp2 *InsertOrCreateEdge(SBsp2 *where, SEdge *nedge, Vector nnp, Vector out);
|
||||
static SBsp2 *InsertOrCreateEdge(SBsp2 *where, SEdge *nedge,
|
||||
Vector nnp, Vector out);
|
||||
static SBsp2 *Alloc();
|
||||
|
||||
void DebugDraw(Vector n, double d);
|
||||
void DebugDraw(Vector n, double d) const;
|
||||
};
|
||||
|
||||
class SBsp3 {
|
||||
|
@ -204,7 +205,7 @@ public:
|
|||
static SBsp3 *Alloc();
|
||||
static SBsp3 *FromMesh(SMesh *m);
|
||||
|
||||
Vector IntersectionWith(Vector a, Vector b);
|
||||
Vector IntersectionWith(Vector a, Vector b) const;
|
||||
|
||||
enum { POS = 100, NEG = 101, COPLANAR = 200 };
|
||||
void InsertHow(int how, STriangle *str, SMesh *instead);
|
||||
|
@ -217,9 +218,9 @@ public:
|
|||
|
||||
void InsertInPlane(bool pos2, STriangle *tr, SMesh *m);
|
||||
|
||||
void GenerateInPaintOrder(SMesh *m);
|
||||
void GenerateInPaintOrder(SMesh *m) const;
|
||||
|
||||
void DebugDraw();
|
||||
void DebugDraw() const;
|
||||
};
|
||||
|
||||
class SMesh {
|
||||
|
@ -232,11 +233,12 @@ public:
|
|||
bool isTransparent;
|
||||
|
||||
void Clear();
|
||||
void AddTriangle(STriangle *st);
|
||||
void AddTriangle(const STriangle *st);
|
||||
void AddTriangle(STriMeta meta, Vector a, Vector b, Vector c);
|
||||
void AddTriangle(STriMeta meta, Vector n, Vector a, Vector b, Vector c);
|
||||
void DoBounding(Vector v, Vector *vmax, Vector *vmin);
|
||||
void GetBounding(Vector *vmax, Vector *vmin);
|
||||
void AddTriangle(STriMeta meta, Vector n,
|
||||
Vector a, Vector b, Vector c);
|
||||
void DoBounding(Vector v, Vector *vmax, Vector *vmin) const;
|
||||
void GetBounding(Vector *vmax, Vector *vmin) const;
|
||||
|
||||
void Simplify(int start);
|
||||
|
||||
|
@ -245,17 +247,17 @@ public:
|
|||
void MakeFromDifferenceOf(SMesh *a, SMesh *b);
|
||||
|
||||
void MakeFromCopyOf(SMesh *a);
|
||||
void MakeFromTransformationOf(SMesh *a,
|
||||
Vector trans, Quaternion q, double scale);
|
||||
void MakeFromTransformationOf(SMesh *a, Vector trans,
|
||||
Quaternion q, double scale);
|
||||
void MakeFromAssemblyOf(SMesh *a, SMesh *b);
|
||||
|
||||
void MakeEdgesInPlaneInto(SEdgeList *sel, Vector n, double d);
|
||||
void MakeCertainEdgesAndOutlinesInto(SEdgeList *sel, SOutlineList *sol, int type);
|
||||
|
||||
bool IsEmpty();
|
||||
bool IsEmpty() const;
|
||||
void RemapFaces(Group *g, int remap);
|
||||
|
||||
uint32_t FirstIntersectionWith(Point2d mp);
|
||||
uint32_t FirstIntersectionWith(Point2d mp) const;
|
||||
};
|
||||
|
||||
// A linked list of triangles
|
||||
|
@ -310,11 +312,11 @@ public:
|
|||
static SKdNode *From(STriangleLl *tll);
|
||||
|
||||
void AddTriangle(STriangle *tr);
|
||||
void MakeMeshInto(SMesh *m);
|
||||
void ListTrianglesInto(std::vector<STriangle *> *tl);
|
||||
void ClearTags();
|
||||
void MakeMeshInto(SMesh *m) const;
|
||||
void ListTrianglesInto(std::vector<STriangle *> *tl) const;
|
||||
void ClearTags() const;
|
||||
|
||||
void FindEdgeOn(Vector a, Vector b, int cnt, bool coplanarIsInter, EdgeOnInfo *info);
|
||||
void FindEdgeOn(Vector a, Vector b, int cnt, bool coplanarIsInter, EdgeOnInfo *info) const;
|
||||
enum {
|
||||
NAKED_OR_SELF_INTER_EDGES = 100,
|
||||
SELF_INTER_EDGES = 200,
|
||||
|
@ -323,11 +325,11 @@ public:
|
|||
SHARP_EDGES = 500,
|
||||
};
|
||||
void MakeCertainEdgesInto(SEdgeList *sel, int how, bool coplanarIsInter,
|
||||
bool *inter, bool *leaky, int auxA=0);
|
||||
void MakeOutlinesInto(SOutlineList *sel);
|
||||
bool *inter, bool *leaky, int auxA = 0) const;
|
||||
void MakeOutlinesInto(SOutlineList *sel) const;
|
||||
|
||||
void OcclusionTestLine(SEdge orig, SEdgeList *sel, int cnt, bool removeHidden);
|
||||
void SplitLinesAgainstTriangle(SEdgeList *sel, STriangle *tr, bool removeHidden);
|
||||
void OcclusionTestLine(SEdge orig, SEdgeList *sel, int cnt, bool removeHidden) const;
|
||||
void SplitLinesAgainstTriangle(SEdgeList *sel, STriangle *tr, bool removeHidden) const;
|
||||
|
||||
void SnapToMesh(SMesh *m);
|
||||
void SnapToVertex(Vector v, SMesh *extras);
|
||||
|
|
|
@ -83,7 +83,7 @@ int EntReqTable::GetRequestForEntity(int ent) {
|
|||
|
||||
|
||||
void Request::Generate(IdList<Entity,hEntity> *entity,
|
||||
IdList<Param,hParam> *param)
|
||||
IdList<Param,hParam> *param) const
|
||||
{
|
||||
int points = 0;
|
||||
int et = 0;
|
||||
|
@ -169,7 +169,7 @@ void Request::Generate(IdList<Entity,hEntity> *entity,
|
|||
if(et) entity->Add(&e);
|
||||
}
|
||||
|
||||
std::string Request::DescriptionString() {
|
||||
std::string Request::DescriptionString() const {
|
||||
const char *s;
|
||||
if(h.v == Request::HREQUEST_REFERENCE_XY.v) {
|
||||
s = "#XY";
|
||||
|
@ -184,7 +184,7 @@ std::string Request::DescriptionString() {
|
|||
return ssprintf("r%03x-%s", h.v, s);
|
||||
}
|
||||
|
||||
int Request::IndexOfPoint(hEntity he) {
|
||||
int Request::IndexOfPoint(hEntity he) const {
|
||||
if(type == DATUM_POINT) {
|
||||
return (he.v == h.entity(0).v) ? 0 : -1;
|
||||
}
|
||||
|
|
193
src/sketch.h
193
src/sketch.h
|
@ -21,7 +21,6 @@ class Param;
|
|||
class Equation;
|
||||
class Style;
|
||||
|
||||
|
||||
// All of the hWhatever handles are a 32-bit ID, that is used to represent
|
||||
// some data structure in the sketch.
|
||||
class hGroup {
|
||||
|
@ -29,19 +28,19 @@ public:
|
|||
// bits 15: 0 -- group index
|
||||
uint32_t v;
|
||||
|
||||
inline hEntity entity(int i);
|
||||
inline hParam param(int i);
|
||||
inline hEquation equation(int i);
|
||||
inline hEntity entity(int i) const;
|
||||
inline hParam param(int i) const;
|
||||
inline hEquation equation(int i) const;
|
||||
};
|
||||
class hRequest {
|
||||
public:
|
||||
// bits 15: 0 -- request index
|
||||
uint32_t v;
|
||||
|
||||
inline hEntity entity(int i);
|
||||
inline hParam param(int i);
|
||||
inline hEntity entity(int i) const;
|
||||
inline hParam param(int i) const;
|
||||
|
||||
inline bool IsFromReferences();
|
||||
inline bool IsFromReferences() const;
|
||||
};
|
||||
class hEntity {
|
||||
public:
|
||||
|
@ -49,10 +48,10 @@ public:
|
|||
// 31:16 -- request index
|
||||
uint32_t v;
|
||||
|
||||
inline bool isFromRequest();
|
||||
inline hRequest request();
|
||||
inline hGroup group();
|
||||
inline hEquation equation(int i);
|
||||
inline bool isFromRequest() const;
|
||||
inline hRequest request() const;
|
||||
inline hGroup group() const;
|
||||
inline hEquation equation(int i) const;
|
||||
};
|
||||
class hParam {
|
||||
public:
|
||||
|
@ -60,7 +59,7 @@ public:
|
|||
// 31:16 -- request index
|
||||
uint32_t v;
|
||||
|
||||
inline hRequest request();
|
||||
inline hRequest request() const;
|
||||
};
|
||||
|
||||
class hStyle {
|
||||
|
@ -68,7 +67,6 @@ public:
|
|||
uint32_t v;
|
||||
};
|
||||
|
||||
|
||||
class EntityId {
|
||||
public:
|
||||
uint32_t v; // entity ID, starting from 0
|
||||
|
@ -301,10 +299,10 @@ public:
|
|||
std::string font;
|
||||
|
||||
static hParam AddParam(ParamList *param, hParam hp);
|
||||
void Generate(EntityList *entity, ParamList *param);
|
||||
void Generate(EntityList *entity, ParamList *param) const;
|
||||
|
||||
std::string DescriptionString();
|
||||
int IndexOfPoint(hEntity he);
|
||||
std::string DescriptionString() const;
|
||||
int IndexOfPoint(hEntity he) const;
|
||||
|
||||
void Clear() {}
|
||||
};
|
||||
|
@ -378,75 +376,75 @@ public:
|
|||
// times to apply the transformation.
|
||||
int timesApplied;
|
||||
|
||||
Quaternion GetAxisAngleQuaternion(int param0);
|
||||
ExprQuaternion GetAxisAngleQuaternionExprs(int param0);
|
||||
Quaternion GetAxisAngleQuaternion(int param0) const;
|
||||
ExprQuaternion GetAxisAngleQuaternionExprs(int param0) const;
|
||||
|
||||
bool IsCircle();
|
||||
Expr *CircleGetRadiusExpr();
|
||||
double CircleGetRadiusNum();
|
||||
void ArcGetAngles(double *thetaa, double *thetab, double *dtheta);
|
||||
bool IsCircle() const;
|
||||
Expr *CircleGetRadiusExpr() const;
|
||||
double CircleGetRadiusNum() const;
|
||||
void ArcGetAngles(double *thetaa, double *thetab, double *dtheta) const;
|
||||
|
||||
bool HasVector();
|
||||
ExprVector VectorGetExprs();
|
||||
Vector VectorGetNum();
|
||||
Vector VectorGetRefPoint();
|
||||
Vector VectorGetStartPoint();
|
||||
bool HasVector() const;
|
||||
ExprVector VectorGetExprs() const;
|
||||
Vector VectorGetNum() const;
|
||||
Vector VectorGetRefPoint() const;
|
||||
Vector VectorGetStartPoint() const;
|
||||
|
||||
// For distances
|
||||
bool IsDistance();
|
||||
double DistanceGetNum();
|
||||
Expr *DistanceGetExpr();
|
||||
bool IsDistance() const;
|
||||
double DistanceGetNum() const;
|
||||
Expr *DistanceGetExpr() const;
|
||||
void DistanceForceTo(double v);
|
||||
|
||||
bool IsWorkplane();
|
||||
bool IsWorkplane() const;
|
||||
// The plane is points P such that P dot (xn, yn, zn) - d = 0
|
||||
void WorkplaneGetPlaneExprs(ExprVector *n, Expr **d);
|
||||
ExprVector WorkplaneGetOffsetExprs();
|
||||
Vector WorkplaneGetOffset();
|
||||
EntityBase *Normal();
|
||||
void WorkplaneGetPlaneExprs(ExprVector *n, Expr **d) const;
|
||||
ExprVector WorkplaneGetOffsetExprs() const;
|
||||
Vector WorkplaneGetOffset() const;
|
||||
EntityBase *Normal() const;
|
||||
|
||||
bool IsFace();
|
||||
ExprVector FaceGetNormalExprs();
|
||||
Vector FaceGetNormalNum();
|
||||
ExprVector FaceGetPointExprs();
|
||||
Vector FaceGetPointNum();
|
||||
bool IsFace() const;
|
||||
ExprVector FaceGetNormalExprs() const;
|
||||
Vector FaceGetNormalNum() const;
|
||||
ExprVector FaceGetPointExprs() const;
|
||||
Vector FaceGetPointNum() const;
|
||||
|
||||
bool IsPoint();
|
||||
bool IsPoint() const;
|
||||
// Applies for any of the point types
|
||||
Vector PointGetNum();
|
||||
ExprVector PointGetExprs();
|
||||
void PointGetExprsInWorkplane(hEntity wrkpl, Expr **u, Expr **v);
|
||||
Vector PointGetNum() const;
|
||||
ExprVector PointGetExprs() const;
|
||||
void PointGetExprsInWorkplane(hEntity wrkpl, Expr **u, Expr **v) const;
|
||||
void PointForceTo(Vector v);
|
||||
// These apply only the POINT_N_ROT_TRANS, which has an assoc rotation
|
||||
Quaternion PointGetQuaternion();
|
||||
Quaternion PointGetQuaternion() const;
|
||||
void PointForceQuaternionTo(Quaternion q);
|
||||
|
||||
bool IsNormal();
|
||||
bool IsNormal() const;
|
||||
// Applies for any of the normal types
|
||||
Quaternion NormalGetNum();
|
||||
ExprQuaternion NormalGetExprs();
|
||||
Quaternion NormalGetNum() const;
|
||||
ExprQuaternion NormalGetExprs() const;
|
||||
void NormalForceTo(Quaternion q);
|
||||
|
||||
Vector NormalU();
|
||||
Vector NormalV();
|
||||
Vector NormalN();
|
||||
ExprVector NormalExprsU();
|
||||
ExprVector NormalExprsV();
|
||||
ExprVector NormalExprsN();
|
||||
Vector NormalU() const;
|
||||
Vector NormalV() const;
|
||||
Vector NormalN() const;
|
||||
ExprVector NormalExprsU() const;
|
||||
ExprVector NormalExprsV() const;
|
||||
ExprVector NormalExprsN() const;
|
||||
|
||||
Vector CubicGetStartNum();
|
||||
Vector CubicGetFinishNum();
|
||||
ExprVector CubicGetStartTangentExprs();
|
||||
ExprVector CubicGetFinishTangentExprs();
|
||||
Vector CubicGetStartTangentNum();
|
||||
Vector CubicGetFinishTangentNum();
|
||||
Vector CubicGetStartNum() const;
|
||||
Vector CubicGetFinishNum() const;
|
||||
ExprVector CubicGetStartTangentExprs() const;
|
||||
ExprVector CubicGetFinishTangentExprs() const;
|
||||
Vector CubicGetStartTangentNum() const;
|
||||
Vector CubicGetFinishTangentNum() const;
|
||||
|
||||
bool HasEndpoints();
|
||||
Vector EndpointStart();
|
||||
Vector EndpointFinish();
|
||||
bool HasEndpoints() const;
|
||||
Vector EndpointStart() const;
|
||||
Vector EndpointFinish() const;
|
||||
|
||||
void AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index);
|
||||
void GenerateEquations(IdList<Equation,hEquation> *l);
|
||||
void AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) const;
|
||||
void GenerateEquations(IdList<Equation,hEquation> *l) const;
|
||||
|
||||
void Clear() {}
|
||||
};
|
||||
|
@ -499,15 +497,16 @@ public:
|
|||
int stippleType;
|
||||
int data;
|
||||
} dogd; // state for drawing or getting distance (for hit testing)
|
||||
|
||||
void LineDrawOrGetDistance(Vector a, Vector b, bool maybeFat=false, int userData = -1);
|
||||
void DrawOrGetDistance();
|
||||
|
||||
bool IsStylable();
|
||||
bool IsVisible();
|
||||
bool PointIsFromReferences();
|
||||
bool IsStylable() const;
|
||||
bool IsVisible() const;
|
||||
bool PointIsFromReferences() const;
|
||||
|
||||
void ComputeInterpolatingSpline(SBezierList *sbl, bool periodic);
|
||||
void GenerateBezierCurves(SBezierList *sbl);
|
||||
void ComputeInterpolatingSpline(SBezierList *sbl, bool periodic) const;
|
||||
void GenerateBezierCurves(SBezierList *sbl) const;
|
||||
void GenerateEdges(SEdgeList *el, bool includingConstruction=false);
|
||||
|
||||
static void DrawAll(bool drawAsHidden);
|
||||
|
@ -517,7 +516,7 @@ public:
|
|||
|
||||
void CalculateNumerical(bool forExport);
|
||||
|
||||
std::string DescriptionString();
|
||||
std::string DescriptionString() const;
|
||||
|
||||
SBezierList *GetOrGenerateBezierCurves();
|
||||
SEdgeList *GetOrGenerateEdges();
|
||||
|
@ -575,7 +574,7 @@ class hConstraint {
|
|||
public:
|
||||
uint32_t v;
|
||||
|
||||
inline hEquation equation(int i);
|
||||
inline hEquation equation(int i) const;
|
||||
};
|
||||
|
||||
class ConstraintBase {
|
||||
|
@ -643,13 +642,13 @@ public:
|
|||
bool reference; // a ref dimension, that generates no eqs
|
||||
std::string comment; // since comments are represented as constraints
|
||||
|
||||
bool HasLabel();
|
||||
bool HasLabel() const;
|
||||
|
||||
void Generate(IdList<Equation,hEquation> *l);
|
||||
void GenerateReal(IdList<Equation,hEquation> *l);
|
||||
void Generate(IdList<Equation,hEquation> *l) const;
|
||||
void GenerateReal(IdList<Equation,hEquation> *l) const;
|
||||
// Some helpers when generating symbolic constraint equations
|
||||
void ModifyToSatisfy();
|
||||
void AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index);
|
||||
void AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) const;
|
||||
static Expr *DirectionCosine(hEntity wrkpl, ExprVector ae, ExprVector be);
|
||||
static Expr *Distance(hEntity workplane, hEntity pa, hEntity pb);
|
||||
static Expr *PointLineDistance(hEntity workplane, hEntity pt, hEntity ln);
|
||||
|
@ -685,14 +684,14 @@ public:
|
|||
Vector GetReferencePos();
|
||||
void Draw();
|
||||
void GetEdges(SEdgeList *sel);
|
||||
bool IsStylable();
|
||||
bool IsStylable() const;
|
||||
hStyle GetStyle() const;
|
||||
bool HasLabel();
|
||||
bool HasLabel() const;
|
||||
|
||||
void LineDrawOrGetDistance(Vector a, Vector b);
|
||||
bool IsVisible() const;
|
||||
void DrawOrGetDistance(Vector *labelPos);
|
||||
std::string Label();
|
||||
std::string Label() const;
|
||||
bool DoLineExtend(Vector p0, Vector p1, Vector pt, double salient);
|
||||
void DoArcForAngle(Vector a0, Vector da, Vector b0, Vector db,
|
||||
Vector offset, Vector *ref, bool trim);
|
||||
|
@ -706,7 +705,7 @@ public:
|
|||
void DoEqualLenTicks(Vector a, Vector b, Vector gn);
|
||||
void DoEqualRadiusTicks(hEntity he);
|
||||
|
||||
std::string DescriptionString();
|
||||
std::string DescriptionString() const;
|
||||
|
||||
static hConstraint AddConstraint(Constraint *c, bool rememberForUndo);
|
||||
static hConstraint AddConstraint(Constraint *c);
|
||||
|
@ -724,8 +723,8 @@ class hEquation {
|
|||
public:
|
||||
uint32_t v;
|
||||
|
||||
inline bool isFromConstraint();
|
||||
inline hConstraint constraint();
|
||||
inline bool isFromConstraint() const;
|
||||
inline hConstraint constraint() const;
|
||||
};
|
||||
|
||||
class Equation {
|
||||
|
@ -850,49 +849,49 @@ public:
|
|||
static int PatternType(hStyle hs);
|
||||
static double StippleScaleMm(hStyle hs);
|
||||
|
||||
std::string DescriptionString();
|
||||
std::string DescriptionString() const;
|
||||
|
||||
void Clear() {}
|
||||
};
|
||||
|
||||
|
||||
inline hEntity hGroup::entity(int i)
|
||||
inline hEntity hGroup::entity(int i) const
|
||||
{ hEntity r; r.v = 0x80000000 | (v << 16) | (uint32_t)i; return r; }
|
||||
inline hParam hGroup::param(int i)
|
||||
inline hParam hGroup::param(int i) const
|
||||
{ hParam r; r.v = 0x80000000 | (v << 16) | (uint32_t)i; return r; }
|
||||
inline hEquation hGroup::equation(int i)
|
||||
inline hEquation hGroup::equation(int i) const
|
||||
{ hEquation r; r.v = (v << 16) | 0x80000000 | (uint32_t)i; return r; }
|
||||
|
||||
inline bool hRequest::IsFromReferences() {
|
||||
inline bool hRequest::IsFromReferences() const {
|
||||
if(v == Request::HREQUEST_REFERENCE_XY.v) return true;
|
||||
if(v == Request::HREQUEST_REFERENCE_YZ.v) return true;
|
||||
if(v == Request::HREQUEST_REFERENCE_ZX.v) return true;
|
||||
return false;
|
||||
}
|
||||
inline hEntity hRequest::entity(int i)
|
||||
inline hEntity hRequest::entity(int i) const
|
||||
{ hEntity r; r.v = (v << 16) | (uint32_t)i; return r; }
|
||||
inline hParam hRequest::param(int i)
|
||||
inline hParam hRequest::param(int i) const
|
||||
{ hParam r; r.v = (v << 16) | (uint32_t)i; return r; }
|
||||
|
||||
inline bool hEntity::isFromRequest()
|
||||
inline bool hEntity::isFromRequest() const
|
||||
{ if(v & 0x80000000) return false; else return true; }
|
||||
inline hRequest hEntity::request()
|
||||
inline hRequest hEntity::request() const
|
||||
{ hRequest r; r.v = (v >> 16); return r; }
|
||||
inline hGroup hEntity::group()
|
||||
inline hGroup hEntity::group() const
|
||||
{ hGroup r; r.v = (v >> 16) & 0x3fff; return r; }
|
||||
inline hEquation hEntity::equation(int i)
|
||||
inline hEquation hEntity::equation(int i) const
|
||||
{ hEquation r; r.v = v | 0x40000000; return r; }
|
||||
|
||||
inline hRequest hParam::request()
|
||||
inline hRequest hParam::request() const
|
||||
{ hRequest r; r.v = (v >> 16); return r; }
|
||||
|
||||
|
||||
inline hEquation hConstraint::equation(int i)
|
||||
inline hEquation hConstraint::equation(int i) const
|
||||
{ hEquation r; r.v = (v << 16) | (uint32_t)i; return r; }
|
||||
|
||||
inline bool hEquation::isFromConstraint()
|
||||
inline bool hEquation::isFromConstraint() const
|
||||
{ if(v & 0xc0000000) return false; else return true; }
|
||||
inline hConstraint hEquation::constraint()
|
||||
inline hConstraint hEquation::constraint() const
|
||||
{ hConstraint r; r.v = (v >> 16); return r; }
|
||||
|
||||
// The format for entities stored on the clipboard.
|
||||
|
|
|
@ -521,7 +521,7 @@ public:
|
|||
void BezierAsPwl(SBezier *sb);
|
||||
void BezierAsNonrationalCubic(SBezier *sb, int depth=0);
|
||||
|
||||
virtual void StartPath( RgbaColor strokeRgb, double lineWidth,
|
||||
virtual void StartPath(RgbaColor strokeRgb, double lineWidth,
|
||||
bool filled, RgbaColor fillRgb, hStyle hs) = 0;
|
||||
virtual void FinishPath(RgbaColor strokeRgb, double lineWidth,
|
||||
bool filled, RgbaColor fillRgb, hStyle hs) = 0;
|
||||
|
@ -856,8 +856,9 @@ public:
|
|||
void ExportWireframeCurves(SEdgeList *sel, SBezierList *sbl,
|
||||
VectorFileWriter *out);
|
||||
void ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
|
||||
Vector u, Vector v, Vector n, Vector origin,
|
||||
double cameraTan,
|
||||
Vector u, Vector v,
|
||||
Vector n, Vector origin,
|
||||
double cameraTan,
|
||||
VectorFileWriter *out);
|
||||
|
||||
static void MenuAnalyze(int id);
|
||||
|
@ -974,7 +975,7 @@ void ImportDwg(const std::string &file);
|
|||
extern SolveSpaceUI SS;
|
||||
extern Sketch SK;
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
#ifndef __OBJC__
|
||||
using namespace SolveSpace;
|
||||
|
|
|
@ -36,13 +36,13 @@ static int ByTAlongLine(const void *av, const void *bv)
|
|||
return (ta > tb) ? 1 : -1;
|
||||
}
|
||||
SCurve SCurve::MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB,
|
||||
SSurface *srfA, SSurface *srfB)
|
||||
SSurface *srfA, SSurface *srfB) const
|
||||
{
|
||||
SCurve ret;
|
||||
ret = *this;
|
||||
ret.pts = {};
|
||||
|
||||
SCurvePt *p = pts.First();
|
||||
const SCurvePt *p = pts.First();
|
||||
ssassert(p != NULL, "Cannot split an empty curve");
|
||||
SCurvePt prev = *p;
|
||||
ret.pts.Add(p);
|
||||
|
@ -364,7 +364,7 @@ void SSurface::EdgeNormalsWithinSurface(Point2d auv, Point2d buv,
|
|||
ClosestPointTo(*pt, &muv);
|
||||
} else if(!sc->isExact) {
|
||||
SSurface *trimmedA = sc->GetSurfaceA(sha, shb),
|
||||
*trimmedB = sc->GetSurfaceB(sha, shb);
|
||||
*trimmedB = sc->GetSurfaceB(sha, shb);
|
||||
*pt = trimmedA->ClosestPointOnThisAndSurface(trimmedB, *pt);
|
||||
ClosestPointTo(*pt, &muv);
|
||||
}
|
||||
|
@ -602,9 +602,7 @@ SSurface SSurface::MakeCopyTrimAgainst(SShell *parent,
|
|||
return ret;
|
||||
}
|
||||
|
||||
void SShell::CopySurfacesTrimAgainst(SShell *sha, SShell *shb, SShell *into,
|
||||
int type)
|
||||
{
|
||||
void SShell::CopySurfacesTrimAgainst(SShell *sha, SShell *shb, SShell *into, int type) {
|
||||
SSurface *ss;
|
||||
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
|
||||
SSurface ssn;
|
||||
|
@ -716,7 +714,7 @@ void SShell::MakeFromBoolean(SShell *a, SShell *b, int type) {
|
|||
SCurve *sc;
|
||||
for(sc = curve.First(); sc; sc = curve.NextAfter(sc)) {
|
||||
SSurface *srfA = sc->GetSurfaceA(a, b),
|
||||
*srfB = sc->GetSurfaceB(a, b);
|
||||
*srfB = sc->GetSurfaceB(a, b);
|
||||
|
||||
sc->RemoveShortSegments(srfA, srfB);
|
||||
}
|
||||
|
@ -785,6 +783,7 @@ static int ByLength(const void *av, const void *bv)
|
|||
// stability for the normals.
|
||||
return (la < lb) ? 1 : -1;
|
||||
}
|
||||
|
||||
SBspUv *SBspUv::From(SEdgeList *el, SSurface *srf) {
|
||||
SEdgeList work = {};
|
||||
|
||||
|
@ -812,7 +811,8 @@ SBspUv *SBspUv::From(SEdgeList *el, SSurface *srf) {
|
|||
// time we care about exact correctness is when we're very close to the line,
|
||||
// which is when the linearization is accurate.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SBspUv::ScalePoints(Point2d *pt, Point2d *a, Point2d *b, SSurface *srf) {
|
||||
|
||||
void SBspUv::ScalePoints(Point2d *pt, Point2d *a, Point2d *b, SSurface *srf) const {
|
||||
Vector tu, tv;
|
||||
srf->TangentsAt(pt->x, pt->y, &tu, &tv);
|
||||
double mu = tu.Magnitude(), mv = tv.Magnitude();
|
||||
|
@ -821,8 +821,9 @@ void SBspUv::ScalePoints(Point2d *pt, Point2d *a, Point2d *b, SSurface *srf) {
|
|||
a ->x *= mu; a ->y *= mv;
|
||||
b ->x *= mu; b ->y *= mv;
|
||||
}
|
||||
|
||||
double SBspUv::ScaledSignedDistanceToLine(Point2d pt, Point2d a, Point2d b,
|
||||
SSurface *srf)
|
||||
SSurface *srf) const
|
||||
{
|
||||
ScalePoints(&pt, &a, &b, srf);
|
||||
|
||||
|
@ -831,15 +832,16 @@ double SBspUv::ScaledSignedDistanceToLine(Point2d pt, Point2d a, Point2d b,
|
|||
|
||||
return pt.Dot(n) - d;
|
||||
}
|
||||
|
||||
double SBspUv::ScaledDistanceToLine(Point2d pt, Point2d a, Point2d b, bool seg,
|
||||
SSurface *srf)
|
||||
SSurface *srf) const
|
||||
{
|
||||
ScalePoints(&pt, &a, &b, srf);
|
||||
|
||||
return pt.DistanceToLine(a, b, seg);
|
||||
}
|
||||
|
||||
SBspUv *SBspUv::InsertOrCreateEdge(SBspUv *where, const Point2d &ea, const Point2d &eb, SSurface *srf) {
|
||||
SBspUv *SBspUv::InsertOrCreateEdge(SBspUv *where, Point2d ea, Point2d eb, SSurface *srf) {
|
||||
if(where == NULL) {
|
||||
SBspUv *ret = Alloc();
|
||||
ret->a = ea;
|
||||
|
@ -896,12 +898,11 @@ void SBspUv::InsertEdge(Point2d ea, Point2d eb, SSurface *srf) {
|
|||
return;
|
||||
}
|
||||
|
||||
int SBspUv::ClassifyPoint(Point2d p, Point2d eb, SSurface *srf) {
|
||||
|
||||
int SBspUv::ClassifyPoint(Point2d p, Point2d eb, SSurface *srf) const {
|
||||
double dp = ScaledSignedDistanceToLine(p, a, b, srf);
|
||||
|
||||
if(fabs(dp) < LENGTH_EPS) {
|
||||
SBspUv *f = this;
|
||||
const SBspUv *f = this;
|
||||
while(f) {
|
||||
Point2d ba = (f->b).Minus(f->a);
|
||||
if(ScaledDistanceToLine(p, f->a, ba, true, srf) < LENGTH_EPS) {
|
||||
|
@ -931,7 +932,7 @@ int SBspUv::ClassifyPoint(Point2d p, Point2d eb, SSurface *srf) {
|
|||
}
|
||||
}
|
||||
|
||||
int SBspUv::ClassifyEdge(Point2d ea, Point2d eb, SSurface *srf) {
|
||||
int SBspUv::ClassifyEdge(Point2d ea, Point2d eb, SSurface *srf) const {
|
||||
int ret = ClassifyPoint((ea.Plus(eb)).ScaledBy(0.5), eb, srf);
|
||||
if(ret == EDGE_OTHER) {
|
||||
// Perhaps the edge is tangent at its midpoint (and we screwed up
|
||||
|
@ -942,7 +943,7 @@ int SBspUv::ClassifyEdge(Point2d ea, Point2d eb, SSurface *srf) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
double SBspUv::MinimumDistanceToEdge(Point2d p, SSurface *srf) {
|
||||
double SBspUv::MinimumDistanceToEdge(Point2d p, SSurface *srf) const {
|
||||
|
||||
double dn = (neg) ? neg->MinimumDistanceToEdge(p, srf) : VERY_POSITIVE;
|
||||
double dp = (pos) ? pos->MinimumDistanceToEdge(p, srf) : VERY_POSITIVE;
|
||||
|
|
|
@ -60,11 +60,11 @@ SBezier SBezier::From(Vector p0, Vector p1, Vector p2, Vector p3) {
|
|||
p3.Project4d());
|
||||
}
|
||||
|
||||
Vector SBezier::Start() {
|
||||
Vector SBezier::Start() const {
|
||||
return ctrl[0];
|
||||
}
|
||||
|
||||
Vector SBezier::Finish() {
|
||||
Vector SBezier::Finish() const {
|
||||
return ctrl[deg];
|
||||
}
|
||||
|
||||
|
@ -84,7 +84,7 @@ void SBezier::ScaleSelfBy(double s) {
|
|||
}
|
||||
|
||||
void SBezier::GetBoundingProjd(Vector u, Vector orig,
|
||||
double *umin, double *umax)
|
||||
double *umin, double *umax) const
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i <= deg; i++) {
|
||||
|
@ -94,7 +94,7 @@ void SBezier::GetBoundingProjd(Vector u, Vector orig,
|
|||
}
|
||||
}
|
||||
|
||||
SBezier SBezier::TransformedBy(Vector t, Quaternion q, double scale) {
|
||||
SBezier SBezier::TransformedBy(Vector t, Quaternion q, double scale) const {
|
||||
SBezier ret = *this;
|
||||
int i;
|
||||
for(i = 0; i <= deg; i++) {
|
||||
|
@ -108,7 +108,7 @@ SBezier SBezier::TransformedBy(Vector t, Quaternion q, double scale) {
|
|||
// Does this curve lie entirely within the specified plane? It does if all
|
||||
// the control points lie in that plane.
|
||||
//-----------------------------------------------------------------------------
|
||||
bool SBezier::IsInPlane(Vector n, double d) {
|
||||
bool SBezier::IsInPlane(Vector n, double d) const {
|
||||
int i;
|
||||
for(i = 0; i <= deg; i++) {
|
||||
if(fabs((ctrl[i]).Dot(n) - d) > LENGTH_EPS) {
|
||||
|
@ -122,7 +122,7 @@ bool SBezier::IsInPlane(Vector n, double d) {
|
|||
// Is this Bezier exactly the arc of a circle, projected along the specified
|
||||
// axis? If yes, return that circle's center and radius.
|
||||
//-----------------------------------------------------------------------------
|
||||
bool SBezier::IsCircle(Vector axis, Vector *center, double *r) {
|
||||
bool SBezier::IsCircle(Vector axis, Vector *center, double *r) const {
|
||||
if(deg != 2) return false;
|
||||
|
||||
if(ctrl[1].DistanceToLine(ctrl[0], ctrl[2].Minus(ctrl[0])) < LENGTH_EPS) {
|
||||
|
@ -170,7 +170,7 @@ bool SBezier::IsCircle(Vector axis, Vector *center, double *r) {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool SBezier::IsRational() {
|
||||
bool SBezier::IsRational() const {
|
||||
int i;
|
||||
for(i = 0; i <= deg; i++) {
|
||||
if(fabs(weight[i] - 1) > LENGTH_EPS) return true;
|
||||
|
@ -183,7 +183,7 @@ bool SBezier::IsRational() {
|
|||
// the new weights as required.
|
||||
//-----------------------------------------------------------------------------
|
||||
SBezier SBezier::InPerspective(Vector u, Vector v, Vector n,
|
||||
Vector origin, double cameraTan)
|
||||
Vector origin, double cameraTan) const
|
||||
{
|
||||
Quaternion q = Quaternion::From(u, v);
|
||||
q = q.Inverse();
|
||||
|
@ -206,7 +206,7 @@ SBezier SBezier::InPerspective(Vector u, Vector v, Vector n,
|
|||
return ret;
|
||||
}
|
||||
|
||||
bool SBezier::Equals(SBezier *b) {
|
||||
bool SBezier::Equals(SBezier *b) const {
|
||||
// We just test of identical degree and control points, even though two
|
||||
// curves could still be coincident (even sharing endpoints).
|
||||
if(deg != b->deg) return false;
|
||||
|
@ -262,15 +262,14 @@ void SBezierList::CullIdenticalBeziers() {
|
|||
// curves. So this will screw up on tangencies and stuff, but otherwise should
|
||||
// be fine.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SBezierList::AllIntersectionsWith(SBezierList *sblb, SPointList *spl) {
|
||||
SBezier *sba, *sbb;
|
||||
for(sba = l.First(); sba; sba = l.NextAfter(sba)) {
|
||||
for(sbb = sblb->l.First(); sbb; sbb = sblb->l.NextAfter(sbb)) {
|
||||
void SBezierList::AllIntersectionsWith(SBezierList *sblb, SPointList *spl) const {
|
||||
for(const SBezier *sba = l.First(); sba; sba = l.NextAfter(sba)) {
|
||||
for(const SBezier *sbb = sblb->l.First(); sbb; sbb = sblb->l.NextAfter(sbb)) {
|
||||
sbb->AllIntersectionsWith(sba, spl);
|
||||
}
|
||||
}
|
||||
}
|
||||
void SBezier::AllIntersectionsWith(SBezier *sbb, SPointList *spl) {
|
||||
void SBezier::AllIntersectionsWith(const SBezier *sbb, SPointList *spl) const {
|
||||
SPointList splRaw = {};
|
||||
SEdgeList sea, seb;
|
||||
sea = {};
|
||||
|
@ -304,12 +303,11 @@ void SBezier::AllIntersectionsWith(SBezier *sbb, SPointList *spl) {
|
|||
// Returns true if all the curves are coplanar, otherwise false.
|
||||
//-----------------------------------------------------------------------------
|
||||
bool SBezierList::GetPlaneContainingBeziers(Vector *p, Vector *u, Vector *v,
|
||||
Vector *notCoplanarAt)
|
||||
Vector *notCoplanarAt) const
|
||||
{
|
||||
Vector pt, ptFar, ptOffLine, dp, n;
|
||||
double farMax, offLineMax;
|
||||
int i;
|
||||
SBezier *sb;
|
||||
|
||||
// Get any point on any Bezier; or an arbitrary point if list is empty.
|
||||
if(l.n > 0) {
|
||||
|
@ -321,7 +319,7 @@ bool SBezierList::GetPlaneContainingBeziers(Vector *p, Vector *u, Vector *v,
|
|||
|
||||
// Get the point farthest from our arbitrary point.
|
||||
farMax = VERY_NEGATIVE;
|
||||
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
for(const SBezier *sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
for(i = 0; i <= sb->deg; i++) {
|
||||
double m = (pt.Minus(sb->ctrl[i])).Magnitude();
|
||||
if(m > farMax) {
|
||||
|
@ -341,7 +339,7 @@ bool SBezierList::GetPlaneContainingBeziers(Vector *p, Vector *u, Vector *v,
|
|||
// Get the point farthest from the line between pt and ptFar
|
||||
dp = ptFar.Minus(pt);
|
||||
offLineMax = VERY_NEGATIVE;
|
||||
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
for(const SBezier *sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
for(i = 0; i <= sb->deg; i++) {
|
||||
double m = (sb->ctrl[i]).DistanceToLine(pt, dp);
|
||||
if(m > offLineMax) {
|
||||
|
@ -369,7 +367,7 @@ bool SBezierList::GetPlaneContainingBeziers(Vector *p, Vector *u, Vector *v,
|
|||
n = u->Cross(*v);
|
||||
n = n.WithMagnitude(1);
|
||||
double d = p->Dot(n);
|
||||
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
for(const SBezier *sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
for(i = 0; i <= sb->deg; i++) {
|
||||
if(fabs(n.Dot(sb->ctrl[i]) - d) > LENGTH_EPS) {
|
||||
if(notCoplanarAt) *notCoplanarAt = sb->ctrl[i];
|
||||
|
@ -454,17 +452,15 @@ void SBezierLoop::Reverse() {
|
|||
}
|
||||
|
||||
void SBezierLoop::GetBoundingProjd(Vector u, Vector orig,
|
||||
double *umin, double *umax)
|
||||
double *umin, double *umax) const
|
||||
{
|
||||
SBezier *sb;
|
||||
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
for(const SBezier *sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
sb->GetBoundingProjd(u, orig, umin, umax);
|
||||
}
|
||||
}
|
||||
|
||||
void SBezierLoop::MakePwlInto(SContour *sc, double chordTol) {
|
||||
SBezier *sb;
|
||||
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
void SBezierLoop::MakePwlInto(SContour *sc, double chordTol) const {
|
||||
for(const SBezier *sb = l.First(); sb; sb = l.NextAfter(sb)) {
|
||||
sb->MakePwlInto(sc, chordTol);
|
||||
// Avoid double points at join between Beziers; except that
|
||||
// first and last points should be identical.
|
||||
|
@ -478,7 +474,7 @@ void SBezierLoop::MakePwlInto(SContour *sc, double chordTol) {
|
|||
}
|
||||
}
|
||||
|
||||
bool SBezierLoop::IsClosed() {
|
||||
bool SBezierLoop::IsClosed() const {
|
||||
if(l.n < 1) return false;
|
||||
Vector s = l.elem[0].Start(),
|
||||
f = l.elem[l.n-1].Finish();
|
||||
|
@ -533,10 +529,9 @@ SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly,
|
|||
}
|
||||
|
||||
void SBezierLoopSet::GetBoundingProjd(Vector u, Vector orig,
|
||||
double *umin, double *umax)
|
||||
double *umin, double *umax) const
|
||||
{
|
||||
SBezierLoop *sbl;
|
||||
for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
|
||||
for(const SBezierLoop *sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
|
||||
sbl->GetBoundingProjd(u, orig, umin, umax);
|
||||
}
|
||||
}
|
||||
|
@ -545,9 +540,8 @@ void SBezierLoopSet::GetBoundingProjd(Vector u, Vector orig,
|
|||
// Convert all the Beziers into piecewise linear form, and assemble that into
|
||||
// a polygon, one contour per loop.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SBezierLoopSet::MakePwlInto(SPolygon *sp) {
|
||||
SBezierLoop *sbl;
|
||||
for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
|
||||
void SBezierLoopSet::MakePwlInto(SPolygon *sp) const {
|
||||
for(const SBezierLoop *sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
|
||||
sp->AddEmptyContour();
|
||||
sbl->MakePwlInto(&(sp->l.elem[sp->l.n - 1]));
|
||||
}
|
||||
|
@ -732,8 +726,8 @@ void SBezierLoopSetSet::Clear() {
|
|||
l.Clear();
|
||||
}
|
||||
|
||||
SCurve SCurve::FromTransformationOf(SCurve *a,
|
||||
Vector t, Quaternion q, double scale)
|
||||
SCurve SCurve::FromTransformationOf(SCurve *a, Vector t,
|
||||
Quaternion q, double scale)
|
||||
{
|
||||
SCurve ret = {};
|
||||
|
||||
|
@ -757,7 +751,7 @@ void SCurve::Clear() {
|
|||
pts.Clear();
|
||||
}
|
||||
|
||||
SSurface *SCurve::GetSurfaceA(SShell *a, SShell *b) {
|
||||
SSurface *SCurve::GetSurfaceA(SShell *a, SShell *b) const {
|
||||
if(source == FROM_A) {
|
||||
return a->surface.FindById(surfA);
|
||||
} else if(source == FROM_B) {
|
||||
|
@ -767,7 +761,7 @@ SSurface *SCurve::GetSurfaceA(SShell *a, SShell *b) {
|
|||
} else ssassert(false, "Unexpected curve source");
|
||||
}
|
||||
|
||||
SSurface *SCurve::GetSurfaceB(SShell *a, SShell *b) {
|
||||
SSurface *SCurve::GetSurfaceB(SShell *a, SShell *b) const {
|
||||
if(source == FROM_A) {
|
||||
return a->surface.FindById(surfB);
|
||||
} else if(source == FROM_B) {
|
||||
|
|
|
@ -93,7 +93,7 @@ double SolveSpace::BernsteinDerivative(int k, int deg, double t)
|
|||
ssassert(false, "Unexpected degree of spline");
|
||||
}
|
||||
|
||||
Vector SBezier::PointAt(double t) {
|
||||
Vector SBezier::PointAt(double t) const {
|
||||
Vector pt = Vector::From(0, 0, 0);
|
||||
double d = 0;
|
||||
|
||||
|
@ -107,7 +107,7 @@ Vector SBezier::PointAt(double t) {
|
|||
return pt;
|
||||
}
|
||||
|
||||
Vector SBezier::TangentAt(double t) {
|
||||
Vector SBezier::TangentAt(double t) const {
|
||||
Vector pt = Vector::From(0, 0, 0), pt_p = Vector::From(0, 0, 0);
|
||||
double d = 0, d_p = 0;
|
||||
|
||||
|
@ -130,7 +130,7 @@ Vector SBezier::TangentAt(double t) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
void SBezier::ClosestPointTo(Vector p, double *t, bool converge) {
|
||||
void SBezier::ClosestPointTo(Vector p, double *t, bool converge) const {
|
||||
int i;
|
||||
double minDist = VERY_POSITIVE;
|
||||
*t = 0;
|
||||
|
@ -162,7 +162,7 @@ void SBezier::ClosestPointTo(Vector p, double *t, bool converge) {
|
|||
}
|
||||
}
|
||||
|
||||
bool SBezier::PointOnThisAndCurve(SBezier *sbb, Vector *p) {
|
||||
bool SBezier::PointOnThisAndCurve(const SBezier *sbb, Vector *p) const {
|
||||
double ta, tb;
|
||||
this->ClosestPointTo(*p, &ta, false);
|
||||
sbb ->ClosestPointTo(*p, &tb, false);
|
||||
|
@ -187,7 +187,7 @@ bool SBezier::PointOnThisAndCurve(SBezier *sbb, Vector *p) {
|
|||
return false;
|
||||
}
|
||||
|
||||
void SBezier::SplitAt(double t, SBezier *bef, SBezier *aft) {
|
||||
void SBezier::SplitAt(double t, SBezier *bef, SBezier *aft) const {
|
||||
Vector4 ct[4];
|
||||
int i;
|
||||
for(i = 0; i <= deg; i++) {
|
||||
|
@ -226,7 +226,7 @@ void SBezier::SplitAt(double t, SBezier *bef, SBezier *aft) {
|
|||
}
|
||||
}
|
||||
|
||||
void SBezier::MakePwlInto(SEdgeList *sel, double chordTol) {
|
||||
void SBezier::MakePwlInto(SEdgeList *sel, double chordTol) const {
|
||||
List<Vector> lv = {};
|
||||
MakePwlInto(&lv, chordTol);
|
||||
int i;
|
||||
|
@ -235,7 +235,7 @@ void SBezier::MakePwlInto(SEdgeList *sel, double chordTol) {
|
|||
}
|
||||
lv.Clear();
|
||||
}
|
||||
void SBezier::MakePwlInto(List<SCurvePt> *l, double chordTol) {
|
||||
void SBezier::MakePwlInto(List<SCurvePt> *l, double chordTol) const {
|
||||
List<Vector> lv = {};
|
||||
MakePwlInto(&lv, chordTol);
|
||||
int i;
|
||||
|
@ -248,7 +248,7 @@ void SBezier::MakePwlInto(List<SCurvePt> *l, double chordTol) {
|
|||
}
|
||||
lv.Clear();
|
||||
}
|
||||
void SBezier::MakePwlInto(SContour *sc, double chordTol) {
|
||||
void SBezier::MakePwlInto(SContour *sc, double chordTol) const {
|
||||
List<Vector> lv = {};
|
||||
MakePwlInto(&lv, chordTol);
|
||||
int i;
|
||||
|
@ -257,7 +257,7 @@ void SBezier::MakePwlInto(SContour *sc, double chordTol) {
|
|||
}
|
||||
lv.Clear();
|
||||
}
|
||||
void SBezier::MakePwlInto(List<Vector> *l, double chordTol) {
|
||||
void SBezier::MakePwlInto(List<Vector> *l, double chordTol) const {
|
||||
if(EXACT(chordTol == 0)) {
|
||||
// Use the default chord tolerance.
|
||||
chordTol = SS.ChordTolMm();
|
||||
|
@ -273,7 +273,7 @@ void SBezier::MakePwlInto(List<Vector> *l, double chordTol) {
|
|||
MakePwlInitialWorker(l, 0.5, 1.0, chordTol);
|
||||
}
|
||||
}
|
||||
void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb, double chordTol)
|
||||
void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb, double chordTol) const
|
||||
{
|
||||
Vector pa = PointAt(ta);
|
||||
Vector pb = PointAt(tb);
|
||||
|
@ -291,7 +291,7 @@ void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb, double chordT
|
|||
MakePwlWorker(l, tm, tb, chordTol);
|
||||
}
|
||||
}
|
||||
void SBezier::MakePwlInitialWorker(List<Vector> *l, double ta, double tb, double chordTol)
|
||||
void SBezier::MakePwlInitialWorker(List<Vector> *l, double ta, double tb, double chordTol) const
|
||||
{
|
||||
Vector pa = PointAt(ta);
|
||||
Vector pb = PointAt(tb);
|
||||
|
@ -322,10 +322,10 @@ void SBezier::MakePwlInitialWorker(List<Vector> *l, double ta, double tb, double
|
|||
}
|
||||
}
|
||||
|
||||
Vector SSurface::PointAt(Point2d puv) {
|
||||
Vector SSurface::PointAt(Point2d puv) const {
|
||||
return PointAt(puv.x, puv.y);
|
||||
}
|
||||
Vector SSurface::PointAt(double u, double v) {
|
||||
Vector SSurface::PointAt(double u, double v) const {
|
||||
Vector num = Vector::From(0, 0, 0);
|
||||
double den = 0;
|
||||
|
||||
|
@ -343,7 +343,7 @@ Vector SSurface::PointAt(double u, double v) {
|
|||
return num;
|
||||
}
|
||||
|
||||
void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) {
|
||||
void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) const {
|
||||
Vector num = Vector::From(0, 0, 0),
|
||||
num_u = Vector::From(0, 0, 0),
|
||||
num_v = Vector::From(0, 0, 0);
|
||||
|
@ -377,10 +377,11 @@ void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) {
|
|||
*tv = tv->ScaledBy(1.0/(den*den));
|
||||
}
|
||||
|
||||
Vector SSurface::NormalAt(Point2d puv) {
|
||||
Vector SSurface::NormalAt(Point2d puv) const {
|
||||
return NormalAt(puv.x, puv.y);
|
||||
}
|
||||
Vector SSurface::NormalAt(double u, double v) {
|
||||
|
||||
Vector SSurface::NormalAt(double u, double v) const {
|
||||
Vector tu, tv;
|
||||
TangentsAt(u, v, &tu, &tv);
|
||||
return tu.Cross(tv);
|
||||
|
@ -389,6 +390,7 @@ Vector SSurface::NormalAt(double u, double v) {
|
|||
void SSurface::ClosestPointTo(Vector p, Point2d *puv, bool converge) {
|
||||
ClosestPointTo(p, &(puv->x), &(puv->y), converge);
|
||||
}
|
||||
|
||||
void SSurface::ClosestPointTo(Vector p, double *u, double *v, bool converge) {
|
||||
// A few special cases first; when control points are coincident the
|
||||
// derivative goes to zero at the conrol points, and would result in
|
||||
|
@ -455,7 +457,7 @@ void SSurface::ClosestPointTo(Vector p, double *u, double *v, bool converge) {
|
|||
}
|
||||
}
|
||||
|
||||
bool SSurface::ClosestPointNewton(Vector p, double *u, double *v, bool converge)
|
||||
bool SSurface::ClosestPointNewton(Vector p, double *u, double *v, bool converge) const
|
||||
{
|
||||
// Initial guess is in u, v; refine by Newton iteration.
|
||||
Vector p0 = Vector::From(0, 0, 0);
|
||||
|
@ -488,7 +490,7 @@ bool SSurface::ClosestPointNewton(Vector p, double *u, double *v, bool converge)
|
|||
return false;
|
||||
}
|
||||
|
||||
bool SSurface::PointIntersectingLine(Vector p0, Vector p1, double *u, double *v)
|
||||
bool SSurface::PointIntersectingLine(Vector p0, Vector p1, double *u, double *v) const
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < 15; i++) {
|
||||
|
@ -564,8 +566,7 @@ Vector SSurface::ClosestPointOnThisAndSurface(SSurface *srf2, Vector p) {
|
|||
((srf[1])->PointAt(puv[1]))).ScaledBy(0.5);
|
||||
}
|
||||
|
||||
void SSurface::PointOnSurfaces(SSurface *s1, SSurface *s2,
|
||||
double *up, double *vp)
|
||||
void SSurface::PointOnSurfaces(SSurface *s1, SSurface *s2, double *up, double *vp)
|
||||
{
|
||||
double u[3] = { *up, 0, 0 }, v[3] = { *vp, 0, 0 };
|
||||
SSurface *srf[3] = { this, s1, s2 };
|
||||
|
|
|
@ -16,7 +16,7 @@ const double SShell::DOTP_TOL = 1e-5;
|
|||
extern int FLAG;
|
||||
|
||||
|
||||
double SSurface::DepartureFromCoplanar() {
|
||||
double SSurface::DepartureFromCoplanar() const {
|
||||
int i, j;
|
||||
int ia, ja, ib = 0, jb = 0, ic = 0, jc = 0;
|
||||
double best;
|
||||
|
@ -392,7 +392,7 @@ void SShell::AllPointsIntersecting(Vector a, Vector b,
|
|||
|
||||
|
||||
int SShell::ClassifyRegion(Vector edge_n, Vector inter_surf_n,
|
||||
Vector edge_surf_n)
|
||||
Vector edge_surf_n) const
|
||||
{
|
||||
double dot = inter_surf_n.DirectionCosineWith(edge_n);
|
||||
if(fabs(dot) < DOTP_TOL) {
|
||||
|
|
|
@ -24,7 +24,7 @@ SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
|
||||
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) const {
|
||||
int i;
|
||||
|
||||
if(degn != 1) return false;
|
||||
|
@ -52,7 +52,7 @@ bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
|
|||
}
|
||||
|
||||
bool SSurface::IsCylinder(Vector *axis, Vector *center, double *r,
|
||||
Vector *start, Vector *finish)
|
||||
Vector *start, Vector *finish) const
|
||||
{
|
||||
SBezier sb;
|
||||
if(!IsExtrusion(&sb, axis)) return false;
|
||||
|
@ -175,7 +175,7 @@ SSurface SSurface::FromTransformationOf(SSurface *a,
|
|||
return ret;
|
||||
}
|
||||
|
||||
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
|
||||
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) const {
|
||||
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
|
||||
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
|
||||
|
||||
|
@ -187,7 +187,7 @@ void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
|
|||
}
|
||||
}
|
||||
|
||||
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) {
|
||||
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) const {
|
||||
Vector amax, amin;
|
||||
GetAxisAlignedBounding(&amax, &amin);
|
||||
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, segment)) {
|
||||
|
@ -275,8 +275,7 @@ void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, int flags,
|
|||
// by taking the cross product of the surface normals. We choose the direction
|
||||
// of this tangent so that its dot product with dir is positive.
|
||||
//-----------------------------------------------------------------------------
|
||||
Vector SSurface::ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB,
|
||||
Vector dir)
|
||||
Vector SSurface::ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB, Vector dir)
|
||||
{
|
||||
Point2d puva, puvb;
|
||||
srfA->ClosestPointTo(p, &puva);
|
||||
|
@ -295,8 +294,7 @@ Vector SSurface::ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB,
|
|||
// add its exact form to sbl. Otherwise, add its piecewise linearization to
|
||||
// sel.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SSurface::MakeSectionEdgesInto(SShell *shell,
|
||||
SEdgeList *sel, SBezierList *sbl)
|
||||
void SSurface::MakeSectionEdgesInto(SShell *shell, SEdgeList *sel, SBezierList *sbl)
|
||||
{
|
||||
STrimBy *stb;
|
||||
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
|
||||
|
@ -324,8 +322,8 @@ void SSurface::MakeSectionEdgesInto(SShell *shell,
|
|||
sbl->l.Add(&keep_bef);
|
||||
} else if(sbl && !sel && !sc->isExact) {
|
||||
// We must approximate this trim curve, as piecewise cubic sections.
|
||||
SSurface *srfA = shell->surface.FindById(sc->surfA),
|
||||
*srfB = shell->surface.FindById(sc->surfB);
|
||||
SSurface *srfA = shell->surface.FindById(sc->surfA);
|
||||
SSurface *srfB = shell->surface.FindById(sc->surfB);
|
||||
|
||||
Vector s = stb->backwards ? stb->finish : stb->start,
|
||||
f = stb->backwards ? stb->start : stb->finish;
|
||||
|
@ -842,8 +840,7 @@ void SShell::MakeEdgesInto(SEdgeList *sel) {
|
|||
}
|
||||
}
|
||||
|
||||
void SShell::MakeSectionEdgesInto(Vector n, double d,
|
||||
SEdgeList *sel, SBezierList *sbl)
|
||||
void SShell::MakeSectionEdgesInto(Vector n, double d, SEdgeList *sel, SBezierList *sbl)
|
||||
{
|
||||
SSurface *s;
|
||||
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
||||
|
@ -860,7 +857,7 @@ void SShell::TriangulateInto(SMesh *sm) {
|
|||
}
|
||||
}
|
||||
|
||||
bool SShell::IsEmpty() {
|
||||
bool SShell::IsEmpty() const {
|
||||
return (surface.n == 0);
|
||||
}
|
||||
|
||||
|
|
|
@ -39,17 +39,17 @@ public:
|
|||
static SBspUv *Alloc();
|
||||
static SBspUv *From(SEdgeList *el, SSurface *srf);
|
||||
|
||||
void ScalePoints(Point2d *pt, Point2d *a, Point2d *b, SSurface *srf);
|
||||
void ScalePoints(Point2d *pt, Point2d *a, Point2d *b, SSurface *srf) const;
|
||||
double ScaledSignedDistanceToLine(Point2d pt, Point2d a, Point2d b,
|
||||
SSurface *srf);
|
||||
SSurface *srf) const;
|
||||
double ScaledDistanceToLine(Point2d pt, Point2d a, Point2d b, bool seg,
|
||||
SSurface *srf);
|
||||
SSurface *srf) const;
|
||||
|
||||
void InsertEdge(Point2d a, Point2d b, SSurface *srf);
|
||||
static SBspUv *InsertOrCreateEdge(SBspUv *where, const Point2d &ea, const Point2d &eb, SSurface *srf);
|
||||
int ClassifyPoint(Point2d p, Point2d eb, SSurface *srf);
|
||||
int ClassifyEdge(Point2d ea, Point2d eb, SSurface *srf);
|
||||
double MinimumDistanceToEdge(Point2d p, SSurface *srf);
|
||||
static SBspUv *InsertOrCreateEdge(SBspUv *where, Point2d ea, Point2d eb, SSurface *srf);
|
||||
int ClassifyPoint(Point2d p, Point2d eb, SSurface *srf) const;
|
||||
int ClassifyEdge(Point2d ea, Point2d eb, SSurface *srf) const;
|
||||
double MinimumDistanceToEdge(Point2d p, SSurface *srf) const;
|
||||
};
|
||||
|
||||
// Now the data structures to represent a shell of trimmed rational polynomial
|
||||
|
@ -80,33 +80,33 @@ public:
|
|||
double weight[4];
|
||||
uint32_t entity;
|
||||
|
||||
Vector PointAt(double t);
|
||||
Vector TangentAt(double t);
|
||||
void ClosestPointTo(Vector p, double *t, bool converge=true);
|
||||
void SplitAt(double t, SBezier *bef, SBezier *aft);
|
||||
bool PointOnThisAndCurve(SBezier *sbb, Vector *p);
|
||||
Vector PointAt(double t) const;
|
||||
Vector TangentAt(double t) const;
|
||||
void ClosestPointTo(Vector p, double *t, bool converge=true) const;
|
||||
void SplitAt(double t, SBezier *bef, SBezier *aft) const;
|
||||
bool PointOnThisAndCurve(const SBezier *sbb, Vector *p) const;
|
||||
|
||||
Vector Start();
|
||||
Vector Finish();
|
||||
bool Equals(SBezier *b);
|
||||
void MakePwlInto(SEdgeList *sel, double chordTol=0);
|
||||
void MakePwlInto(List<SCurvePt> *l, double chordTol=0);
|
||||
void MakePwlInto(SContour *sc, double chordTol=0);
|
||||
void MakePwlInto(List<Vector> *l, double chordTol=0);
|
||||
void MakePwlWorker(List<Vector> *l, double ta, double tb, double chordTol);
|
||||
void MakePwlInitialWorker(List<Vector> *l, double ta, double tb, double chordTol);
|
||||
Vector Start() const;
|
||||
Vector Finish() const;
|
||||
bool Equals(SBezier *b) const;
|
||||
void MakePwlInto(SEdgeList *sel, double chordTol=0) const;
|
||||
void MakePwlInto(List<SCurvePt> *l, double chordTol=0) const;
|
||||
void MakePwlInto(SContour *sc, double chordTol=0) const;
|
||||
void MakePwlInto(List<Vector> *l, double chordTol=0) const;
|
||||
void MakePwlWorker(List<Vector> *l, double ta, double tb, double chordTol) const;
|
||||
void MakePwlInitialWorker(List<Vector> *l, double ta, double tb, double chordTol) const;
|
||||
|
||||
void AllIntersectionsWith(SBezier *sbb, SPointList *spl);
|
||||
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
|
||||
void AllIntersectionsWith(const SBezier *sbb, SPointList *spl) const;
|
||||
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax) const;
|
||||
void Reverse();
|
||||
|
||||
bool IsInPlane(Vector n, double d);
|
||||
bool IsCircle(Vector axis, Vector *center, double *r);
|
||||
bool IsRational();
|
||||
bool IsInPlane(Vector n, double d) const;
|
||||
bool IsCircle(Vector axis, Vector *center, double *r) const;
|
||||
bool IsRational() const;
|
||||
|
||||
SBezier TransformedBy(Vector t, Quaternion q, double scale);
|
||||
SBezier TransformedBy(Vector t, Quaternion q, double scale) const;
|
||||
SBezier InPerspective(Vector u, Vector v, Vector n,
|
||||
Vector origin, double cameraTan);
|
||||
Vector origin, double cameraTan) const;
|
||||
void ScaleSelfBy(double s);
|
||||
|
||||
static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3);
|
||||
|
@ -124,9 +124,9 @@ public:
|
|||
void Clear();
|
||||
void ScaleSelfBy(double s);
|
||||
void CullIdenticalBeziers();
|
||||
void AllIntersectionsWith(SBezierList *sblb, SPointList *spl);
|
||||
void AllIntersectionsWith(SBezierList *sblb, SPointList *spl) const;
|
||||
bool GetPlaneContainingBeziers(Vector *p, Vector *u, Vector *v,
|
||||
Vector *notCoplanarAt);
|
||||
Vector *notCoplanarAt) const;
|
||||
};
|
||||
|
||||
class SBezierLoop {
|
||||
|
@ -135,10 +135,10 @@ public:
|
|||
List<SBezier> l;
|
||||
|
||||
inline void Clear() { l.Clear(); }
|
||||
bool IsClosed();
|
||||
bool IsClosed() const;
|
||||
void Reverse();
|
||||
void MakePwlInto(SContour *sc, double chordTol=0);
|
||||
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
|
||||
void MakePwlInto(SContour *sc, double chordTol=0) const;
|
||||
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax) const;
|
||||
|
||||
static SBezierLoop FromCurves(SBezierList *spcl,
|
||||
bool *allClosed, SEdge *errorAt);
|
||||
|
@ -155,8 +155,8 @@ public:
|
|||
bool *allClosed, SEdge *errorAt,
|
||||
SBezierList *openContours);
|
||||
|
||||
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
|
||||
void MakePwlInto(SPolygon *sp);
|
||||
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax) const;
|
||||
void MakePwlInto(SPolygon *sp) const;
|
||||
void Clear();
|
||||
};
|
||||
|
||||
|
@ -204,13 +204,13 @@ public:
|
|||
hSSurface surfA;
|
||||
hSSurface surfB;
|
||||
|
||||
static SCurve FromTransformationOf(SCurve *a, Vector t, Quaternion q,
|
||||
double scale);
|
||||
static SCurve FromTransformationOf(SCurve *a, Vector t,
|
||||
Quaternion q, double scale);
|
||||
SCurve MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB,
|
||||
SSurface *srfA, SSurface *srfB);
|
||||
SSurface *srfA, SSurface *srfB) const;
|
||||
void RemoveShortSegments(SSurface *srfA, SSurface *srfB);
|
||||
SSurface *GetSurfaceA(SShell *a, SShell *b);
|
||||
SSurface *GetSurfaceB(SShell *a, SShell *b);
|
||||
SSurface *GetSurfaceA(SShell *a, SShell *b) const;
|
||||
SSurface *GetSurfaceB(SShell *a, SShell *b) const;
|
||||
|
||||
void Clear();
|
||||
};
|
||||
|
@ -302,35 +302,35 @@ public:
|
|||
void CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij);
|
||||
void BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
|
||||
SSurface *b, int b_ij);
|
||||
double DepartureFromCoplanar();
|
||||
double DepartureFromCoplanar() const;
|
||||
void SplitInHalf(bool byU, SSurface *sa, SSurface *sb);
|
||||
void AllPointsIntersecting(Vector a, Vector b,
|
||||
List<SInter> *l,
|
||||
bool seg, bool trimmed, bool inclTangent);
|
||||
List<SInter> *l,
|
||||
bool seg, bool trimmed, bool inclTangent);
|
||||
void AllPointsIntersectingUntrimmed(Vector a, Vector b,
|
||||
int *cnt, int *level,
|
||||
List<Inter> *l, bool segment,
|
||||
SSurface *sorig);
|
||||
int *cnt, int *level,
|
||||
List<Inter> *l, bool segment,
|
||||
SSurface *sorig);
|
||||
|
||||
void ClosestPointTo(Vector p, Point2d *puv, bool converge=true);
|
||||
void ClosestPointTo(Vector p, double *u, double *v, bool converge=true);
|
||||
bool ClosestPointNewton(Vector p, double *u, double *v, bool converge=true);
|
||||
bool ClosestPointNewton(Vector p, double *u, double *v, bool converge=true) const;
|
||||
|
||||
bool PointIntersectingLine(Vector p0, Vector p1, double *u, double *v);
|
||||
bool PointIntersectingLine(Vector p0, Vector p1, double *u, double *v) const;
|
||||
Vector ClosestPointOnThisAndSurface(SSurface *srf2, Vector p);
|
||||
void PointOnSurfaces(SSurface *s1, SSurface *s2, double *u, double *v);
|
||||
Vector PointAt(double u, double v);
|
||||
Vector PointAt(Point2d puv);
|
||||
void TangentsAt(double u, double v, Vector *tu, Vector *tv);
|
||||
Vector NormalAt(Point2d puv);
|
||||
Vector NormalAt(double u, double v);
|
||||
bool LineEntirelyOutsideBbox(Vector a, Vector b, bool segment);
|
||||
void GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin);
|
||||
bool CoincidentWithPlane(Vector n, double d);
|
||||
bool CoincidentWith(SSurface *ss, bool sameNormal);
|
||||
bool IsExtrusion(SBezier *of, Vector *along);
|
||||
Vector PointAt(double u, double v) const;
|
||||
Vector PointAt(Point2d puv) const;
|
||||
void TangentsAt(double u, double v, Vector *tu, Vector *tv) const;
|
||||
Vector NormalAt(Point2d puv) const;
|
||||
Vector NormalAt(double u, double v) const;
|
||||
bool LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) const;
|
||||
void GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) const;
|
||||
bool CoincidentWithPlane(Vector n, double d) const;
|
||||
bool CoincidentWith(SSurface *ss, bool sameNormal) const;
|
||||
bool IsExtrusion(SBezier *of, Vector *along) const;
|
||||
bool IsCylinder(Vector *axis, Vector *center, double *r,
|
||||
Vector *start, Vector *finish);
|
||||
Vector *start, Vector *finish) const;
|
||||
|
||||
void TriangulateInto(SShell *shell, SMesh *sm);
|
||||
|
||||
|
@ -341,16 +341,16 @@ public:
|
|||
};
|
||||
void MakeTrimEdgesInto(SEdgeList *sel, int flags, SCurve *sc, STrimBy *stb);
|
||||
void MakeEdgesInto(SShell *shell, SEdgeList *sel, int flags,
|
||||
SShell *useCurvesFrom=NULL);
|
||||
SShell *useCurvesFrom=NULL);
|
||||
|
||||
Vector ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB,
|
||||
Vector dir);
|
||||
void MakeSectionEdgesInto(SShell *shell, SEdgeList *sel, SBezierList *sbl);
|
||||
void MakeClassifyingBsp(SShell *shell, SShell *useCurvesFrom);
|
||||
double ChordToleranceForEdge(Vector a, Vector b);
|
||||
double ChordToleranceForEdge(Vector a, Vector b) const;
|
||||
void MakeTriangulationGridInto(List<double> *l, double vs, double vf,
|
||||
bool swapped);
|
||||
Vector PointAtMaybeSwapped(double u, double v, bool swapped);
|
||||
bool swapped) const;
|
||||
Vector PointAtMaybeSwapped(double u, double v, bool swapped) const;
|
||||
|
||||
void Reverse();
|
||||
void Clear();
|
||||
|
@ -377,8 +377,7 @@ public:
|
|||
};
|
||||
void MakeFromBoolean(SShell *a, SShell *b, int type);
|
||||
void CopyCurvesSplitAgainst(bool opA, SShell *agnst, SShell *into);
|
||||
void CopySurfacesTrimAgainst(SShell *sha, SShell *shb, SShell *into,
|
||||
int type);
|
||||
void CopySurfacesTrimAgainst(SShell *sha, SShell *shb, SShell *into, int type);
|
||||
void MakeIntersectionCurvesAgainst(SShell *against, SShell *into);
|
||||
void MakeClassifyingBsps(SShell *useCurvesFrom);
|
||||
void AllPointsIntersecting(Vector a, Vector b, List<SInter> *il,
|
||||
|
@ -398,23 +397,24 @@ public:
|
|||
COINC_OPP = 400
|
||||
};
|
||||
static const double DOTP_TOL;
|
||||
int ClassifyRegion(Vector edge_n, Vector inter_surf_n, Vector edge_surf_n);
|
||||
int ClassifyRegion(Vector edge_n, Vector inter_surf_n,
|
||||
Vector edge_surf_n) const;
|
||||
|
||||
bool ClassifyEdge(int *indir, int *outdir,
|
||||
Vector ea, Vector eb,
|
||||
Vector p,
|
||||
Vector edge_n_in, Vector edge_n_out, Vector surf_n);
|
||||
Vector p, Vector edge_n_in,
|
||||
Vector edge_n_out, Vector surf_n);
|
||||
|
||||
void MakeFromCopyOf(SShell *a);
|
||||
void MakeFromTransformationOf(SShell *a,
|
||||
Vector trans, Quaternion q, double scale);
|
||||
Vector trans, Quaternion q, double scale);
|
||||
void MakeFromAssemblyOf(SShell *a, SShell *b);
|
||||
void MergeCoincidentSurfaces();
|
||||
|
||||
void TriangulateInto(SMesh *sm);
|
||||
void MakeEdgesInto(SEdgeList *sel);
|
||||
void MakeSectionEdgesInto(Vector n, double d,
|
||||
SEdgeList *sel, SBezierList *sbl);
|
||||
bool IsEmpty();
|
||||
void MakeSectionEdgesInto(Vector n, double d, SEdgeList *sel, SBezierList *sbl);
|
||||
bool IsEmpty() const;
|
||||
void RemapFaces(Group *g, int remap);
|
||||
void Clear();
|
||||
};
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
extern int FLAG;
|
||||
|
||||
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
|
||||
SShell *agnstA, SShell *agnstB, SShell *into)
|
||||
SShell *agnstA, SShell *agnstB, SShell *into)
|
||||
{
|
||||
SCurve sc = {};
|
||||
// Important to keep the order of (surfA, surfB) consistent; when we later
|
||||
|
@ -460,7 +460,7 @@ void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
|
|||
// Are two surfaces coincident, with the same (or with opposite) normals?
|
||||
// Currently handles planes only.
|
||||
//-----------------------------------------------------------------------------
|
||||
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
|
||||
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) const {
|
||||
if(degm != 1 || degn != 1) return false;
|
||||
if(ss->degm != 1 || ss->degn != 1) return false;
|
||||
|
||||
|
@ -480,7 +480,7 @@ bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool SSurface::CoincidentWithPlane(Vector n, double d) {
|
||||
bool SSurface::CoincidentWithPlane(Vector n, double d) const {
|
||||
if(degm != 1 || degn != 1) return false;
|
||||
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
|
||||
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
|
||||
|
|
|
@ -213,7 +213,7 @@ haveEdge:
|
|||
return true;
|
||||
}
|
||||
|
||||
bool SContour::IsEar(int bp, double scaledEps) {
|
||||
bool SContour::IsEar(int bp, double scaledEps) const {
|
||||
int ap = WRAP(bp-1, l.n),
|
||||
cp = WRAP(bp+1, l.n);
|
||||
|
||||
|
@ -359,7 +359,7 @@ void SContour::UvTriangulateInto(SMesh *m, SSurface *srf) {
|
|||
ClipEarInto(m, 0, scaledEps); // add the last triangle
|
||||
}
|
||||
|
||||
double SSurface::ChordToleranceForEdge(Vector a, Vector b) {
|
||||
double SSurface::ChordToleranceForEdge(Vector a, Vector b) const {
|
||||
Vector as = PointAt(a.x, a.y), bs = PointAt(b.x, b.y);
|
||||
|
||||
double worst = VERY_NEGATIVE;
|
||||
|
@ -374,7 +374,7 @@ double SSurface::ChordToleranceForEdge(Vector a, Vector b) {
|
|||
return sqrt(worst);
|
||||
}
|
||||
|
||||
Vector SSurface::PointAtMaybeSwapped(double u, double v, bool swapped) {
|
||||
Vector SSurface::PointAtMaybeSwapped(double u, double v, bool swapped) const {
|
||||
if(swapped) {
|
||||
return PointAt(v, u);
|
||||
} else {
|
||||
|
@ -383,7 +383,7 @@ Vector SSurface::PointAtMaybeSwapped(double u, double v, bool swapped) {
|
|||
}
|
||||
|
||||
void SSurface::MakeTriangulationGridInto(List<double> *l, double vs, double vf,
|
||||
bool swapped)
|
||||
bool swapped) const
|
||||
{
|
||||
double worst = 0;
|
||||
|
||||
|
|
|
@ -337,7 +337,7 @@ double Style::StippleScaleMm(hStyle hs) {
|
|||
return 1.0;
|
||||
}
|
||||
|
||||
std::string Style::DescriptionString() {
|
||||
std::string Style::DescriptionString() const {
|
||||
if(name.empty()) {
|
||||
return ssprintf("s%03x-(unnamed)", h.v);
|
||||
} else {
|
||||
|
|
106
src/util.cpp
106
src/util.cpp
|
@ -279,7 +279,7 @@ Quaternion Quaternion::From(Vector u, Vector v)
|
|||
return q.WithMagnitude(1);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::Plus(Quaternion b) {
|
||||
Quaternion Quaternion::Plus(Quaternion b) const {
|
||||
Quaternion q;
|
||||
q.w = w + b.w;
|
||||
q.vx = vx + b.vx;
|
||||
|
@ -288,7 +288,7 @@ Quaternion Quaternion::Plus(Quaternion b) {
|
|||
return q;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::Minus(Quaternion b) {
|
||||
Quaternion Quaternion::Minus(Quaternion b) const {
|
||||
Quaternion q;
|
||||
q.w = w - b.w;
|
||||
q.vx = vx - b.vx;
|
||||
|
@ -297,7 +297,7 @@ Quaternion Quaternion::Minus(Quaternion b) {
|
|||
return q;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::ScaledBy(double s) {
|
||||
Quaternion Quaternion::ScaledBy(double s) const {
|
||||
Quaternion q;
|
||||
q.w = w*s;
|
||||
q.vx = vx*s;
|
||||
|
@ -306,15 +306,15 @@ Quaternion Quaternion::ScaledBy(double s) {
|
|||
return q;
|
||||
}
|
||||
|
||||
double Quaternion::Magnitude() {
|
||||
double Quaternion::Magnitude() const {
|
||||
return sqrt(w*w + vx*vx + vy*vy + vz*vz);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::WithMagnitude(double s) {
|
||||
Quaternion Quaternion::WithMagnitude(double s) const {
|
||||
return ScaledBy(s/Magnitude());
|
||||
}
|
||||
|
||||
Vector Quaternion::RotationU() {
|
||||
Vector Quaternion::RotationU() const {
|
||||
Vector v;
|
||||
v.x = w*w + vx*vx - vy*vy - vz*vz;
|
||||
v.y = 2*w *vz + 2*vx*vy;
|
||||
|
@ -322,7 +322,7 @@ Vector Quaternion::RotationU() {
|
|||
return v;
|
||||
}
|
||||
|
||||
Vector Quaternion::RotationV() {
|
||||
Vector Quaternion::RotationV() const {
|
||||
Vector v;
|
||||
v.x = 2*vx*vy - 2*w*vz;
|
||||
v.y = w*w - vx*vx + vy*vy - vz*vz;
|
||||
|
@ -330,7 +330,7 @@ Vector Quaternion::RotationV() {
|
|||
return v;
|
||||
}
|
||||
|
||||
Vector Quaternion::RotationN() {
|
||||
Vector Quaternion::RotationN() const {
|
||||
Vector v;
|
||||
v.x = 2*w*vy + 2*vx*vz;
|
||||
v.y = 2*vy*vz - 2*w*vx;
|
||||
|
@ -338,14 +338,14 @@ Vector Quaternion::RotationN() {
|
|||
return v;
|
||||
}
|
||||
|
||||
Vector Quaternion::Rotate(Vector p) {
|
||||
Vector Quaternion::Rotate(Vector p) const {
|
||||
// Express the point in the new basis
|
||||
return (RotationU().ScaledBy(p.x)).Plus(
|
||||
RotationV().ScaledBy(p.y)).Plus(
|
||||
RotationN().ScaledBy(p.z));
|
||||
}
|
||||
|
||||
Quaternion Quaternion::Inverse() {
|
||||
Quaternion Quaternion::Inverse() const {
|
||||
Quaternion r;
|
||||
r.w = w;
|
||||
r.vx = -vx;
|
||||
|
@ -354,7 +354,7 @@ Quaternion Quaternion::Inverse() {
|
|||
return r.WithMagnitude(1); // not that the normalize should be reqd
|
||||
}
|
||||
|
||||
Quaternion Quaternion::ToThe(double p) {
|
||||
Quaternion Quaternion::ToThe(double p) const {
|
||||
// Avoid division by zero, or arccos of something not in its domain
|
||||
if(w >= (1 - 1e-6)) {
|
||||
return From(1, 0, 0, 0);
|
||||
|
@ -374,7 +374,7 @@ Quaternion Quaternion::ToThe(double p) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::Times(Quaternion b) {
|
||||
Quaternion Quaternion::Times(Quaternion b) const {
|
||||
double sa = w, sb = b.w;
|
||||
Vector va = { vx, vy, vz };
|
||||
Vector vb = { b.vx, b.vy, b.vz };
|
||||
|
@ -390,7 +390,7 @@ Quaternion Quaternion::Times(Quaternion b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::Mirror() {
|
||||
Quaternion Quaternion::Mirror() const {
|
||||
Vector u = RotationU(),
|
||||
v = RotationV();
|
||||
u = u.ScaledBy(-1);
|
||||
|
@ -413,7 +413,7 @@ Vector Vector::From(hParam x, hParam y, hParam z) {
|
|||
return v;
|
||||
}
|
||||
|
||||
double Vector::Element(int i) {
|
||||
double Vector::Element(int i) const {
|
||||
switch(i) {
|
||||
case 0: return x;
|
||||
case 1: return y;
|
||||
|
@ -422,7 +422,7 @@ double Vector::Element(int i) {
|
|||
}
|
||||
}
|
||||
|
||||
bool Vector::Equals(Vector v, double tol) {
|
||||
bool Vector::Equals(Vector v, double tol) const {
|
||||
// Quick axis-aligned tests before going further
|
||||
double dx = v.x - x; if(dx < -tol || dx > tol) return false;
|
||||
double dy = v.y - y; if(dy < -tol || dy > tol) return false;
|
||||
|
@ -431,13 +431,13 @@ bool Vector::Equals(Vector v, double tol) {
|
|||
return (this->Minus(v)).MagSquared() < tol*tol;
|
||||
}
|
||||
|
||||
bool Vector::EqualsExactly(Vector v) {
|
||||
bool Vector::EqualsExactly(Vector v) const {
|
||||
return EXACT(x == v.x &&
|
||||
y == v.y &&
|
||||
z == v.z);
|
||||
}
|
||||
|
||||
Vector Vector::Plus(Vector b) {
|
||||
Vector Vector::Plus(Vector b) const {
|
||||
Vector r;
|
||||
|
||||
r.x = x + b.x;
|
||||
|
@ -447,7 +447,7 @@ Vector Vector::Plus(Vector b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector Vector::Minus(Vector b) {
|
||||
Vector Vector::Minus(Vector b) const {
|
||||
Vector r;
|
||||
|
||||
r.x = x - b.x;
|
||||
|
@ -457,7 +457,7 @@ Vector Vector::Minus(Vector b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector Vector::Negated() {
|
||||
Vector Vector::Negated() const {
|
||||
Vector r;
|
||||
|
||||
r.x = -x;
|
||||
|
@ -467,7 +467,7 @@ Vector Vector::Negated() {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector Vector::Cross(Vector b) {
|
||||
Vector Vector::Cross(Vector b) const {
|
||||
Vector r;
|
||||
|
||||
r.x = -(z*b.y) + (y*b.z);
|
||||
|
@ -477,17 +477,17 @@ Vector Vector::Cross(Vector b) {
|
|||
return r;
|
||||
}
|
||||
|
||||
double Vector::Dot(Vector b) {
|
||||
double Vector::Dot(Vector b) const {
|
||||
return (x*b.x + y*b.y + z*b.z);
|
||||
}
|
||||
|
||||
double Vector::DirectionCosineWith(Vector b) {
|
||||
double Vector::DirectionCosineWith(Vector b) const {
|
||||
Vector a = this->WithMagnitude(1);
|
||||
b = b.WithMagnitude(1);
|
||||
return a.Dot(b);
|
||||
}
|
||||
|
||||
Vector Vector::Normal(int which) {
|
||||
Vector Vector::Normal(int which) const {
|
||||
Vector n;
|
||||
|
||||
// Arbitrarily choose one vector that's normal to us, pivoting
|
||||
|
@ -521,13 +521,13 @@ Vector Vector::Normal(int which) {
|
|||
return n;
|
||||
}
|
||||
|
||||
Vector Vector::RotatedAbout(Vector orig, Vector axis, double theta) {
|
||||
Vector Vector::RotatedAbout(Vector orig, Vector axis, double theta) const {
|
||||
Vector r = this->Minus(orig);
|
||||
r = r.RotatedAbout(axis, theta);
|
||||
return r.Plus(orig);
|
||||
}
|
||||
|
||||
Vector Vector::RotatedAbout(Vector axis, double theta) {
|
||||
Vector Vector::RotatedAbout(Vector axis, double theta) const {
|
||||
double c = cos(theta);
|
||||
double s = sin(theta);
|
||||
|
||||
|
@ -550,7 +550,7 @@ Vector Vector::RotatedAbout(Vector axis, double theta) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector Vector::DotInToCsys(Vector u, Vector v, Vector n) {
|
||||
Vector Vector::DotInToCsys(Vector u, Vector v, Vector n) const {
|
||||
Vector r = {
|
||||
this->Dot(u),
|
||||
this->Dot(v),
|
||||
|
@ -559,7 +559,7 @@ Vector Vector::DotInToCsys(Vector u, Vector v, Vector n) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector Vector::ScaleOutOfCsys(Vector u, Vector v, Vector n) {
|
||||
Vector Vector::ScaleOutOfCsys(Vector u, Vector v, Vector n) const {
|
||||
Vector r = u.ScaledBy(x).Plus(
|
||||
v.ScaledBy(y).Plus(
|
||||
n.ScaledBy(z)));
|
||||
|
@ -567,7 +567,7 @@ Vector Vector::ScaleOutOfCsys(Vector u, Vector v, Vector n) {
|
|||
}
|
||||
|
||||
Vector Vector::InPerspective(Vector u, Vector v, Vector n,
|
||||
Vector origin, double cameraTan)
|
||||
Vector origin, double cameraTan) const
|
||||
{
|
||||
Vector r = this->Minus(origin);
|
||||
r = r.DotInToCsys(u, v, n);
|
||||
|
@ -579,12 +579,12 @@ Vector Vector::InPerspective(Vector u, Vector v, Vector n,
|
|||
return r;
|
||||
}
|
||||
|
||||
double Vector::DistanceToLine(Vector p0, Vector dp) {
|
||||
double Vector::DistanceToLine(Vector p0, Vector dp) const {
|
||||
double m = dp.Magnitude();
|
||||
return ((this->Minus(p0)).Cross(dp)).Magnitude() / m;
|
||||
}
|
||||
|
||||
bool Vector::OnLineSegment(Vector a, Vector b, double tol) {
|
||||
bool Vector::OnLineSegment(Vector a, Vector b, double tol) const {
|
||||
if(this->Equals(a, tol) || this->Equals(b, tol)) return true;
|
||||
|
||||
Vector d = b.Minus(a);
|
||||
|
@ -600,7 +600,7 @@ bool Vector::OnLineSegment(Vector a, Vector b, double tol) {
|
|||
return true;
|
||||
}
|
||||
|
||||
Vector Vector::ClosestPointOnLine(Vector p0, Vector dp) {
|
||||
Vector Vector::ClosestPointOnLine(Vector p0, Vector dp) const {
|
||||
dp = dp.WithMagnitude(1);
|
||||
// this, p0, and (p0+dp) define a plane; the min distance is in
|
||||
// that plane, so calculate its normal
|
||||
|
@ -614,15 +614,15 @@ Vector Vector::ClosestPointOnLine(Vector p0, Vector dp) {
|
|||
return this->Plus(n.WithMagnitude(d));
|
||||
}
|
||||
|
||||
double Vector::MagSquared() {
|
||||
double Vector::MagSquared() const {
|
||||
return x*x + y*y + z*z;
|
||||
}
|
||||
|
||||
double Vector::Magnitude() {
|
||||
double Vector::Magnitude() const {
|
||||
return sqrt(x*x + y*y + z*z);
|
||||
}
|
||||
|
||||
Vector Vector::ScaledBy(double v) {
|
||||
Vector Vector::ScaledBy(double v) const {
|
||||
Vector r;
|
||||
|
||||
r.x = x * v;
|
||||
|
@ -632,7 +632,7 @@ Vector Vector::ScaledBy(double v) {
|
|||
return r;
|
||||
}
|
||||
|
||||
Vector Vector::WithMagnitude(double v) {
|
||||
Vector Vector::WithMagnitude(double v) const {
|
||||
double m = Magnitude();
|
||||
if(EXACT(m == 0)) {
|
||||
// We can do a zero vector with zero magnitude, but not any other cases.
|
||||
|
@ -645,7 +645,7 @@ Vector Vector::WithMagnitude(double v) {
|
|||
}
|
||||
}
|
||||
|
||||
Vector Vector::ProjectVectorInto(hEntity wrkpl) {
|
||||
Vector Vector::ProjectVectorInto(hEntity wrkpl) const {
|
||||
EntityBase *w = SK.GetEntity(wrkpl);
|
||||
Vector u = w->Normal()->NormalU();
|
||||
Vector v = w->Normal()->NormalV();
|
||||
|
@ -656,7 +656,7 @@ Vector Vector::ProjectVectorInto(hEntity wrkpl) {
|
|||
return (u.ScaledBy(up)).Plus(v.ScaledBy(vp));
|
||||
}
|
||||
|
||||
Vector Vector::ProjectInto(hEntity wrkpl) {
|
||||
Vector Vector::ProjectInto(hEntity wrkpl) const {
|
||||
EntityBase *w = SK.GetEntity(wrkpl);
|
||||
Vector p0 = w->WorkplaneGetOffset();
|
||||
|
||||
|
@ -665,25 +665,25 @@ Vector Vector::ProjectInto(hEntity wrkpl) {
|
|||
return p0.Plus(f.ProjectVectorInto(wrkpl));
|
||||
}
|
||||
|
||||
Point2d Vector::Project2d(Vector u, Vector v) {
|
||||
Point2d Vector::Project2d(Vector u, Vector v) const {
|
||||
Point2d p;
|
||||
p.x = this->Dot(u);
|
||||
p.y = this->Dot(v);
|
||||
return p;
|
||||
}
|
||||
|
||||
Point2d Vector::ProjectXy() {
|
||||
Point2d Vector::ProjectXy() const {
|
||||
Point2d p;
|
||||
p.x = x;
|
||||
p.y = y;
|
||||
return p;
|
||||
}
|
||||
|
||||
Vector4 Vector::Project4d() {
|
||||
Vector4 Vector::Project4d() const {
|
||||
return Vector4::From(1, x, y, z);
|
||||
}
|
||||
|
||||
double Vector::DivPivoting(Vector delta) {
|
||||
double Vector::DivPivoting(Vector delta) const {
|
||||
double mx = fabs(delta.x), my = fabs(delta.y), mz = fabs(delta.z);
|
||||
|
||||
if(mx > my && mx > mz) {
|
||||
|
@ -695,7 +695,7 @@ double Vector::DivPivoting(Vector delta) {
|
|||
}
|
||||
}
|
||||
|
||||
Vector Vector::ClosestOrtho() {
|
||||
Vector Vector::ClosestOrtho() const {
|
||||
double mx = fabs(x), my = fabs(y), mz = fabs(z);
|
||||
|
||||
if(mx > my && mx > mz) {
|
||||
|
@ -707,7 +707,7 @@ Vector Vector::ClosestOrtho() {
|
|||
}
|
||||
}
|
||||
|
||||
Vector Vector::ClampWithin(double minv, double maxv) {
|
||||
Vector Vector::ClampWithin(double minv, double maxv) const {
|
||||
Vector ret = *this;
|
||||
|
||||
if(ret.x < minv) ret.x = minv;
|
||||
|
@ -721,7 +721,7 @@ Vector Vector::ClampWithin(double minv, double maxv) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
void Vector::MakeMaxMin(Vector *maxv, Vector *minv) {
|
||||
void Vector::MakeMaxMin(Vector *maxv, Vector *minv) const {
|
||||
maxv->x = max(maxv->x, x);
|
||||
maxv->y = max(maxv->y, y);
|
||||
maxv->z = max(maxv->z, z);
|
||||
|
@ -731,7 +731,7 @@ void Vector::MakeMaxMin(Vector *maxv, Vector *minv) {
|
|||
minv->z = min(minv->z, z);
|
||||
}
|
||||
|
||||
bool Vector::OutsideAndNotOn(Vector maxv, Vector minv) {
|
||||
bool Vector::OutsideAndNotOn(Vector maxv, Vector minv) const {
|
||||
return (x > maxv.x + LENGTH_EPS) || (x < minv.x - LENGTH_EPS) ||
|
||||
(y > maxv.y + LENGTH_EPS) || (y < minv.y - LENGTH_EPS) ||
|
||||
(z > maxv.z + LENGTH_EPS) || (z < minv.z - LENGTH_EPS);
|
||||
|
@ -918,19 +918,19 @@ Vector4 Vector4::Blend(Vector4 a, Vector4 b, double t) {
|
|||
return (a.ScaledBy(1 - t)).Plus(b.ScaledBy(t));
|
||||
}
|
||||
|
||||
Vector4 Vector4::Plus(Vector4 b) {
|
||||
Vector4 Vector4::Plus(Vector4 b) const {
|
||||
return Vector4::From(w + b.w, x + b.x, y + b.y, z + b.z);
|
||||
}
|
||||
|
||||
Vector4 Vector4::Minus(Vector4 b) {
|
||||
Vector4 Vector4::Minus(Vector4 b) const {
|
||||
return Vector4::From(w - b.w, x - b.x, y - b.y, z - b.z);
|
||||
}
|
||||
|
||||
Vector4 Vector4::ScaledBy(double s) {
|
||||
Vector4 Vector4::ScaledBy(double s) const {
|
||||
return Vector4::From(w*s, x*s, y*s, z*s);
|
||||
}
|
||||
|
||||
Vector Vector4::PerspectiveProject() {
|
||||
Vector Vector4::PerspectiveProject() const {
|
||||
return Vector::From(x / w, y / w, z / w);
|
||||
}
|
||||
|
||||
|
@ -1036,8 +1036,8 @@ BBox BBox::From(const Vector &p0, const Vector &p1) {
|
|||
return bbox;
|
||||
}
|
||||
|
||||
Vector BBox::GetOrigin() { return minp.Plus(maxp.Minus(minp)).ScaledBy(0.5); }
|
||||
Vector BBox::GetExtents() { return maxp.Minus(minp).ScaledBy(0.5); }
|
||||
Vector BBox::GetOrigin() const { return minp.Plus(maxp.Minus(minp)).ScaledBy(0.5); }
|
||||
Vector BBox::GetExtents() const { return maxp.Minus(minp).ScaledBy(0.5); }
|
||||
|
||||
void BBox::Include(const Vector &v, double r) {
|
||||
minp.x = min(minp.x, v.x - r);
|
||||
|
@ -1049,7 +1049,7 @@ void BBox::Include(const Vector &v, double r) {
|
|||
maxp.z = max(maxp.z, v.z + r);
|
||||
}
|
||||
|
||||
bool BBox::Overlaps(BBox &b1) {
|
||||
bool BBox::Overlaps(const BBox &b1) const {
|
||||
|
||||
Vector t = b1.GetOrigin().Minus(GetOrigin());
|
||||
Vector e = b1.GetExtents().Plus(GetExtents());
|
||||
|
@ -1057,6 +1057,6 @@ bool BBox::Overlaps(BBox &b1) {
|
|||
return fabs(t.x) < e.x && fabs(t.y) < e.y && fabs(t.z) < e.z;
|
||||
}
|
||||
|
||||
bool BBox::Contains(const Point2d &p) {
|
||||
bool BBox::Contains(const Point2d &p) const {
|
||||
return p.x >= minp.x && p.y >= minp.y && p.x <= maxp.x && p.y <= maxp.y;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue