solvespace/solvespace.cpp

647 lines
19 KiB
C++
Raw Normal View History

#include "solvespace.h"
#include <png.h>
SolveSpace SS;
void SolveSpace::Init(char *cmdLine) {
int i;
// Default list of colors for the model material
modelColor[0] = CnfThawDWORD(RGB(150, 150, 150), "ModelColor_0");
modelColor[1] = CnfThawDWORD(RGB(100, 100, 100), "ModelColor_1");
modelColor[2] = CnfThawDWORD(RGB( 30, 30, 30), "ModelColor_2");
modelColor[3] = CnfThawDWORD(RGB(150, 0, 0), "ModelColor_3");
modelColor[4] = CnfThawDWORD(RGB( 0, 100, 0), "ModelColor_4");
modelColor[5] = CnfThawDWORD(RGB( 0, 80, 80), "ModelColor_5");
modelColor[6] = CnfThawDWORD(RGB( 0, 0, 130), "ModelColor_6");
modelColor[7] = CnfThawDWORD(RGB( 80, 0, 80), "ModelColor_7");
// Light intensities
lightIntensity[0] = ((int)CnfThawDWORD( 700, "LightIntensity_0"))/1000.0;
lightIntensity[1] = ((int)CnfThawDWORD( 400, "LightIntensity_1"))/1000.0;
// Light positions
lightDir[0].x = ((int)CnfThawDWORD(-500, "LightDir_0_Right" ))/1000.0;
lightDir[0].y = ((int)CnfThawDWORD( 500, "LightDir_0_Up" ))/1000.0;
lightDir[0].z = ((int)CnfThawDWORD( 0, "LightDir_0_Forward" ))/1000.0;
lightDir[1].x = ((int)CnfThawDWORD( 500, "LightDir_1_Right" ))/1000.0;
lightDir[1].y = ((int)CnfThawDWORD( 0, "LightDir_1_Up" ))/1000.0;
lightDir[1].z = ((int)CnfThawDWORD( 0, "LightDir_1_Forward" ))/1000.0;
// Mesh tolerance
meshTol = ((int)CnfThawDWORD(1000, "MeshTolerance"))/1000.0;
// View units
viewUnits = (Unit)CnfThawDWORD((DWORD)UNIT_MM, "ViewUnits");
// Camera tangent (determines perspective)
cameraTangent = ((int)CnfThawDWORD(0, "CameraTangent"))/1e6;
// Recent files menus
for(i = 0; i < MAX_RECENT; i++) {
char name[100];
sprintf(name, "RecentFile_%d", i);
strcpy(RecentFile[i], "");
CnfThawString(RecentFile[i], MAX_PATH, name);
}
RefreshRecentMenus();
// Start with either an empty file, or the file specified on the
// command line.
NewFile();
AfterNewFile();
if(strlen(cmdLine) != 0) {
if(LoadFromFile(cmdLine)) {
strcpy(saveFile, cmdLine);
} else {
NewFile();
}
}
AfterNewFile();
}
void SolveSpace::Exit(void) {
int i;
char name[100];
// Recent files
for(i = 0; i < MAX_RECENT; i++) {
sprintf(name, "RecentFile_%d", i);
CnfFreezeString(RecentFile[i], name);
}
// Model colors
for(i = 0; i < MODEL_COLORS; i++) {
sprintf(name, "ModelColor_%d", i);
CnfFreezeDWORD(modelColor[i], name);
}
// Light intensities
CnfFreezeDWORD((int)(lightIntensity[0]*1000), "LightIntensity_0");
CnfFreezeDWORD((int)(lightIntensity[1]*1000), "LightIntensity_1");
// Light directions
CnfFreezeDWORD((int)(lightDir[0].x*1000), "LightDir_0_Right");
CnfFreezeDWORD((int)(lightDir[0].y*1000), "LightDir_0_Up");
CnfFreezeDWORD((int)(lightDir[0].z*1000), "LightDir_0_Forward");
CnfFreezeDWORD((int)(lightDir[1].x*1000), "LightDir_1_Right");
CnfFreezeDWORD((int)(lightDir[1].y*1000), "LightDir_1_Up");
CnfFreezeDWORD((int)(lightDir[1].z*1000), "LightDir_1_Forward");
// Mesh tolerance
CnfFreezeDWORD((int)(meshTol*1000), "MeshTolerance");
// Display/entry units
CnfFreezeDWORD((int)viewUnits, "ViewUnits");
// Camera tangent (determines perspective)
CnfFreezeDWORD((int)(cameraTangent*1e6), "CameraTangent");
ExitNow();
}
void SolveSpace::DoLater(void) {
if(later.generateAll) GenerateAll();
if(later.showTW) TW.Show();
ZERO(&later);
}
int SolveSpace::CircleSides(double r) {
int s = 7 + (int)(sqrt(r*SS.GW.scale/meshTol));
return min(s, 40);
}
char *SolveSpace::MmToString(double v) {
static int WhichBuf;
static char Bufs[8][128];
WhichBuf++;
if(WhichBuf >= 8 || WhichBuf < 0) WhichBuf = 0;
char *s = Bufs[WhichBuf];
if(viewUnits == UNIT_INCHES) {
sprintf(s, "%.3f", v/25.4);
} else {
sprintf(s, "%.2f", v);
}
return s;
}
double SolveSpace::ExprToMm(Expr *e) {
if(viewUnits == UNIT_INCHES) {
return (e->Eval())*25.4;
} else {
return e->Eval();
}
}
void SolveSpace::AfterNewFile(void) {
ReloadAllImported();
GenerateAll(-1, -1);
TW.Init();
GW.Init();
unsaved = false;
int w, h;
GetGraphicsWindowSize(&w, &h);
GW.width = w;
GW.height = h;
// The triangles haven't been generated yet, but zoom to fit the entities
// roughly in the window, since that sets the mesh tolerance.
GW.ZoomToFit();
GenerateAll(0, INT_MAX);
later.showTW = true;
// Then zoom to fit again, to fit the triangles
GW.ZoomToFit();
}
void SolveSpace::MarkGroupDirtyByEntity(hEntity he) {
Entity *e = SS.GetEntity(he);
MarkGroupDirty(e->group);
}
void SolveSpace::MarkGroupDirty(hGroup hg) {
int i;
bool go = false;
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
if(g->h.v == hg.v) {
go = true;
}
if(go) {
g->clean = false;
}
}
unsaved = true;
}
bool SolveSpace::PruneOrphans(void) {
int i;
for(i = 0; i < request.n; i++) {
Request *r = &(request.elem[i]);
if(GroupExists(r->group)) continue;
(deleted.requests)++;
request.RemoveById(r->h);
return true;
}
for(i = 0; i < constraint.n; i++) {
Constraint *c = &(constraint.elem[i]);
if(GroupExists(c->group)) continue;
(deleted.constraints)++;
constraint.RemoveById(c->h);
return true;
}
return false;
}
bool SolveSpace::GroupsInOrder(hGroup before, hGroup after) {
if(before.v == 0) return true;
if(after.v == 0) return true;
int beforep = -1, afterp = -1;
int i;
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
if(g->h.v == before.v) beforep = i;
if(g->h.v == after.v) afterp = i;
}
if(beforep < 0 || afterp < 0) return false;
if(beforep >= afterp) return false;
return true;
}
bool SolveSpace::GroupExists(hGroup hg) {
// A nonexistent group is not acceptable
return group.FindByIdNoOops(hg) ? true : false;
}
bool SolveSpace::EntityExists(hEntity he) {
// A nonexstient entity is acceptable, though, usually just means it
// doesn't apply.
if(he.v == Entity::NO_ENTITY.v) return true;
return entity.FindByIdNoOops(he) ? true : false;
}
bool SolveSpace::PruneGroups(hGroup hg) {
Group *g = GetGroup(hg);
if(GroupsInOrder(g->opA, hg) &&
EntityExists(g->predef.origin) &&
EntityExists(g->predef.entityB) &&
EntityExists(g->predef.entityC))
{
return false;
}
(deleted.groups)++;
group.RemoveById(g->h);
return true;
}
bool SolveSpace::PruneRequests(hGroup hg) {
int i;
for(i = 0; i < entity.n; i++) {
Entity *e = &(entity.elem[i]);
if(e->group.v != hg.v) continue;
if(EntityExists(e->workplane)) continue;
if(!e->h.isFromRequest()) oops();
(deleted.requests)++;
request.RemoveById(e->h.request());
return true;
}
return false;
}
bool SolveSpace::PruneConstraints(hGroup hg) {
int i;
for(i = 0; i < constraint.n; i++) {
Constraint *c = &(constraint.elem[i]);
if(c->group.v != hg.v) continue;
if(EntityExists(c->workplane) &&
EntityExists(c->ptA) &&
EntityExists(c->ptB) &&
EntityExists(c->ptC) &&
EntityExists(c->entityA) &&
EntityExists(c->entityB))
{
continue;
}
(deleted.constraints)++;
constraint.RemoveById(c->h);
return true;
}
return false;
}
void SolveSpace::GenerateAll(void) {
int i;
int firstDirty = INT_MAX, lastVisible = 0;
// Start from the first dirty group, and solve until the active group,
// since all groups after the active group are hidden.
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
if((!g->clean) || (g->solved.how != Group::SOLVED_OKAY)) {
firstDirty = min(firstDirty, i);
}
if(g->h.v == SS.GW.activeGroup.v) {
lastVisible = i;
}
}
if(firstDirty == INT_MAX || lastVisible == 0) {
// All clean; so just regenerate the entities, and don't solve anything.
GenerateAll(-1, -1);
} else {
GenerateAll(firstDirty, lastVisible);
}
}
void SolveSpace::GenerateAll(int first, int last) {
int i, j;
while(PruneOrphans())
;
// Don't lose our numerical guesses when we regenerate.
IdList<Param,hParam> prev;
param.MoveSelfInto(&prev);
entity.Clear();
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
// The group may depend on entities or other groups, to define its
// workplane geometry or for its operands. Those must already exist
// in a previous group, so check them before generating.
if(PruneGroups(g->h))
goto pruned;
for(j = 0; j < request.n; j++) {
Request *r = &(request.elem[j]);
if(r->group.v != g->h.v) continue;
r->Generate(&entity, &param);
}
g->Generate(&entity, &param);
// The requests and constraints depend on stuff in this or the
// previous group, so check them after generating.
if(PruneRequests(g->h) || PruneConstraints(g->h))
goto pruned;
// Use the previous values for params that we've seen before, as
// initial guesses for the solver.
for(j = 0; j < param.n; j++) {
Param *newp = &(param.elem[j]);
if(newp->known) continue;
Param *prevp = prev.FindByIdNoOops(newp->h);
if(prevp) newp->val = prevp->val;
}
if(g->h.v == Group::HGROUP_REFERENCES.v) {
ForceReferences();
g->solved.how = Group::SOLVED_OKAY;
g->clean = true;
} else {
if(i >= first && i <= last) {
// The group falls inside the range, so really solve it,
// and then regenerate the mesh based on the solved stuff.
SolveGroup(g->h);
g->GeneratePolygon();
g->GenerateMesh();
g->clean = true;
} else {
// The group falls outside the range, so just assume that
// it's good wherever we left it. The mesh is unchanged,
// and the parameters must be marked as known.
for(j = 0; j < param.n; j++) {
Param *newp = &(param.elem[j]);
Param *prevp = prev.FindByIdNoOops(newp->h);
if(prevp) newp->known = true;
}
}
}
}
// And update any reference dimensions with their new values
for(i = 0; i < constraint.n; i++) {
Constraint *c = &(constraint.elem[i]);
if(c->reference) {
c->ModifyToSatisfy();
}
}
prev.Clear();
InvalidateGraphics();
// Remove nonexistent selection items, for same reason we waited till
// the end to put up a dialog box.
GW.ClearNonexistentSelectionItems();
if(deleted.requests > 0 || deleted.constraints > 0 || deleted.groups > 0) {
// All sorts of interesting things could have happened; for example,
// the active group or active workplane could have been deleted. So
// clear all that out.
if(deleted.groups > 0) {
SS.TW.ClearSuper();
}
later.showTW = true;
GW.ClearSuper();
// Don't display any errors until we've regenerated fully. The
// sketch is not necessarily in a consistent state until we've
// pruned any orphaned etc. objects, and the message loop for the
// messagebox could allow us to repaint and crash. But now we must
// be fine.
Error("Additional sketch elements were deleted, because they depend "
"on the element that was just deleted explicitly. These "
"include: \r\n"
" %d request%s\r\n"
" %d constraint%s\r\n"
" %d group%s\r\n\r\n"
"Choose Edit -> Undo to undelete all elements.",
deleted.requests, deleted.requests == 1 ? "" : "s",
deleted.constraints, deleted.constraints == 1 ? "" : "s",
deleted.groups, deleted.groups == 1 ? "" : "s");
memset(&deleted, 0, sizeof(deleted));
}
allConsistent = true;
return;
pruned:
// Restore the numerical guesses
param.Clear();
prev.MoveSelfInto(&param);
// Try again
GenerateAll(first, last);
}
void SolveSpace::ForceReferences(void) {
// Force the values of the paramters that define the three reference
// coordinate systems.
static const struct {
hRequest hr;
Quaternion q;
} Quat[] = {
{ Request::HREQUEST_REFERENCE_XY, { 1, 0, 0, 0, } },
{ Request::HREQUEST_REFERENCE_YZ, { 0.5, 0.5, 0.5, 0.5, } },
{ Request::HREQUEST_REFERENCE_ZX, { 0.5, -0.5, -0.5, -0.5, } },
};
for(int i = 0; i < 3; i++) {
hRequest hr = Quat[i].hr;
Entity *wrkpl = GetEntity(hr.entity(0));
// The origin for our coordinate system, always zero
Entity *origin = GetEntity(wrkpl->point[0]);
origin->PointForceTo(Vector::From(0, 0, 0));
GetParam(origin->param[0])->known = true;
GetParam(origin->param[1])->known = true;
GetParam(origin->param[2])->known = true;
// The quaternion that defines the rotation, from the table.
Entity *normal = GetEntity(wrkpl->normal);
normal->NormalForceTo(Quat[i].q);
GetParam(normal->param[0])->known = true;
GetParam(normal->param[1])->known = true;
GetParam(normal->param[2])->known = true;
GetParam(normal->param[3])->known = true;
}
}
void SolveSpace::SolveGroup(hGroup hg) {
int i;
// Clear out the system to be solved.
sys.entity.Clear();
sys.param.Clear();
sys.eq.Clear();
// And generate all the params for requests in this group
for(i = 0; i < request.n; i++) {
Request *r = &(request.elem[i]);
if(r->group.v != hg.v) continue;
r->Generate(&(sys.entity), &(sys.param));
}
// And for the group itself
Group *g = SS.GetGroup(hg);
g->Generate(&(sys.entity), &(sys.param));
// Set the initial guesses for all the params
for(i = 0; i < sys.param.n; i++) {
Param *p = &(sys.param.elem[i]);
p->known = false;
p->val = GetParam(p->h)->val;
}
sys.Solve(g);
FreeAllTemporary();
}
void SolveSpace::ExportAsPngTo(char *filename) {
int w = (int)SS.GW.width, h = (int)SS.GW.height;
// No guarantee that the back buffer contains anything valid right now,
// so repaint the scene.
SS.GW.Paint(w, h);
FILE *f = fopen(filename, "wb");
if(!f) goto err;
png_struct *png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);
if(!png_ptr) goto err;
png_info *info_ptr = png_create_info_struct(png_ptr);
if(!png_ptr) goto err;
if(setjmp(png_jmpbuf(png_ptr))) goto err;
png_init_io(png_ptr, f);
// glReadPixels wants to align things on 4-boundaries, and there's 3
// bytes per pixel. As long as the row width is divisible by 4, all
// works out.
w &= ~3; h &= ~3;
png_set_IHDR(png_ptr, info_ptr, w, h,
8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
png_write_info(png_ptr, info_ptr);
// Get the pixel data from the framebuffer
BYTE *pixels = (BYTE *)AllocTemporary(3*w*h);
BYTE **rowptrs = (BYTE **)AllocTemporary(h*sizeof(BYTE *));
glReadPixels(0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, pixels);
int y;
for(y = 0; y < h; y++) {
// gl puts the origin at lower left, but png puts it top left
rowptrs[y] = pixels + ((h - 1) - y)*(3*w);
}
png_write_image(png_ptr, rowptrs);
png_write_end(png_ptr, info_ptr);
png_destroy_write_struct(&png_ptr, &info_ptr);
return;
err:
Error("Error writing PNG file '%s'", filename);
if(f) fclose(f);
return;
}
void SolveSpace::RemoveFromRecentList(char *file) {
int src, dest;
dest = 0;
for(src = 0; src < MAX_RECENT; src++) {
if(strcmp(file, RecentFile[src]) != 0) {
if(src != dest) strcpy(RecentFile[dest], RecentFile[src]);
dest++;
}
}
while(dest < MAX_RECENT) strcpy(RecentFile[dest++], "");
RefreshRecentMenus();
}
void SolveSpace::AddToRecentList(char *file) {
RemoveFromRecentList(file);
int src;
for(src = MAX_RECENT - 2; src >= 0; src--) {
strcpy(RecentFile[src+1], RecentFile[src]);
}
strcpy(RecentFile[0], file);
RefreshRecentMenus();
}
bool SolveSpace::GetFilenameAndSave(bool saveAs) {
char newFile[MAX_PATH];
strcpy(newFile, saveFile);
if(saveAs || strlen(newFile)==0) {
if(!GetSaveFile(newFile, SLVS_EXT, SLVS_PATTERN)) return false;
}
if(SaveToFile(newFile)) {
AddToRecentList(newFile);
strcpy(saveFile, newFile);
unsaved = false;
return true;
} else {
return false;
}
}
bool SolveSpace::OkayToStartNewFile(void) {
if(!unsaved) return true;
switch(SaveFileYesNoCancel()) {
case IDYES:
return GetFilenameAndSave(false);
case IDNO:
return true;
case IDCANCEL:
return false;
default: oops();
}
}
void SolveSpace::MenuFile(int id) {
if(id >= RECENT_OPEN && id < (RECENT_OPEN+MAX_RECENT)) {
char newFile[MAX_PATH];
strcpy(newFile, RecentFile[id-RECENT_OPEN]);
RemoveFromRecentList(newFile);
if(SS.LoadFromFile(newFile)) {
strcpy(SS.saveFile, newFile);
AddToRecentList(newFile);
} else {
strcpy(SS.saveFile, "");
SS.NewFile();
}
SS.AfterNewFile();
return;
}
switch(id) {
case GraphicsWindow::MNU_NEW:
if(!SS.OkayToStartNewFile()) break;
strcpy(SS.saveFile, "");
SS.NewFile();
SS.AfterNewFile();
break;
case GraphicsWindow::MNU_OPEN: {
if(!SS.OkayToStartNewFile()) break;
char newFile[MAX_PATH] = "";
if(GetOpenFile(newFile, SLVS_EXT, SLVS_PATTERN)) {
if(SS.LoadFromFile(newFile)) {
strcpy(SS.saveFile, newFile);
AddToRecentList(newFile);
} else {
strcpy(SS.saveFile, "");
SS.NewFile();
}
SS.AfterNewFile();
}
break;
}
case GraphicsWindow::MNU_SAVE:
SS.GetFilenameAndSave(false);
break;
case GraphicsWindow::MNU_SAVE_AS:
SS.GetFilenameAndSave(true);
break;
case GraphicsWindow::MNU_EXPORT_PNG: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, PNG_EXT, PNG_PATTERN)) break;
SS.ExportAsPngTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXIT:
if(!SS.OkayToStartNewFile()) break;
SS.Exit();
break;
default: oops();
}
}