solvespace/polygon.cpp

560 lines
14 KiB
C++
Raw Normal View History

#include "solvespace.h"
Vector STriangle::Normal(void) {
Vector ab = b.Minus(a), bc = c.Minus(b);
return ab.Cross(bc);
}
bool STriangle::ContainsPoint(Vector p) {
Vector n = Normal();
if(n.Magnitude() < LENGTH_EPS*LENGTH_EPS) {
// shouldn't happen; zero-area triangle
return false;
}
return ContainsPointProjd(n.WithMagnitude(1), p);
}
bool STriangle::ContainsPointProjd(Vector n, Vector p) {
Vector ab = b.Minus(a), bc = c.Minus(b), ca = a.Minus(c);
Vector no_ab = n.Cross(ab);
if(no_ab.Dot(p) < no_ab.Dot(a) - LENGTH_EPS) return false;
Vector no_bc = n.Cross(bc);
if(no_bc.Dot(p) < no_bc.Dot(b) - LENGTH_EPS) return false;
Vector no_ca = n.Cross(ca);
if(no_ca.Dot(p) < no_ca.Dot(c) - LENGTH_EPS) return false;
return true;
}
void STriangle::FlipNormal(void) {
SWAP(Vector, a, b);
}
STriangle STriangle::From(STriMeta meta, Vector a, Vector b, Vector c) {
STriangle tr = { 0, meta, a, b, c };
return tr;
}
SEdge SEdge::From(Vector a, Vector b) {
SEdge se = { 0, a, b };
return se;
}
void SEdgeList::Clear(void) {
l.Clear();
}
void SEdgeList::AddEdge(Vector a, Vector b) {
SEdge e; ZERO(&e);
e.a = a;
e.b = b;
l.Add(&e);
}
bool SEdgeList::AssembleContour(Vector first, Vector last,
SContour *dest, SEdge *errorAt)
{
int i;
dest->AddPoint(first);
dest->AddPoint(last);
do {
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
if(se->a.Equals(last)) {
dest->AddPoint(se->b);
last = se->b;
se->tag = 1;
break;
}
if(se->b.Equals(last)) {
dest->AddPoint(se->a);
last = se->a;
se->tag = 1;
break;
}
}
if(i >= l.n) {
// Couldn't assemble a closed contour; mark where.
if(errorAt) {
errorAt->a = first;
errorAt->b = last;
}
return false;
}
} while(!last.Equals(first));
return true;
}
bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) {
dest->Clear();
for(;;) {
Vector first, last;
int i;
for(i = 0; i < l.n; i++) {
if(!l.elem[i].tag) {
first = l.elem[i].a;
last = l.elem[i].b;
l.elem[i].tag = 1;
break;
}
}
if(i >= l.n) {
return true;
}
// Create a new empty contour in our polygon, and finish assembling
// into that contour.
dest->AddEmptyContour();
if(!AssembleContour(first, last, &(dest->l.elem[dest->l.n-1]), errorAt))
return false;
}
}
void SContour::AddPoint(Vector p) {
SPoint sp;
sp.tag = 0;
sp.p = p;
l.Add(&sp);
}
void SContour::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < (l.n-1); i++) {
SEdge e;
e.tag = 0;
e.a = l.elem[i].p;
e.b = l.elem[i+1].p;
el->l.Add(&e);
}
}
Vector SContour::ComputeNormal(void) {
Vector n = Vector::From(0, 0, 0);
for(int i = 0; i < l.n - 2; i++) {
Vector u = (l.elem[i+1].p).Minus(l.elem[i+0].p).WithMagnitude(1);
Vector v = (l.elem[i+2].p).Minus(l.elem[i+1].p).WithMagnitude(1);
Vector nt = u.Cross(v);
if(nt.Magnitude() > n.Magnitude()) {
n = nt;
}
}
return n.WithMagnitude(1);
}
bool SContour::IsClockwiseProjdToNormal(Vector n) {
// Degenerate things might happen as we draw; doesn't really matter
// what we do then.
if(n.Magnitude() < 0.01) return true;
// An arbitrary 2d coordinate system that has n as its normal
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double area = 0;
for(int i = 0; i < (l.n - 1); i++) {
double u0 = (l.elem[i ].p).Dot(u);
double v0 = (l.elem[i ].p).Dot(v);
double u1 = (l.elem[i+1].p).Dot(u);
double v1 = (l.elem[i+1].p).Dot(v);
area += ((v0 + v1)/2)*(u1 - u0);
}
return (area < 0);
}
bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) {
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double up = p.Dot(u);
double vp = p.Dot(v);
bool inside = false;
for(int i = 0; i < (l.n - 1); i++) {
double ua = (l.elem[i ].p).Dot(u);
double va = (l.elem[i ].p).Dot(v);
// The curve needs to be exactly closed; approximation is death.
double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u);
double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v);
if ((((va <= vp) && (vp < vb)) ||
((vb <= vp) && (vp < va))) &&
(up < (ub - ua) * (vp - va) / (vb - va) + ua))
{
inside = !inside;
}
}
return inside;
}
bool SContour::AllPointsInPlane(Vector n, double d, Vector *notCoplanarAt) {
for(int i = 0; i < l.n; i++) {
Vector p = l.elem[i].p;
double dd = n.Dot(p) - d;
if(fabs(dd) > 10*LENGTH_EPS) {
*notCoplanarAt = p;
return false;
}
}
return true;
}
void SContour::Reverse(void) {
int i;
for(i = 0; i < (l.n / 2); i++) {
int i2 = (l.n - 1) - i;
SPoint t = l.elem[i2];
l.elem[i2] = l.elem[i];
l.elem[i] = t;
}
}
void SPolygon::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).l.Clear();
}
l.Clear();
}
void SPolygon::AddEmptyContour(void) {
SContour c;
memset(&c, 0, sizeof(c));
l.Add(&c);
}
void SPolygon::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).MakeEdgesInto(el);
}
}
Vector SPolygon::ComputeNormal(void) {
if(l.n < 1) return Vector::From(0, 0, 0);
return (l.elem[0]).ComputeNormal();
}
bool SPolygon::ContainsPoint(Vector p) {
return (WindingNumberForPoint(p) % 2) == 1;
}
int SPolygon::WindingNumberForPoint(Vector p) {
int winding = 0;
int i;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->ContainsPointProjdToNormal(normal, p)) {
winding++;
}
}
return winding;
}
void SPolygon::FixContourDirections(void) {
// Outside curve looks counterclockwise, projected against our normal.
int i, j;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->l.n < 1) continue;
Vector pt = (sc->l.elem[0]).p;
bool outer = true;
for(j = 0; j < l.n; j++) {
if(i == j) continue;
SContour *sct = &(l.elem[j]);
if(sct->ContainsPointProjdToNormal(normal, pt)) {
outer = !outer;
}
}
bool clockwise = sc->IsClockwiseProjdToNormal(normal);
if(clockwise && outer || (!clockwise && !outer)) {
sc->Reverse();
}
}
}
bool SPolygon::IsEmpty(void) {
if(l.n == 0 || l.elem[0].l.n == 0) return true;
return false;
}
Vector SPolygon::AnyPoint(void) {
if(IsEmpty()) oops();
return l.elem[0].l.elem[0].p;
}
bool SPolygon::AllPointsInPlane(Vector *notCoplanarAt) {
if(IsEmpty()) return true;
Vector p0 = AnyPoint();
double d = normal.Dot(p0);
for(int i = 0; i < l.n; i++) {
if(!(l.elem[i]).AllPointsInPlane(normal, d, notCoplanarAt)) {
return false;
}
}
return true;
}
bool SPolygon::IntersectsPolygon(Vector ga, Vector gb) {
int i, j;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
for(j = 0; j < sc->l.n; j++) {
Vector pa = sc->l.elem[j].p,
pb = sc->l.elem[WRAP(j+1, (sc->l.n - 1))].p;
// So do the lines from (ga to gb) and (pa to pb) intersect?
Vector dp = pb.Minus(pa), dg = gb.Minus(ga);
double tp, tg;
if(!Vector::LinesIntersect(pa, dp, ga, dg, &tp, &tg)) {
continue;
}
// So check if the line segments intersect
double lp = dp.Magnitude(), lg = dg.Magnitude();
tp *= lp;
tg *= lg;
if(tg > LENGTH_EPS && tg < (lg - LENGTH_EPS) &&
tp > LENGTH_EPS && tp < (lp - LENGTH_EPS))
{
return true;
}
}
}
return false;
}
bool SPolygon::VisibleVertices(SContour *outer, SContour *inner,
SEdgeList *extras, int *vo, int *vi)
{
int i, j, k;
double lmin = 1e12;
for(i = 0; i < outer->l.n; i++) {
Vector op = outer->l.elem[i].p;
for(j = 0; j < inner->l.n; j++) {
Vector ip = inner->l.elem[j].p;
if(IntersectsPolygon(op, ip)) goto dontuse;
for(k = 0; k < extras->l.n; k++) {
SEdge *se = &(extras->l.elem[k]);
if(ip.Equals(se->a) || ip.Equals(se->b) ||
op.Equals(se->a) || op.Equals(se->b))
{
goto dontuse;
}
Vector dt = ip.Minus(op), de = (se->b).Minus(se->a);
double te, tt;
if(!Vector::LinesIntersect(op, dt, se->a, de, &tt, &te))
continue;
double le = de.Magnitude(), lt = dt.Magnitude();
tt *= lt;
te *= le;
if(tt > LENGTH_EPS && tt < (lt - LENGTH_EPS) &&
te > LENGTH_EPS && te < (le - LENGTH_EPS))
{
goto dontuse;
}
}
if((op.Minus(ip)).Magnitude() < lmin) {
lmin = (op.Minus(ip)).Magnitude();
*vo = i;
*vi = j;
}
dontuse:;
}
}
if(lmin < 1e12) {
return true;
} else {
return false;
}
}
bool SContour::VertexIsEar(int v, Vector normal) {
int va = WRAP(v-1, l.n), vb = WRAP(v , l.n), vc = WRAP(v+1, l.n);
Vector a = l.elem[va].p, b = l.elem[vb].p, c = l.elem[vc].p;
STriMeta meta;
ZERO(&meta);
STriangle tr = STriangle::From(meta, a, b, c);
if(normal.Dot(tr.Normal()) > 0) return false;
int i;
for(i = 0; i < l.n; i++) {
if(i == va) continue;
if(i == vb) continue;
if(i == vc) continue;
Vector p = l.elem[i].p;
if(p.Equals(tr.a)) continue;
if(p.Equals(tr.b)) continue;
if(p.Equals(tr.c)) continue;
if(tr.ContainsPoint(p)) return false;
}
return true;
}
void SContour::TriangulateInto(SMesh *m, STriMeta meta, Vector normal) {
int i;
bool odd = false;
while(l.n >= 3) {
int start, end, incr;
if(odd) {
start = 0; end = l.n; incr = 1;
} else {
start = l.n - 1; end = -1; incr = -1;
}
for(i = start; i != end; i += incr) {
if(VertexIsEar(i, normal)) {
break;
}
}
if(i == end) {
dbp("couldn't find ear!");
return;
}
Vector a = l.elem[WRAP(i-1, l.n)].p,
b = l.elem[WRAP(i , l.n)].p,
c = l.elem[WRAP(i+1, l.n)].p;
m->AddTriangle(meta, c, b, a);
l.ClearTags();
l.elem[i].tag = 1;
l.RemoveTagged();
odd = !odd;
}
l.Clear();
}
void SPolygon::TriangulateInto(SMesh *m) {
STriMeta meta;
ZERO(&meta);
TriangulateInto(m, meta);
}
void SPolygon::TriangulateInto(SMesh *m, STriMeta meta) {
FixContourDirections();
int i, j, k;
bool *used = (bool *)AllocTemporary(l.n*sizeof(bool));
int *winding = (int *)AllocTemporary(l.n*sizeof(int));
bool **contained = (bool **)AllocTemporary(l.n*sizeof(bool *));
for(i = 0; i < l.n; i++) {
contained[i] = (bool *)AllocTemporary(l.n*sizeof(bool));
SContour *sci = &(l.elem[i]);
if(sci->l.n < 1) continue;
for(j = 0; j < l.n; j++) {
SContour *scj = &(l.elem[j]);
if(scj->l.n < 1) continue;
if(i == j) {
contained[i][j] = true;
continue;
}
if(scj->ContainsPointProjdToNormal(normal, sci->l.elem[0].p)) {
(winding[i])++;
contained[i][j] = true;
}
}
}
for(;;) {
for(i = 0; i < l.n; i++) {
if(winding[i] == 0) break;
}
if(i >= l.n) {
// No outer contours left, so we're done
break;
}
SContour *outer = &(l.elem[i]);
SContour merged;
ZERO(&merged);
SEdgeList extras;
ZERO(&extras);
for(j = 0; j < outer->l.n - 1; j++) {
merged.AddPoint(outer->l.elem[j].p);
}
// If this polygon has holes, then we must merge them in.
for(;;) {
for(j = 0; j < l.n; j++) {
if(used[j]) continue;
if(winding[j] != winding[i] + 1) continue;
if(!contained[j][i]) continue;
SContour *inner = &(l.elem[j]);
int vinner, vouter;
if(VisibleVertices(&merged, inner, &extras, &vouter, &vinner)) {
used[j] = true;
SEdge se =
{ 0, merged.l.elem[vouter].p, inner->l.elem[vinner].p };
extras.l.Add(&se);
SContour alt;
ZERO(&alt);
for(k = 0; k <= vouter; k++) {
alt.AddPoint(merged.l.elem[k].p);
}
for(k = 0; k <= inner->l.n - 1; k++) {
int v = WRAP(k + vinner, inner->l.n - 1);
alt.AddPoint(inner->l.elem[v].p);
}
for(k = vouter; k < merged.l.n; k++) {
alt.AddPoint(merged.l.elem[k].p);
}
merged.l.Clear();
merged = alt;
break;
}
}
if(j >= l.n) {
break;
}
}
merged.TriangulateInto(m, meta, normal);
merged.l.Clear();
extras.Clear();
for(j = 0; j < l.n; j++) {
if(contained[j][i]) winding[j] -= 2;
}
used[i] = true;
}
}