solvespace/src/glhelper.cpp

626 lines
17 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Helper functions that ultimately draw stuff with gl.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
// A public-domain Hershey vector font ("Simplex").
#include "font.table.h"
// A bitmap font.
#include "bitmapfont.table.h"
static bool ColorLocked;
static bool DepthOffsetLocked;
#define FONT_SCALE(h) ((h)/22.0)
double ssglStrWidth(const char *str, double h)
{
int w = 0;
for(; *str; str++) {
int c = *str;
if(c < 32 || c > 126) c = 32;
c -= 32;
w += Font[c].width;
}
return w*FONT_SCALE(h)/SS.GW.scale;
}
double ssglStrHeight(double h)
{
// The characters have height ~22, as they appear in the table.
return 22.0*FONT_SCALE(h)/SS.GW.scale;
}
void ssglWriteTextRefCenter(const char *str, double h, Vector t, Vector u, Vector v,
ssglLineFn *fn, void *fndata)
{
u = u.WithMagnitude(1);
v = v.WithMagnitude(1);
double scale = FONT_SCALE(h)/SS.GW.scale;
double fh = ssglStrHeight(h);
double fw = ssglStrWidth(str, h);
t = t.Plus(u.ScaledBy(-fw/2));
t = t.Plus(v.ScaledBy(-fh/2));
// Undo the (+5, +5) offset that ssglWriteText applies.
t = t.Plus(u.ScaledBy(-5*scale));
t = t.Plus(v.ScaledBy(-5*scale));
ssglWriteText(str, h, t, u, v, fn, fndata);
}
void ssglLineWidth(GLfloat width) {
// Intel GPUs with Mesa on *nix render thin lines poorly.
static bool workaroundChecked, workaroundEnabled;
if(!workaroundChecked) {
// ssglLineWidth can be called before GL is initialized
if(glGetString(GL_VENDOR)) {
workaroundChecked = true;
if(!strcmp((char*)glGetString(GL_VENDOR), "Intel Open Source Technology Center"))
workaroundEnabled = true;
}
}
if(workaroundEnabled && width < 1.6)
width = 1.6;
glLineWidth(width);
}
static void LineDrawCallback(void *fndata, Vector a, Vector b)
{
ssglLineWidth(1);
glBegin(GL_LINES);
ssglVertex3v(a);
ssglVertex3v(b);
glEnd();
}
void ssglWriteText(const char *str, double h, Vector t, Vector u, Vector v,
ssglLineFn *fn, void *fndata)
{
if(!fn) fn = LineDrawCallback;
u = u.WithMagnitude(1);
v = v.WithMagnitude(1);
double scale = FONT_SCALE(h)/SS.GW.scale;
int xo = 5;
int yo = 5;
2015-03-29 00:30:52 +00:00
for(; *str; str++) {
int c = *str;
if(c < 32 || c > 126) c = 32;
c -= 32;
int j;
Vector prevp = Vector::From(VERY_POSITIVE, 0, 0);
for(j = 0; j < Font[c].points; j++) {
int x = Font[c].coord[j*2];
int y = Font[c].coord[j*2+1];
if(x == PEN_UP && y == PEN_UP) {
prevp.x = VERY_POSITIVE;
} else {
Vector p = t;
p = p.Plus(u.ScaledBy((xo + x)*scale));
p = p.Plus(v.ScaledBy((yo + y)*scale));
2013-12-02 06:22:35 +00:00
if(EXACT(prevp.x != VERY_POSITIVE)) {
fn(fndata, prevp, p);
}
prevp = p;
}
}
xo += Font[c].width;
}
}
void ssglVertex3v(Vector u)
{
glVertex3f((GLfloat)u.x, (GLfloat)u.y, (GLfloat)u.z);
}
void ssglAxisAlignedQuad(double l, double r, double t, double b, bool lone)
{
if(lone) glBegin(GL_QUADS);
glVertex2d(l, t);
glVertex2d(l, b);
glVertex2d(r, b);
glVertex2d(r, t);
if(lone) glEnd();
}
void ssglAxisAlignedLineLoop(double l, double r, double t, double b)
{
glBegin(GL_LINE_LOOP);
glVertex2d(l, t);
glVertex2d(l, b);
glVertex2d(r, b);
glVertex2d(r, t);
glEnd();
}
static void FatLineEndcap(Vector p, Vector u, Vector v)
{
// A table of cos and sin of (pi*i/10 + pi/2), as i goes from 0 to 10
static const double Circle[11][2] = {
{ 0.0000, 1.0000 },
{ -0.3090, 0.9511 },
{ -0.5878, 0.8090 },
{ -0.8090, 0.5878 },
{ -0.9511, 0.3090 },
{ -1.0000, 0.0000 },
{ -0.9511, -0.3090 },
{ -0.8090, -0.5878 },
{ -0.5878, -0.8090 },
{ -0.3090, -0.9511 },
{ 0.0000, -1.0000 },
};
glBegin(GL_TRIANGLE_FAN);
for(int i = 0; i <= 10; i++) {
double c = Circle[i][0], s = Circle[i][1];
ssglVertex3v(p.Plus(u.ScaledBy(c)).Plus(v.ScaledBy(s)));
}
glEnd();
}
void ssglFatLine(Vector a, Vector b, double width)
{
// The half-width of the line we're drawing.
double hw = width / 2;
Vector ab = b.Minus(a);
Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp);
Vector abn = (ab.Cross(gn)).WithMagnitude(1);
abn = abn.Minus(gn.ScaledBy(gn.Dot(abn)));
// So now abn is normal to the projection of ab into the screen, so the
// line will always have constant thickness as the view is rotated.
abn = abn.WithMagnitude(hw);
ab = gn.Cross(abn);
ab = ab. WithMagnitude(hw);
// The body of a line is a quad
glBegin(GL_QUADS);
ssglVertex3v(a.Minus(abn));
ssglVertex3v(b.Minus(abn));
ssglVertex3v(b.Plus (abn));
ssglVertex3v(a.Plus (abn));
glEnd();
// And the line has two semi-circular end caps.
FatLineEndcap(a, ab, abn);
FatLineEndcap(b, ab.ScaledBy(-1), abn);
}
void ssglLockColorTo(RgbColor rgb)
{
ColorLocked = false;
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
glColor3d(rgb.redF(), rgb.greenF(), rgb.blueF());
ColorLocked = true;
}
void ssglUnlockColor(void)
{
ColorLocked = false;
}
void ssglColorRGB(RgbColor rgb)
{
// Is there a bug in some graphics drivers where this is not equivalent
// to glColor3d? There seems to be...
ssglColorRGBa(rgb, 1.0);
}
void ssglColorRGBa(RgbColor rgb, double a)
{
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
if(!ColorLocked) glColor4d(rgb.redF(), rgb.greenF(), rgb.blueF(), a);
}
static void Stipple(bool forSel)
{
static bool Init;
const int BYTES = (32*32)/8;
static GLubyte HoverMask[BYTES];
static GLubyte SelMask[BYTES];
if(!Init) {
int x, y;
for(x = 0; x < 32; x++) {
for(y = 0; y < 32; y++) {
int i = y*4 + x/8, b = x % 8;
int ym = y % 4, xm = x % 4;
for(int k = 0; k < 2; k++) {
if(xm >= 1 && xm <= 2 && ym >= 1 && ym <= 2) {
(k == 0 ? SelMask : HoverMask)[i] |= (0x80 >> b);
}
ym = (ym + 2) % 4; xm = (xm + 2) % 4;
}
}
}
Init = true;
}
glEnable(GL_POLYGON_STIPPLE);
if(forSel) {
glPolygonStipple(SelMask);
} else {
glPolygonStipple(HoverMask);
}
}
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
static void StippleTriangle(STriangle *tr, bool s, RgbColor rgb)
{
glEnd();
glDisable(GL_LIGHTING);
ssglColorRGB(rgb);
Stipple(s);
glBegin(GL_TRIANGLES);
ssglVertex3v(tr->a);
ssglVertex3v(tr->b);
ssglVertex3v(tr->c);
glEnd();
glEnable(GL_LIGHTING);
glDisable(GL_POLYGON_STIPPLE);
glBegin(GL_TRIANGLES);
}
void ssglFillMesh(RgbColor specColor, SMesh *m, uint32_t h, uint32_t s1, uint32_t s2)
{
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
RgbColor rgbHovered = Style::Color(Style::HOVERED),
rgbSelected = Style::Color(Style::SELECTED);
glEnable(GL_NORMALIZE);
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
RgbColor prevColor = NULL_COLOR;
glBegin(GL_TRIANGLES);
for(int i = 0; i < m->l.n; i++) {
STriangle *tr = &(m->l.elem[i]);
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
RgbColor color;
if(specColor.UseDefault()) {
color = tr->meta.color;
} else {
color = specColor;
}
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
if(!color.Equals(prevColor)) {
GLfloat mpf[] = { color.redF(), color.greenF(), color.blueF(), 1.0f };
glEnd();
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mpf);
prevColor = color;
glBegin(GL_TRIANGLES);
}
if(tr->an.EqualsExactly(Vector::From(0, 0, 0))) {
// Compute the normal from the vertices
Vector n = tr->Normal();
glNormal3d(n.x, n.y, n.z);
ssglVertex3v(tr->a);
ssglVertex3v(tr->b);
ssglVertex3v(tr->c);
} else {
// Use the exact normals that are specified
glNormal3d((tr->an).x, (tr->an).y, (tr->an).z);
ssglVertex3v(tr->a);
glNormal3d((tr->bn).x, (tr->bn).y, (tr->bn).z);
ssglVertex3v(tr->b);
glNormal3d((tr->cn).x, (tr->cn).y, (tr->cn).z);
ssglVertex3v(tr->c);
}
2015-03-29 00:30:52 +00:00
if((s1 != 0 && tr->meta.face == s1) ||
(s2 != 0 && tr->meta.face == s2))
{
StippleTriangle(tr, true, rgbSelected);
}
if(h != 0 && tr->meta.face == h) {
StippleTriangle(tr, false, rgbHovered);
}
}
glEnd();
}
static void SSGL_CALLBACK Vertex(Vector *p)
{
ssglVertex3v(*p);
}
void ssglFillPolygon(SPolygon *p)
{
GLUtesselator *gt = gluNewTess();
gluTessCallback(gt, GLU_TESS_BEGIN, (ssglCallbackFptr *)glBegin);
gluTessCallback(gt, GLU_TESS_END, (ssglCallbackFptr *)glEnd);
gluTessCallback(gt, GLU_TESS_VERTEX, (ssglCallbackFptr *)Vertex);
ssglTesselatePolygon(gt, p);
gluDeleteTess(gt);
}
static void SSGL_CALLBACK Combine(double coords[3], void *vertexData[4],
float weight[4], void **outData)
{
Vector *n = (Vector *)AllocTemporary(sizeof(Vector));
n->x = coords[0];
n->y = coords[1];
n->z = coords[2];
*outData = n;
}
void ssglTesselatePolygon(GLUtesselator *gt, SPolygon *p)
{
int i, j;
gluTessCallback(gt, GLU_TESS_COMBINE, (ssglCallbackFptr *)Combine);
gluTessProperty(gt, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_ODD);
Vector normal = p->normal;
glNormal3d(normal.x, normal.y, normal.z);
gluTessNormal(gt, normal.x, normal.y, normal.z);
gluTessBeginPolygon(gt, NULL);
for(i = 0; i < p->l.n; i++) {
SContour *sc = &(p->l.elem[i]);
gluTessBeginContour(gt);
for(j = 0; j < (sc->l.n-1); j++) {
SPoint *sp = &(sc->l.elem[j]);
double ap[3];
ap[0] = sp->p.x;
ap[1] = sp->p.y;
ap[2] = sp->p.z;
gluTessVertex(gt, ap, &(sp->p));
}
gluTessEndContour(gt);
}
gluTessEndPolygon(gt);
}
void ssglDebugPolygon(SPolygon *p)
{
int i, j;
ssglLineWidth(2);
glPointSize(7);
glDisable(GL_DEPTH_TEST);
for(i = 0; i < p->l.n; i++) {
SContour *sc = &(p->l.elem[i]);
for(j = 0; j < (sc->l.n-1); j++) {
Vector a = (sc->l.elem[j]).p;
Vector b = (sc->l.elem[j+1]).p;
ssglLockColorTo(RGBi(0, 0, 255));
Vector d = (a.Minus(b)).WithMagnitude(-0);
glBegin(GL_LINES);
ssglVertex3v(a.Plus(d));
ssglVertex3v(b.Minus(d));
glEnd();
ssglLockColorTo(RGBi(255, 0, 0));
glBegin(GL_POINTS);
ssglVertex3v(a.Plus(d));
ssglVertex3v(b.Minus(d));
glEnd();
}
}
}
void ssglDrawEdges(SEdgeList *el, bool endpointsToo)
{
SEdge *se;
glBegin(GL_LINES);
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
ssglVertex3v(se->a);
ssglVertex3v(se->b);
}
glEnd();
if(endpointsToo) {
glPointSize(12);
glBegin(GL_POINTS);
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
ssglVertex3v(se->a);
ssglVertex3v(se->b);
}
glEnd();
}
}
void ssglDebugMesh(SMesh *m)
{
int i;
ssglLineWidth(1);
glPointSize(7);
ssglDepthRangeOffset(1);
ssglUnlockColor();
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
ssglColorRGBa(RGBi(0, 255, 0), 1.0);
glBegin(GL_TRIANGLES);
for(i = 0; i < m->l.n; i++) {
STriangle *t = &(m->l.elem[i]);
if(t->tag) continue;
ssglVertex3v(t->a);
ssglVertex3v(t->b);
ssglVertex3v(t->c);
}
glEnd();
ssglDepthRangeOffset(0);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
void ssglMarkPolygonNormal(SPolygon *p)
{
Vector tail = Vector::From(0, 0, 0);
int i, j, cnt = 0;
// Choose some reasonable center point.
for(i = 0; i < p->l.n; i++) {
SContour *sc = &(p->l.elem[i]);
for(j = 0; j < (sc->l.n-1); j++) {
SPoint *sp = &(sc->l.elem[j]);
tail = tail.Plus(sp->p);
cnt++;
}
}
if(cnt == 0) return;
tail = tail.ScaledBy(1.0/cnt);
Vector gn = SS.GW.projRight.Cross(SS.GW.projUp);
Vector tip = tail.Plus((p->normal).WithMagnitude(40/SS.GW.scale));
Vector arrow = (p->normal).WithMagnitude(15/SS.GW.scale);
glColor3d(1, 1, 0);
glBegin(GL_LINES);
ssglVertex3v(tail);
ssglVertex3v(tip);
ssglVertex3v(tip);
ssglVertex3v(tip.Minus(arrow.RotatedAbout(gn, 0.6)));
ssglVertex3v(tip);
ssglVertex3v(tip.Minus(arrow.RotatedAbout(gn, -0.6)));
glEnd();
glEnable(GL_LIGHTING);
}
void ssglDepthRangeOffset(int units)
{
if(!DepthOffsetLocked) {
// The size of this step depends on the resolution of the Z buffer; for
// a 16-bit buffer, this should be fine.
double d = units/60000.0;
glDepthRange(0.1-d, 1-d);
}
}
void ssglDepthRangeLockToFront(bool yes)
{
if(yes) {
DepthOffsetLocked = true;
glDepthRange(0, 0);
} else {
DepthOffsetLocked = false;
ssglDepthRangeOffset(0);
}
}
void ssglCreateBitmapFont(void)
{
// Place the font in our texture in a two-dimensional grid; 1d would
// be simpler, but long skinny textures (256*16 = 4096 pixels wide)
// won't work.
static uint8_t MappedTexture[4*16*64*16];
int a, i;
for(a = 0; a < 256; a++) {
int row = a / 4, col = a % 4;
for(i = 0; i < 16; i++) {
memcpy(MappedTexture + row*4*16*16 + col*16 + i*4*16,
FontTexture + a*16*16 + i*16,
16);
}
}
glBindTexture(GL_TEXTURE_2D, TEXTURE_BITMAP_FONT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA,
16*4, 64*16,
0,
GL_ALPHA, GL_UNSIGNED_BYTE,
MappedTexture);
}
void ssglBitmapCharQuad(char c, double x, double y)
{
uint8_t b = (uint8_t)c;
int w, h;
if(b & 0x80) {
// Special character, like a checkbox or a radio button
w = h = 16;
x -= 3;
} else {
// Normal character from our font
w = SS.TW.CHAR_WIDTH,
h = SS.TW.CHAR_HEIGHT;
}
if(b != ' ' && b != 0) {
int row = b / 4, col = b % 4;
double s0 = col/4.0,
s1 = (col+1)/4.0,
t0 = row/64.0,
t1 = t0 + (w/16.0)/64;
glTexCoord2d(s1, t0);
glVertex2d(x, y);
glTexCoord2d(s1, t1);
glVertex2d(x + w, y);
glTexCoord2d(s0, t1);
glVertex2d(x + w, y - h);
glTexCoord2d(s0, t0);
glVertex2d(x, y - h);
}
}
void ssglBitmapText(const char *str, Vector p)
{
glEnable(GL_TEXTURE_2D);
glBegin(GL_QUADS);
while(*str) {
ssglBitmapCharQuad(*str, p.x, p.y);
str++;
p.x += SS.TW.CHAR_WIDTH;
}
glEnd();
glDisable(GL_TEXTURE_2D);
}
void ssglDrawPixelsWithTexture(uint8_t *data, int w, int h)
{
#define MAX_DIM 32
static uint8_t Texture[MAX_DIM*MAX_DIM*3];
int i, j;
if(w > MAX_DIM || h > MAX_DIM) oops();
for(i = 0; i < w; i++) {
for(j = 0; j < h; j++) {
Texture[(j*MAX_DIM + i)*3 + 0] = data[(j*w + i)*3 + 0];
Texture[(j*MAX_DIM + i)*3 + 1] = data[(j*w + i)*3 + 1];
Texture[(j*MAX_DIM + i)*3 + 2] = data[(j*w + i)*3 + 2];
}
}
glBindTexture(GL_TEXTURE_2D, TEXTURE_DRAW_PIXELS);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, MAX_DIM, MAX_DIM, 0,
GL_RGB, GL_UNSIGNED_BYTE, Texture);
glEnable(GL_TEXTURE_2D);
glBegin(GL_QUADS);
glTexCoord2d(0, 0);
glVertex2d(0, h);
glTexCoord2d(((double)w)/MAX_DIM, 0);
glVertex2d(w, h);
glTexCoord2d(((double)w)/MAX_DIM, ((double)h)/MAX_DIM);
glVertex2d(w, 0);
glTexCoord2d(0, ((double)h)/MAX_DIM);
glVertex2d(0, 0);
glEnd();
glDisable(GL_TEXTURE_2D);
}