solvespace/constrainteq.cpp

688 lines
25 KiB
C++
Raw Normal View History

#include "solvespace.h"
const hConstraint ConstraintBase::NO_CONSTRAINT = { 0 };
Expr *ConstraintBase::VectorsParallel(int eq, ExprVector a, ExprVector b) {
ExprVector r = a.Cross(b);
// Hairy ball theorem screws me here. There's no clean solution that I
// know, so let's pivot on the initial numerical guess. Our caller
// has ensured that if one of our input vectors is already known (e.g.
// it's from a previous group), then that one's in a; so that one's
// not going to move, and we should pivot on that one.
double mx = fabs((a.x)->Eval());
double my = fabs((a.y)->Eval());
double mz = fabs((a.z)->Eval());
// The basis vector in which the vectors have the LEAST energy is the
// one that we should look at most (e.g. if both vectors lie in the xy
// plane, then the z component of the cross product is most important).
// So find the strongest component of a and b, and that's the component
// of the cross product to ignore.
Expr *e0, *e1;
if(mx > my && mx > mz) {
e0 = r.y; e1 = r.z;
} else if(my > mz) {
e0 = r.z; e1 = r.x;
} else {
e0 = r.x; e1 = r.y;
}
if(eq == 0) return e0;
if(eq == 1) return e1;
oops();
}
Expr *ConstraintBase::PointLineDistance(hEntity wrkpl, hEntity hpt, hEntity hln)
{
Entity *ln = SK.GetEntity(hln);
Entity *a = SK.GetEntity(ln->point[0]);
Entity *b = SK.GetEntity(ln->point[1]);
Entity *p = SK.GetEntity(hpt);
if(wrkpl.v == Entity::FREE_IN_3D.v) {
ExprVector ep = p->PointGetExprs();
ExprVector ea = a->PointGetExprs();
ExprVector eb = b->PointGetExprs();
ExprVector eab = ea.Minus(eb);
Expr *m = eab.Magnitude();
return ((eab.Cross(ea.Minus(ep))).Magnitude())->Div(m);
} else {
Expr *ua, *va, *ub, *vb;
a->PointGetExprsInWorkplane(wrkpl, &ua, &va);
b->PointGetExprsInWorkplane(wrkpl, &ub, &vb);
Expr *du = ua->Minus(ub);
Expr *dv = va->Minus(vb);
Expr *u, *v;
p->PointGetExprsInWorkplane(wrkpl, &u, &v);
Expr *m = ((du->Square())->Plus(dv->Square()))->Sqrt();
Expr *proj = (dv->Times(ua->Minus(u)))->Minus(
(du->Times(va->Minus(v))));
return proj->Div(m);
}
}
Expr *ConstraintBase::PointPlaneDistance(ExprVector p, hEntity hpl) {
ExprVector n;
Expr *d;
SK.GetEntity(hpl)->WorkplaneGetPlaneExprs(&n, &d);
return (p.Dot(n))->Minus(d);
}
Expr *ConstraintBase::Distance(hEntity wrkpl, hEntity hpa, hEntity hpb) {
Entity *pa = SK.GetEntity(hpa);
Entity *pb = SK.GetEntity(hpb);
if(!(pa->IsPoint() && pb->IsPoint())) oops();
if(wrkpl.v == Entity::FREE_IN_3D.v) {
// This is true distance
ExprVector ea, eb, eab;
ea = pa->PointGetExprs();
eb = pb->PointGetExprs();
eab = ea.Minus(eb);
return eab.Magnitude();
} else {
// This is projected distance, in the given workplane.
Expr *au, *av, *bu, *bv;
pa->PointGetExprsInWorkplane(wrkpl, &au, &av);
pb->PointGetExprsInWorkplane(wrkpl, &bu, &bv);
Expr *du = au->Minus(bu);
Expr *dv = av->Minus(bv);
return ((du->Square())->Plus(dv->Square()))->Sqrt();
}
}
//-----------------------------------------------------------------------------
// Return the cosine of the angle between two vectors. If a workplane is
// specified, then it's the cosine of their projections into that workplane.
//-----------------------------------------------------------------------------
Expr *ConstraintBase::DirectionCosine(hEntity wrkpl,
ExprVector ae, ExprVector be)
{
if(wrkpl.v == Entity::FREE_IN_3D.v) {
Expr *mags = (ae.Magnitude())->Times(be.Magnitude());
return (ae.Dot(be))->Div(mags);
} else {
Entity *w = SK.GetEntity(wrkpl);
ExprVector u = w->Normal()->NormalExprsU();
ExprVector v = w->Normal()->NormalExprsV();
Expr *ua = u.Dot(ae);
Expr *va = v.Dot(ae);
Expr *ub = u.Dot(be);
Expr *vb = v.Dot(be);
Expr *maga = (ua->Square()->Plus(va->Square()))->Sqrt();
Expr *magb = (ub->Square()->Plus(vb->Square()))->Sqrt();
Expr *dot = (ua->Times(ub))->Plus(va->Times(vb));
return dot->Div(maga->Times(magb));
}
}
ExprVector ConstraintBase::PointInThreeSpace(hEntity workplane,
Expr *u, Expr *v)
{
Entity *w = SK.GetEntity(workplane);
ExprVector ub = w->Normal()->NormalExprsU();
ExprVector vb = w->Normal()->NormalExprsV();
ExprVector ob = w->WorkplaneGetOffsetExprs();
return (ub.ScaledBy(u)).Plus(vb.ScaledBy(v)).Plus(ob);
}
void ConstraintBase::ModifyToSatisfy(void) {
if(type == ANGLE) {
Vector a = SK.GetEntity(entityA)->VectorGetNum();
Vector b = SK.GetEntity(entityB)->VectorGetNum();
if(other) a = a.ScaledBy(-1);
if(workplane.v != Entity::FREE_IN_3D.v) {
a = a.ProjectVectorInto(workplane);
b = b.ProjectVectorInto(workplane);
}
double c = (a.Dot(b))/(a.Magnitude() * b.Magnitude());
valA = acos(c)*180/PI;
} else {
// We'll fix these ones up by looking at their symbolic equation;
// that means no extra work.
IdList<Equation,hEquation> l;
// An uninit IdList could lead us to free some random address, bad.
ZERO(&l);
// Generate the equations even if this is a reference dimension
GenerateReal(&l);
if(l.n != 1) oops();
// These equations are written in the form f(...) - d = 0, where
// d is the value of the valA.
valA += (l.elem[0].e)->Eval();
l.Clear();
}
}
void ConstraintBase::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index)
{
Equation eq;
eq.e = expr;
eq.h = h.equation(index);
l->Add(&eq);
}
void ConstraintBase::Generate(IdList<Equation,hEquation> *l) {
if(!reference) {
GenerateReal(l);
}
}
void ConstraintBase::GenerateReal(IdList<Equation,hEquation> *l) {
Expr *exA = Expr::From(valA);
switch(type) {
case PT_PT_DISTANCE:
AddEq(l, Distance(workplane, ptA, ptB)->Minus(exA), 0);
break;
case PT_LINE_DISTANCE:
AddEq(l,
PointLineDistance(workplane, ptA, entityA)->Minus(exA), 0);
break;
case PT_PLANE_DISTANCE: {
ExprVector pt = SK.GetEntity(ptA)->PointGetExprs();
AddEq(l, (PointPlaneDistance(pt, entityA))->Minus(exA), 0);
break;
}
case PT_FACE_DISTANCE: {
ExprVector pt = SK.GetEntity(ptA)->PointGetExprs();
Entity *f = SK.GetEntity(entityA);
ExprVector p0 = f->FaceGetPointExprs();
ExprVector n = f->FaceGetNormalExprs();
AddEq(l, (pt.Minus(p0)).Dot(n)->Minus(exA), 0);
break;
}
case EQUAL_LENGTH_LINES: {
Entity *a = SK.GetEntity(entityA);
Entity *b = SK.GetEntity(entityB);
AddEq(l, Distance(workplane, a->point[0], a->point[1])->Minus(
Distance(workplane, b->point[0], b->point[1])), 0);
break;
}
// These work on distance squared, since the pt-line distances are
// signed, and we want the absolute value.
case EQ_LEN_PT_LINE_D: {
Entity *forLen = SK.GetEntity(entityA);
Expr *d1 = Distance(workplane, forLen->point[0], forLen->point[1]);
Expr *d2 = PointLineDistance(workplane, ptA, entityB);
AddEq(l, (d1->Square())->Minus(d2->Square()), 0);
break;
}
case EQ_PT_LN_DISTANCES: {
Expr *d1 = PointLineDistance(workplane, ptA, entityA);
Expr *d2 = PointLineDistance(workplane, ptB, entityB);
AddEq(l, (d1->Square())->Minus(d2->Square()), 0);
break;
}
case LENGTH_RATIO: {
Entity *a = SK.GetEntity(entityA);
Entity *b = SK.GetEntity(entityB);
Expr *la = Distance(workplane, a->point[0], a->point[1]);
Expr *lb = Distance(workplane, b->point[0], b->point[1]);
AddEq(l, (la->Div(lb))->Minus(exA), 0);
break;
}
case DIAMETER: {
Entity *circle = SK.GetEntity(entityA);
Expr *r = circle->CircleGetRadiusExpr();
AddEq(l, (r->Times(Expr::From(2)))->Minus(exA), 0);
break;
}
case EQUAL_RADIUS: {
Entity *c1 = SK.GetEntity(entityA);
Entity *c2 = SK.GetEntity(entityB);
AddEq(l, (c1->CircleGetRadiusExpr())->Minus(
c2->CircleGetRadiusExpr()), 0);
break;
}
case EQUAL_LINE_ARC_LEN: {
Entity *line = SK.GetEntity(entityA),
*arc = SK.GetEntity(entityB);
// Get the line length
ExprVector l0 = SK.GetEntity(line->point[0])->PointGetExprs(),
l1 = SK.GetEntity(line->point[1])->PointGetExprs();
Expr *ll = (l1.Minus(l0)).Magnitude();
// And get the arc radius, and the cosine of its angle
Entity *ao = SK.GetEntity(arc->point[0]),
*as = SK.GetEntity(arc->point[1]),
*af = SK.GetEntity(arc->point[2]);
ExprVector aos = (as->PointGetExprs()).Minus(ao->PointGetExprs()),
aof = (af->PointGetExprs()).Minus(ao->PointGetExprs());
Expr *r = aof.Magnitude();
ExprVector n = arc->Normal()->NormalExprsN();
ExprVector u = aos.WithMagnitude(Expr::From(1.0));
ExprVector v = n.Cross(u);
// so in our new csys, we start at (1, 0, 0)
Expr *costheta = aof.Dot(u)->Div(r);
Expr *sintheta = aof.Dot(v)->Div(r);
double thetas, thetaf, dtheta;
arc->ArcGetAngles(&thetas, &thetaf, &dtheta);
Expr *theta;
if(dtheta < 3*PI/4) {
theta = costheta->ACos();
} else if(dtheta < 5*PI/4) {
// As the angle crosses pi, cos theta is not invertible;
// so use the sine to stop blowing up
theta = Expr::From(PI)->Minus(sintheta->ASin());
} else {
theta = (Expr::From(2*PI))->Minus(costheta->ACos());
}
// And write the equation; r*theta = L
AddEq(l, (r->Times(theta))->Minus(ll), 0);
break;
}
case POINTS_COINCIDENT: {
Entity *a = SK.GetEntity(ptA);
Entity *b = SK.GetEntity(ptB);
if(workplane.v == Entity::FREE_IN_3D.v) {
ExprVector pa = a->PointGetExprs();
ExprVector pb = b->PointGetExprs();
AddEq(l, pa.x->Minus(pb.x), 0);
AddEq(l, pa.y->Minus(pb.y), 1);
AddEq(l, pa.z->Minus(pb.z), 2);
} else {
Expr *au, *av;
Expr *bu, *bv;
a->PointGetExprsInWorkplane(workplane, &au, &av);
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
AddEq(l, au->Minus(bu), 0);
AddEq(l, av->Minus(bv), 1);
}
break;
}
case PT_IN_PLANE:
// This one works the same, whether projected or not.
AddEq(l, PointPlaneDistance(
SK.GetEntity(ptA)->PointGetExprs(), entityA), 0);
break;
case PT_ON_FACE: {
// a plane, n dot (p - p0) = 0
ExprVector p = SK.GetEntity(ptA)->PointGetExprs();
Entity *f = SK.GetEntity(entityA);
ExprVector p0 = f->FaceGetPointExprs();
ExprVector n = f->FaceGetNormalExprs();
AddEq(l, (p.Minus(p0)).Dot(n), 0);
break;
}
case PT_ON_LINE:
if(workplane.v == Entity::FREE_IN_3D.v) {
Entity *ln = SK.GetEntity(entityA);
Entity *a = SK.GetEntity(ln->point[0]);
Entity *b = SK.GetEntity(ln->point[1]);
Entity *p = SK.GetEntity(ptA);
ExprVector ep = p->PointGetExprs();
ExprVector ea = a->PointGetExprs();
ExprVector eb = b->PointGetExprs();
ExprVector eab = ea.Minus(eb);
// Construct a vector from the point to either endpoint of
// the line segment, and choose the longer of these.
ExprVector eap = ea.Minus(ep);
ExprVector ebp = eb.Minus(ep);
ExprVector elp =
(ebp.Magnitude()->Eval() > eap.Magnitude()->Eval()) ?
ebp : eap;
if(p->group.v == group.v) {
AddEq(l, VectorsParallel(0, eab, elp), 0);
AddEq(l, VectorsParallel(1, eab, elp), 1);
} else {
AddEq(l, VectorsParallel(0, elp, eab), 0);
AddEq(l, VectorsParallel(1, elp, eab), 1);
}
} else {
AddEq(l, PointLineDistance(workplane, ptA, entityA), 0);
}
break;
case PT_ON_CIRCLE: {
// This actually constrains the point to lie on the cylinder.
Entity *circle = SK.GetEntity(entityA);
ExprVector center = SK.GetEntity(circle->point[0])->PointGetExprs();
ExprVector pt = SK.GetEntity(ptA)->PointGetExprs();
Entity *normal = SK.GetEntity(circle->normal);
ExprVector u = normal->NormalExprsU(),
v = normal->NormalExprsV();
Expr *du = (center.Minus(pt)).Dot(u),
*dv = (center.Minus(pt)).Dot(v);
Expr *r = circle->CircleGetRadiusExpr();
AddEq(l,
((du->Square())->Plus(dv->Square()))->Minus(r->Square()), 0);
break;
}
case AT_MIDPOINT:
if(workplane.v == Entity::FREE_IN_3D.v) {
Entity *ln = SK.GetEntity(entityA);
ExprVector a = SK.GetEntity(ln->point[0])->PointGetExprs();
ExprVector b = SK.GetEntity(ln->point[1])->PointGetExprs();
ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5));
if(ptA.v) {
ExprVector p = SK.GetEntity(ptA)->PointGetExprs();
AddEq(l, (m.x)->Minus(p.x), 0);
AddEq(l, (m.y)->Minus(p.y), 1);
AddEq(l, (m.z)->Minus(p.z), 2);
} else {
AddEq(l, PointPlaneDistance(m, entityB), 0);
}
} else {
Entity *ln = SK.GetEntity(entityA);
Entity *a = SK.GetEntity(ln->point[0]);
Entity *b = SK.GetEntity(ln->point[1]);
Expr *au, *av, *bu, *bv;
a->PointGetExprsInWorkplane(workplane, &au, &av);
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
Expr *mu = Expr::From(0.5)->Times(au->Plus(bu));
Expr *mv = Expr::From(0.5)->Times(av->Plus(bv));
if(ptA.v) {
Entity *p = SK.GetEntity(ptA);
Expr *pu, *pv;
p->PointGetExprsInWorkplane(workplane, &pu, &pv);
AddEq(l, pu->Minus(mu), 0);
AddEq(l, pv->Minus(mv), 1);
} else {
ExprVector m = PointInThreeSpace(workplane, mu, mv);
AddEq(l, PointPlaneDistance(m, entityB), 0);
}
}
break;
case SYMMETRIC:
if(workplane.v == Entity::FREE_IN_3D.v) {
Entity *plane = SK.GetEntity(entityA);
Entity *ea = SK.GetEntity(ptA);
Entity *eb = SK.GetEntity(ptB);
ExprVector a = ea->PointGetExprs();
ExprVector b = eb->PointGetExprs();
// The midpoint of the line connecting the symmetric points
// lies on the plane of the symmetry.
ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5));
AddEq(l, PointPlaneDistance(m, plane->h), 0);
// And projected into the plane of symmetry, the points are
// coincident.
Expr *au, *av, *bu, *bv;
ea->PointGetExprsInWorkplane(plane->h, &au, &av);
eb->PointGetExprsInWorkplane(plane->h, &bu, &bv);
AddEq(l, au->Minus(bu), 1);
AddEq(l, av->Minus(bv), 2);
} else {
Entity *plane = SK.GetEntity(entityA);
Entity *a = SK.GetEntity(ptA);
Entity *b = SK.GetEntity(ptB);
Expr *au, *av, *bu, *bv;
a->PointGetExprsInWorkplane(workplane, &au, &av);
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
Expr *mu = Expr::From(0.5)->Times(au->Plus(bu));
Expr *mv = Expr::From(0.5)->Times(av->Plus(bv));
ExprVector m = PointInThreeSpace(workplane, mu, mv);
AddEq(l, PointPlaneDistance(m, plane->h), 0);
// Construct a vector within the workplane that is normal
// to the symmetry pane's normal (i.e., that lies in the
// plane of symmetry). The line connecting the points is
// perpendicular to that constructed vector.
Entity *w = SK.GetEntity(workplane);
ExprVector u = w->Normal()->NormalExprsU();
ExprVector v = w->Normal()->NormalExprsV();
ExprVector pa = a->PointGetExprs();
ExprVector pb = b->PointGetExprs();
ExprVector n;
Expr *d;
plane->WorkplaneGetPlaneExprs(&n, &d);
AddEq(l, (n.Cross(u.Cross(v))).Dot(pa.Minus(pb)), 1);
}
break;
case SYMMETRIC_HORIZ:
case SYMMETRIC_VERT: {
Entity *a = SK.GetEntity(ptA);
Entity *b = SK.GetEntity(ptB);
Expr *au, *av, *bu, *bv;
a->PointGetExprsInWorkplane(workplane, &au, &av);
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
if(type == SYMMETRIC_HORIZ) {
AddEq(l, av->Minus(bv), 0);
AddEq(l, au->Plus(bu), 1);
} else {
AddEq(l, au->Minus(bu), 0);
AddEq(l, av->Plus(bv), 1);
}
break;
}
case SYMMETRIC_LINE: {
Entity *pa = SK.GetEntity(ptA);
Entity *pb = SK.GetEntity(ptB);
Expr *pau, *pav, *pbu, *pbv;
pa->PointGetExprsInWorkplane(workplane, &pau, &pav);
pb->PointGetExprsInWorkplane(workplane, &pbu, &pbv);
Entity *ln = SK.GetEntity(entityA);
Entity *la = SK.GetEntity(ln->point[0]);
Entity *lb = SK.GetEntity(ln->point[1]);
Expr *lau, *lav, *lbu, *lbv;
la->PointGetExprsInWorkplane(workplane, &lau, &lav);
lb->PointGetExprsInWorkplane(workplane, &lbu, &lbv);
Expr *dpu = pbu->Minus(pau), *dpv = pbv->Minus(pav);
Expr *dlu = lbu->Minus(lau), *dlv = lbv->Minus(lav);
// The line through the points is perpendicular to the line
// of symmetry.
AddEq(l, (dlu->Times(dpu))->Plus(dlv->Times(dpv)), 0);
// And the signed distances of the points to the line are
// equal in magnitude and opposite in sign, so sum to zero
Expr *dista = (dlv->Times(lau->Minus(pau)))->Minus(
(dlu->Times(lav->Minus(pav))));
Expr *distb = (dlv->Times(lau->Minus(pbu)))->Minus(
(dlu->Times(lav->Minus(pbv))));
AddEq(l, dista->Plus(distb), 1);
break;
}
case HORIZONTAL:
case VERTICAL: {
hEntity ha, hb;
if(entityA.v) {
Entity *e = SK.GetEntity(entityA);
ha = e->point[0];
hb = e->point[1];
} else {
ha = ptA;
hb = ptB;
}
Entity *a = SK.GetEntity(ha);
Entity *b = SK.GetEntity(hb);
Expr *au, *av, *bu, *bv;
a->PointGetExprsInWorkplane(workplane, &au, &av);
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
AddEq(l, (type == HORIZONTAL) ? av->Minus(bv) : au->Minus(bu), 0);
break;
}
case SAME_ORIENTATION: {
Entity *a = SK.GetEntity(entityA);
Entity *b = SK.GetEntity(entityB);
if(b->group.v != group.v) {
SWAP(Entity *, a, b);
}
ExprVector au = a->NormalExprsU(),
av = a->NormalExprsV(),
an = a->NormalExprsN();
ExprVector bu = b->NormalExprsU(),
bv = b->NormalExprsV(),
bn = b->NormalExprsN();
AddEq(l, VectorsParallel(0, an, bn), 0);
AddEq(l, VectorsParallel(1, an, bn), 1);
Expr *d1 = au.Dot(bv);
Expr *d2 = au.Dot(bu);
// Allow either orientation for the coordinate system, depending
// on how it was drawn.
if(fabs(d1->Eval()) < fabs(d2->Eval())) {
AddEq(l, d1, 2);
} else {
AddEq(l, d2, 2);
}
break;
}
case PERPENDICULAR:
case ANGLE: {
Entity *a = SK.GetEntity(entityA);
Entity *b = SK.GetEntity(entityB);
ExprVector ae = a->VectorGetExprs();
ExprVector be = b->VectorGetExprs();
if(other) ae = ae.ScaledBy(Expr::From(-1));
Expr *c = DirectionCosine(workplane, ae, be);
if(type == ANGLE) {
// The direction cosine is equal to the cosine of the
// specified angle
Expr *rads = exA->Times(Expr::From(PI/180));
AddEq(l, c->Minus(rads->Cos()), 0);
} else {
// The dot product (and therefore the direction cosine)
// is equal to zero, perpendicular.
AddEq(l, c, 0);
}
break;
}
case EQUAL_ANGLE: {
Entity *a = SK.GetEntity(entityA);
Entity *b = SK.GetEntity(entityB);
Entity *c = SK.GetEntity(entityC);
Entity *d = SK.GetEntity(entityD);
ExprVector ae = a->VectorGetExprs();
ExprVector be = b->VectorGetExprs();
ExprVector ce = c->VectorGetExprs();
ExprVector de = d->VectorGetExprs();
if(other) ae = ae.ScaledBy(Expr::From(-1));
Expr *cab = DirectionCosine(workplane, ae, be);
Expr *ccd = DirectionCosine(workplane, ce, de);
AddEq(l, cab->Minus(ccd), 0);
break;
}
case ARC_LINE_TANGENT: {
Entity *arc = SK.GetEntity(entityA);
Entity *line = SK.GetEntity(entityB);
ExprVector ac = SK.GetEntity(arc->point[0])->PointGetExprs();
ExprVector ap =
SK.GetEntity(arc->point[other ? 2 : 1])->PointGetExprs();
ExprVector ld = line->VectorGetExprs();
// The line is perpendicular to the radius
AddEq(l, ld.Dot(ac.Minus(ap)), 0);
break;
}
case CUBIC_LINE_TANGENT: {
Entity *cubic = SK.GetEntity(entityA);
Entity *line = SK.GetEntity(entityB);
ExprVector endpoint =
SK.GetEntity(cubic->point[other ? 3 : 0])->PointGetExprs();
ExprVector ctrlpoint =
SK.GetEntity(cubic->point[other ? 2 : 1])->PointGetExprs();
ExprVector a = endpoint.Minus(ctrlpoint);
ExprVector b = line->VectorGetExprs();
if(workplane.v == Entity::FREE_IN_3D.v) {
AddEq(l, VectorsParallel(0, a, b), 0);
AddEq(l, VectorsParallel(1, a, b), 1);
} else {
Entity *w = SK.GetEntity(workplane);
ExprVector wn = w->Normal()->NormalExprsN();
AddEq(l, (a.Cross(b)).Dot(wn), 0);
}
break;
}
case PARALLEL: {
Entity *ea = SK.GetEntity(entityA), *eb = SK.GetEntity(entityB);
if(eb->group.v != group.v) {
SWAP(Entity *, ea, eb);
}
ExprVector a = ea->VectorGetExprs();
ExprVector b = eb->VectorGetExprs();
if(workplane.v == Entity::FREE_IN_3D.v) {
AddEq(l, VectorsParallel(0, a, b), 0);
AddEq(l, VectorsParallel(1, a, b), 1);
} else {
Entity *w = SK.GetEntity(workplane);
ExprVector wn = w->Normal()->NormalExprsN();
AddEq(l, (a.Cross(b)).Dot(wn), 0);
}
break;
}
case COMMENT:
break;
default: oops();
}
}