solvespace/srf/surface.h

235 lines
6.7 KiB
C
Raw Normal View History

#ifndef __SURFACE_H
#define __SURFACE_H
// Utility functions, Bernstein polynomials of order 1-3 and their derivatives.
double Bernstein(int k, int deg, double t);
double BernsteinDerivative(int k, int deg, double t);
// Utility data structure, a two-dimensional BSP to accelerate polygon
// operations.
class SBspUv {
public:
Point2d a, b;
SBspUv *pos;
SBspUv *neg;
SBspUv *more;
static const int INSIDE = 100;
static const int OUTSIDE = 200;
static const int EDGE_PARALLEL = 300;
static const int EDGE_ANTIPARALLEL = 400;
static const int EDGE_OTHER = 500;
static SBspUv *Alloc(void);
static SBspUv *From(SEdgeList *el);
Point2d IntersectionWith(Point2d a, Point2d b);
SBspUv *InsertEdge(Point2d a, Point2d b);
int ClassifyPoint(Point2d p, Point2d eb);
int ClassifyEdge(Point2d ea, Point2d eb);
};
// Now the data structures to represent a shell of trimmed rational polynomial
// surfaces.
class SShell;
class hSSurface {
public:
DWORD v;
};
class hSCurve {
public:
DWORD v;
};
// Stuff for rational polynomial curves, of degree one to three. These are
// our inputs.
class SBezier {
public:
int tag;
int deg;
Vector ctrl[4];
double weight[4];
Vector PointAt(double t);
Vector Start(void);
Vector Finish(void);
void MakePwlInto(List<Vector> *l);
void MakePwlInto(List<Vector> *l, Vector offset);
void MakePwlWorker(List<Vector> *l, double ta, double tb, Vector offset);
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
void Reverse(void);
SBezier TransformedBy(Vector t, Quaternion q);
static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3);
static SBezier From(Vector p0, Vector p1, Vector p2);
static SBezier From(Vector p0, Vector p1);
};
class SBezierList {
public:
List<SBezier> l;
void Clear(void);
};
class SBezierLoop {
public:
List<SBezier> l;
inline void Clear(void) { l.Clear(); }
void Reverse(void);
void MakePwlInto(SContour *sc);
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
static SBezierLoop FromCurves(SBezierList *spcl,
bool *allClosed, SEdge *errorAt);
};
class SBezierLoopSet {
public:
List<SBezierLoop> l;
Vector normal;
Vector point;
static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly,
bool *allClosed, SEdge *errorAt);
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
void Clear(void);
};
// Stuff for the surface trim curves: piecewise linear
class SCurve {
public:
hSCurve h;
hSCurve newH; // when merging with booleans
bool interCurve; // it's a newly-calculated intersection
bool isExact;
SBezier exact;
List<Vector> pts;
hSSurface surfA;
hSSurface surfB;
static SCurve FromTransformationOf(SCurve *a, Vector t, Quaternion q);
SCurve MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB);
void Clear(void);
};
// A segment of a curve by which a surface is trimmed: indicates which curve,
// by its handle, and the starting and ending points of our segment of it.
// The vector out points out of the surface; it, the surface outer normal,
// and a tangent to the beginning of the curve are all orthogonal.
class STrimBy {
public:
hSCurve curve;
bool backwards;
// If a trim runs backwards, then start and finish still correspond to
// the actual start and finish, but they appear in reverse order in
// the referenced curve.
Vector start;
Vector finish;
static STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool bkwds);
};
// An intersection point between a line and a surface
class SInter {
public:
Vector p;
double dot; // between line and surface's normal
hSSurface surface;
};
// A rational polynomial surface in Bezier form.
class SSurface {
public:
hSSurface h;
int color;
DWORD face;
int degm, degn;
Vector ctrl[4][4];
double weight[4][4];
List<STrimBy> trim;
// For testing whether a point (u, v) on the surface lies inside the trim
SBspUv *bsp;
static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1);
static SSurface FromPlane(Vector pt, Vector u, Vector v);
static SSurface FromTransformationOf(SSurface *a, Vector t, Quaternion q,
bool includingTrims);
SSurface MakeCopyTrimAgainst(SShell *against, SShell *parent, SShell *into,
int type, bool opA);
void TrimFromEdgeList(SEdgeList *el);
void IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into);
void AllPointsIntersecting(Vector a, Vector b, List<SInter> *l);
void ClosestPointTo(Vector p, double *u, double *v);
Vector PointAt(double u, double v);
void TangentsAt(double u, double v, Vector *tu, Vector *tv);
Vector NormalAt(double u, double v);
void GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin);
void TriangulateInto(SShell *shell, SMesh *sm);
void MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv);
void MakeClassifyingBsp(SShell *shell);
void Clear(void);
};
class SShell {
public:
IdList<SCurve,hSCurve> curve;
IdList<SSurface,hSSurface> surface;
void MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
int color);
void MakeFromUnionOf(SShell *a, SShell *b);
void MakeFromDifferenceOf(SShell *a, SShell *b);
static const int AS_UNION = 10;
static const int AS_DIFFERENCE = 11;
static const int AS_INTERSECT = 12;
void MakeFromBoolean(SShell *a, SShell *b, int type);
void CopyCurvesSplitAgainst(SShell *agnstA, SShell *agnstB, SShell *into);
void CopySurfacesTrimAgainst(SShell *against, SShell *into, int t, bool a);
void MakeIntersectionCurvesAgainst(SShell *against, SShell *into);
void MakeClassifyingBsps(void);
void AllPointsIntersecting(Vector a, Vector b, List<SInter> *il);
void CleanupAfterBoolean(void);
static const int INSIDE = 100;
static const int OUTSIDE = 200;
static const int ON_SURFACE = 300;
int ClassifyPoint(Vector p);
void MakeFromCopyOf(SShell *a);
void MakeFromTransformationOf(SShell *a, Vector trans, Quaternion q);
void TriangulateInto(SMesh *sm);
void MakeEdgesInto(SEdgeList *sel);
void Clear(void);
};
#endif