qt_demoe/third/3rd_qcustomplot/smoothcurve.cpp

121 lines
3.7 KiB
C++

#include "smoothcurve.h"
#include "qdebug.h"
QPainterPath SmoothCurve::createSmoothCurve(const QVector<QPointF> &points)
{
QPainterPath path;
int len = points.count();
if (len < 2) {
return path;
}
QVector<QPointF> firstControlPoints;
QVector<QPointF> secondControlPoints;
calculateControlPoints(points, &firstControlPoints, &secondControlPoints);
path.moveTo(points[0].x(), points[0].y());
for (int i = 0; i < len - 1; ++i) {
path.cubicTo(firstControlPoints[i], secondControlPoints[i], points[i + 1]);
}
return path;
}
QPainterPath SmoothCurve::createSmoothCurve2(const QVector<QPointF> &points)
{
//采用Qt原生方法不做任何处理
int count = points.count();
if (count == 0) {
return QPainterPath();
}
QPainterPath path(points.at(0));
for (int i = 0; i < count - 1; ++i) {
//控制点的 x 坐标为 sp 与 ep 的 x 坐标和的一半
//第一个控制点 c1 的 y 坐标为起始点 sp 的 y 坐标
//第二个控制点 c2 的 y 坐标为结束点 ep 的 y 坐标
QPointF sp = points.at(i);
QPointF ep = points.at(i + 1);
QPointF c1 = QPointF((sp.x() + ep.x()) / 2, sp.y());
QPointF c2 = QPointF((sp.x() + ep.x()) / 2, ep.y());
path.cubicTo(c1, c2, ep);
}
return path;
}
void SmoothCurve::calculateFirstControlPoints(double *&result, const double *rhs, int n)
{
result = new double[n];
double *tmp = new double[n];
double b = 2.0;
result[0] = rhs[0] / b;
for (int i = 1; i < n; ++i) {
tmp[i] = 1 / b;
b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];
result[i] = (rhs[i] - result[i - 1]) / b;
}
for (int i = 1; i < n; ++i) {
result[n - i - 1] -= tmp[n - i] * result[n - i];
}
delete tmp;
}
void SmoothCurve::calculateControlPoints(const QVector<QPointF> &datas,
QVector<QPointF> *firstControlPoints,
QVector<QPointF> *secondControlPoints)
{
int n = datas.count() - 1;
for (int i = 0; i < n; ++i) {
firstControlPoints->append(QPointF());
secondControlPoints->append(QPointF());
}
if (n == 1) {
(*firstControlPoints)[0].rx() = (2 * datas[0].x() + datas[1].x()) / 3;
(*firstControlPoints)[0].ry() = (2 * datas[0].y() + datas[1].y()) / 3;
(*secondControlPoints)[0].rx() = 2 * (*firstControlPoints)[0].x() - datas[0].x();
(*secondControlPoints)[0].ry() = 2 * (*firstControlPoints)[0].y() - datas[0].y();
return;
}
double *xs = 0;
double *ys = 0;
double *rhsx = new double[n];
double *rhsy = new double[n];
for (int i = 1; i < n - 1; ++i) {
rhsx[i] = 4 * datas[i].x() + 2 * datas[i + 1].x();
rhsy[i] = 4 * datas[i].y() + 2 * datas[i + 1].y();
}
rhsx[0] = datas[0].x() + 2 * datas[1].x();
rhsx[n - 1] = (8 * datas[n - 1].x() + datas[n].x()) / 2.0;
rhsy[0] = datas[0].y() + 2 * datas[1].y();
rhsy[n - 1] = (8 * datas[n - 1].y() + datas[n].y()) / 2.0;
calculateFirstControlPoints(xs, rhsx, n);
calculateFirstControlPoints(ys, rhsy, n);
for (int i = 0; i < n; ++i) {
(*firstControlPoints)[i].rx() = xs[i];
(*firstControlPoints)[i].ry() = ys[i];
if (i < n - 1) {
(*secondControlPoints)[i].rx() = 2 * datas[i + 1].x() - xs[i + 1];
(*secondControlPoints)[i].ry() = 2 * datas[i + 1].y() - ys[i + 1];
} else {
(*secondControlPoints)[i].rx() = (datas[n].x() + xs[n - 1]) / 2;
(*secondControlPoints)[i].ry() = (datas[n].y() + ys[n - 1]) / 2;
}
}
delete xs;
delete ys;
delete rhsx;
delete rhsy;
}